
1

Defining Classes and Methods

Chapter 4

Objectives

• become familiar with the concept of

– a class

– an object that instantiates the class

• learn how to

– define classes

– define and use methods

– create objects

– use parameters in methods

Objectives, cont.

• learn about

– information hiding and encapsulation

– the notion of a reference

• understand class variables and class parameters

Outline

• Class and Method Definitions

• Information Hiding and Encapsulation

• Objects and Reference

Basic Terminology

• A class defines a kind of objects:

– specifies the kinds of attributes (data) an

object of the class can have.

– provides methods specifying the actions an

object of the class can take.

• An object is an instance of the class.

• Person is a class

– Alice and Bob are objects of the Person class.

What does a class have?

• Members of a class:

– Attributes (instance variables, data)

• For each instance of the class (object), values of attributes can

vary, hence instance variables

– Methods

• Person class

– Attributes: name, address, phone number

– Methods: change address, change phone number

• Alice object

– Name is Alice, address is …

• Bob object

– Name is Bob, address is …

2

A Class as an Outline A UML Class Diagram

Method Definitions

• Methods belong to a class

– Defined inside the class

• Heading

– Return type (e.g. int, float, void)

– Name (e.g. nextInt, println)

– Parameters (e.g. println(…))

– More…

• Body

– enclosed in braces {}.

– Declarations and/or statements.

The Method main

• A program

– a class that has a method named main.

– Execution begins in the main method

• So far

– no attributes (instance variables)

– no methods other than method main.

------------ Person.java ------ defining Person ---------------------

public class Person

{

private String _name;

private String _iceCream;

public void setName(String newName)

{

this._name = newName; // this. is optional

}

public void setIceCream(String newIceCream) { … }

public void print()

{

System.out.println(this._name + “ likes “ + this._IceCream); // this. optional

}

}

------------ PersonTest.java ----- using Person ------------------

public class PersonTest

{

public static void main(String[] args)

{

Person joe = new Person();

joe.setName(“Joseph”);

joe.setIceCream(“Rocky Road”);

Person mary = new Person();

mary.setName(“Mary”);

mary.setIceCream(“Chocolate Fudge”);

mary.print();

}

}

Example

• class SpeciesFirstTry

3

Example, contd.
• class SpeciesFirstTryDemo

– Each object of type SpeciesFirstTry has its

own values for the three attributes

Class Files and Separate
Compilation

• One class definition per file

• File name and class name are the same

– File extension is .java

• After compilation

– byte code is stored in a file with extension .class

• Execution

– .class is run in the JVM

• Multiple .class files in the same directory

– No need to import them

Two Types of Methods

1. Return a value

– next = keyboard.nextInt();

– keyboard is the calling object.

2. Don’t return a value, called void method

– System.out.println(“Enter

data:”);

– System.out is the calling object

void Method Definitions

• example
public void writeOuput() //heading

{ //body

System.out.println(“Name: “ + name);

System.out.println(“Age: “ + age);

}

Using return in a void

Method
• form

return;

• usage

– end the invocation of the method
prematurely for dealing with some problem

• caution

– better ways to deal with a potential

problem (“exceptions”) [later...]

Defining Methods That Return

a Value
• example

public float density(float area) // heading

{ // body

return population / area;

}

4

Defining Methods That Return

a Value, cont.

• must contain return statement
return Expression;

– Expression must have a type that matches

the return type

• multiple return statements are allowed

– a single return statement is better (one exit point
for the method).

Naming Methods

• Use a verb to name methods

– Actions

– getBalance, deposit, changeAddress

• Start a method name with a lowercase letter.

public Method Definitions

• syntax for a void method
public void methodName(parameters)

{

<statement(s)>
}

public Method Definitions

• syntax for methods that return a value
public returnType methodName(parameters)

{

<statement(s), including a

return statement>

}

Accessing Attributes

• Inside the definition of the same class

– <attributeName> or
this.<attributeName>

– name = “Lara”; or
this._name = “Lara”;

• Outside the class definition

– i.e. in another class definition

– <objectName>.<attributeName>

– myBestFriend._name = “Lara”;

– Not recommended, later…

Example Using this

• Defining the writeOutput method

public void writeOutput()

{

System.out.println("Name = " + this.name);

System.out.println("Population = " +

this.population);

System.out.println("Growth rate = " +

this.growthRate + "%");

}

• Using the writeOutput method
– tiger.writeOutput()

• this refers to the tiger object

5

• Defining the addPopulation method:

public int addPopulation(SpeciesFirstTryDemo
species2)

{

return this.population + species2.population;

}

• Using the addPopulation method
– tiger.addPopulation(lion)

•this refers to the tiger object
•species2 refers to the lion object

Example Using this Local Variables

• Declared within a method

– “local to” (confined to) the method

definition

– can’t be accessed outside the method

• Not attributes (instance variables)

Local Variables, cont.
• class BankAccount

• class LocalVariablesDemoProgram

Blocks

• Block and compound statement

– a set of Java statements enclosed in
braces {}.

• Variable declared within a block

– local to the block.

– when the block ends, the variable
“disappears.”

• Variable declared outside multiple blocks

– spanning multiple blocks

Scope of a local variable

• The region in the program where the

local variable can be accessed

– Start: declaration of the variable

– End: the closing } of the block in which the

variable is declared

Example of Scope
public void method1()

{ // begin of block

int x;

if (…)

{ // begin of block

int y; // can’t have int x here, confusing anyway

…

}

else

{ // begin of block

… // can y be used here?

}

… // can y be used here?

}

public int method2()

{ // begin of block

int x; // can I do this?

…

return x;

}

6

Example of Scope
public void method()

{

for (int i=0; i < 10; i++) // start of a block

{

int y=0;

…

}

// Are i and y accessible here?

}

Variables in for Statements

• Variable declared outside the for statement
int n;

for (n = 1; n <10; n++) {…}

– variable n still exists when the for

statement ends

• Variable declared inside the for statement
for (int n = 1; n <10; n++) {…}

– variable n disappears when the for

statement ends

Passing Values to a Method:
Parameters

• Input values for methods (within the program, not from user)

– passed values or parameters

• More flexibility for methods

• formal parameters

– Part of method definition

– After the method name, within parentheses

• type

• name

• arguments, or actual parameters

– Calling a method with an object within the parentheses

• matching data type

• in the same order

Formal vs Actual Parameters

public static void main(String[] args)

{

print(“George Bush”);

}

public static void print(String name)

{

System.out.print(“The name is: “ + name);

}

Scope of Formal Parameters

• Start: begin of the method

• End: end of the method
public float square(float num)

{ // begin of num’s scope

…

} // end of num’s scope

Parameter Passing Example

• What is the formal parameter in the method definition?

– numberIn

• What is the argument (actual parameter) in the method
invocation?

– next

//Definition of method to double an integer

public int doubleValue(int numberIn)

{

return 2 * numberIn;

}

//Invocation of the method... somewhere in main...

...

int next = keyboard.nextInt();

System.out.println(someObj.doubleValue(next));

7

Type Matching/Constraint

• The type of each argument should match the

corresponding formal parameter.

• If appropriate, Java automatically performs

type casting:

– Define: float square(float num)

– Invoke: int x=5; square(x);

byte --> short --> int --> long --> float -->

double

Pass-By-Value:
Primitive Data Types as Parameters

• When the method is called

– value of each argument is copied (assigned) to its

corresponding formal parameter

• Formal parameters

– initialized to the values passed

– local to their method

• Variables used as arguments cannot be changed by the

method

– the method only gets a copy of the variable's value

Example for Pass-by-Value
public static void main(String[] args)

{

int x = 10, num = 20;

int sq = MyClass.square(x);

System.out.println(x);

System.out.println(num);

}

public static int square(int num)

{

num = num * num;

return num;

}

Arguments to Methods

• An argument in a method invocation can be
– a literal such as 2 or ‘A’

– a variable

– an expression that yields a value

[technically a literal or variable is also an “expression”]

Example for Pass-by-Value
public static void main(String[] args)

{

int x = 10, area;

area = MyClass.square(x);

area = MyClass.square(5);

area = MyClass.square(x + 5 % 2);

}

public static int square(int num)

{

return num * num;

}

Multiple Arguments to

Methods
anObject.doStuff(42, 100, 9.99, ‘Z’);

public void doStuff(int n1, int n2, double d1,

char c1);

– arguments and formal parameters are

matched by position

– Corresponding types need to match

8

Method with a Parameter

• class SpeciesSecondTry

Using a Method with a
Parameter

• class SpeciesSecondTryDemo

/***

* Class description

**/

public class ClassName

{

<attribute (instance variable) definitions>

//Method definitions of the form

/********************************

* Method description

*******************************/

public returnType methodName(type1 parmameter1, ...)

{

<statements defining the method>

}

}

Summary of Class Definition Syntax
class SpeciesSecondTry

• Display 4.6, page 244

• http://www.cs.fit.edu/~pkc/classes/cse1001/

src/ch04/SpeciesSecondTry.java

Attributes, Formal Parameters, Local

Variables

Class

Person

Attributes [instance variables] Methods [actions]

_name, _address changeAddr(String newAddr)

[declared before methods]

Formal Parameters Local Variables

newAddr addrLength

[declared in method heading] [declared in method body]

public class Person

{

private String name; //attribute (instance variable)

public void method1(String yourName)//parameter

{

String myName; // local variable

… this.name; //? #1

… this.myName; //? #2

… this.yourName; //? #3

… name; //? #4

… myName; //? #5

… yourName; //? #6

}

}

Attributes, local variables, parameters

9

Information Hiding and

Encapsulation: Outline

• Information Hiding

• Precondition and Postcondition Comments

• The public and private Modifiers

• Encapsulation

• Automatic Documentation with javadoc

• UML Class Diagrams

Information Hiding

• To drive a car, do you need to know
how the engine works? Why?

• println method

– need to know what the method does

– but not how println does it

• Provide a more abstract view and hide
the details

Information Hiding and Encapsulation

Information hiding

• protect data inside an

object

• do not allow direct

access

Encapsulation

• Use classes and

objects

• Objects include both

data items and

methods to act on

the data

• Both are forms of abstraction

public and private

public

• Attribute (instance variable)

– any class can directly access/change

• Method

– any class can invoke

private

• Attribute (instance variable)

– only the same class can access/change

• Method

– only the same class can invoke

private or public ?

• Attributes (instance variables)
– should be private, why?

• Methods
– usually public, why?

– sometimes private

• Default is public in Java
– Convention is to explicitly state public or
private

Accessors and Mutators

• accessor methods—public methods that allow
attributes (instance variables) to be read

• mutator methods—public methods that allow
attributes (instance variables) to be modified

– Check to make sure that changes are appropriate.

– Much better than making instance variables
public

private attributes (instance variables) with

public accessor and mutator methods

10

Accessor and Mutator Methods
• class

SpeciesFourthTry

Accessor and Mutator Methods
• class SpeciesFourthTryDemo

Programming Example
• class Purchase

Programming Example, contd.

Programming Example
• class PurchaseDemo

Precondition and Postcondition
Comments

• efficient and standard way to tell what a method does

• precondition—states conditions that must be true before

method is invoked

• postcondition—tells the effect of a method call

• Example:

/**

Precondition: years is a nonnegative number

Postcondition: Returns the projected population after the specified

number of years

*/

• Note that the terms preconditions and postconditions are not
always used, particularly if the only postcondition describes the

return value of the method.

11

Assertion Checks
• assertion—statement that should be true if there are no mistakes in

the program

• Preconditions and postconditions are examples of assertions.

• Can use assert to see if assertion is true.

• Syntax:

assert Boolean_Expression;

• Example:

assert n >= limit;

• If assertion is false when checked, the program ends and an error

message is printed.

• Assertion checking can be turned on and off.

– The exact way to enable or disable assertions depends on your

development environment.

Encapsulation

• Encapsulation is the process of hiding details

of a class definition that are not needed to

use objects of the class.

• Encapsulation is a form of information hiding.

Encapsulation, cont.

• Two parts of a class definition:

1. user interface

– communicates everything needed to use the
class

2. Implementation

– all the members of the class.

• A class defined this way is said to be well

encapsulated.

User Interface

• consists of

– headings for the public methods

– defined public constants

– comments telling the programmer how to

use the public methods and the defined

public constants.

• contains everything needed to use the class.

Implementation

• consists of

– private attributes (instance variables)

– private defined constants

– definitions of public and private methods.

• Java code contains both the user interface

and the implementation.

Encapsulation

12

Encapsulation Guidelines

• Precede the class definition with a comment

that shapes the programmer’s view of the

class.

• Declare all the attributes (instance variables)

in the class private.

• Provide appropriate public accessor and

mutator methods.

Encapsulation Guidelines,
cont.

• Provide public methods to permit the
programmer to use the class appropriately.

• Precede each public method with a
comment specifying how to use the method.

• Declare other methods private.

• Use /*...*/ or /**...*/ for user interface
comments and // for implementation
comments.

Encapsulation Characteristics

• permit implementation changes without

changes to the interface.

• combine data and methods into a single

entity, “hiding” the details of the

implementation.

ADT

• An abstract data type (ADT) is basically the

same as a well-encapsulated class definition.

Automatic Documentation with
javadoc

• A program named javadoc automatically

generates user interface documentation.

• The documentation contains everything

needed to use the class(es).

• Properly commented class definitions (using

/**…*/) can be used to produce and display

the user interface.

• Documents produced by javadoc are in

HTML.

UML Class Diagrams

• UML diagrams are mostly self-explanatory.

• plus sign (+) indicates public

• minus sign (-) indicates private

• Typically, the class diagram is created before

the class is defined.

• A class diagram outlines both the interface

and the implementation.

13

UML Class Diagrams, cont. Object-Oriented (OO) Design

• Object-Oriented

– Think what the objects (data) are first

– Then their functionality (methods)

– Then how the objects and their functionality can be used to
create more complex functionality

• Each class encapsulates the data (attributes, instance variables)
and functionality (methods) of the objects.

• When a method is called on an object, “the object knows what to

do on its own.” The caller doesn’t need to know what to do.

• OO design is not always appropriate…

• http://www.cs.fit.edu/~pkc/classes/cse1001/OOmoney/

Objects and Reference:

Outline
• Variables of a Class Type and Objects

• Boolean-Valued Methods

• Class Parameters

• Comparing Class Parameters and Primitive-

Type Parameters

Variables: Class Type vs. Primitive Type

• What does a variable hold?

– primitive type

• value of the variable

– class type

• memory address (reference) of the object

–not the value(s) of the object

–objects generally do not have a single

value and they also have methods, so

what’s its "value?”

Post Office Analogy
What’s the pink card for and

why?

14

Mailboxes and Java

• Letters: smaller, standard sizes (primitive type
objects)

• Packages: larger, no standard sizes (class type
objects)

• Mailbox (variable):

– Primitive type: Letter itself (value/content of a

primitive type object)

– Class type: Pink card to get the package
(reference/pointer/address of a class type object)

Advantages of separate treatment

• Mailboxes are tightly packed and well organized (primitive
types)

– Efficient access and storage

• Packages are not as well organized (classes types)

– Less efficient access and storage

• Different memory segments for primitive type objects
(mailboxes) and class types objects (back of the mailroom)

• Easier to move a package or a pink card around?

– Parameter passing—faster to pass an address than a class
type object

– Returning from methods

Allocating Memory for a

Reference and an Object
• A declaration such as

SpeciesFourthTry s;

creates a variable s that can hold a memory

address (reference).

• A statement such as
s = new SpeciesFourthTry();

allocates memory for an object of type

SpeciesFourthTry and assign its memory
address to variable s.

Issues with Class Type Variables

• Assignment (=)

• Equality (==)

• Parameter passing

Assignment with

Variables of a Class Type

klingon.set(“Klingon ox”, 10, 15);

earth.set(“Black rhino”, 11, 2);

earth = klingon;

earth.set(“Elephant”, 100, 12);

System.out.println(“earth:”);

earth.writeOutput();

System.out.println(“klingon:”);

klingon.writeOutput();

What will the output be?

(see the next slide)

Assignment with

Variables of a Class Type

klingon.set(“Klingon ox”, 10, 15);

earth.set(“Black rhino”, 11, 2);

earth = klingon;

earth.set(“Elephant”, 100, 12);

System.out.println(“earth:”);

earth.writeOutput();

System.out.println(“klingon:”);

klingon.writeOutput();

earth:

Name = Elephant

Population = 100

Growth Rate = 12%

klingon:

Name = Elephant

Population = 100

Growth Rate = 12%

Output:

What will the output be?

klingon and earth both print Elephant.

Why do they print the same thing?

(see the next slide)

15

Assignment with

Variables of a Class Type

klingon.set(“Klingon ox”, 10, 15);

earth.set(“Black rhino”, 11, 2);

earth = klingon;

earth.set(“Elephant”, 100, 12);

System.out.println(“earth:”);

earth.writeOutput();

System.out.println(“klingon:”);

klingon.writeOutput();

Why do they print the same thing?

The assignment statement makes earth and

klingon refer to the same object.

When earth is changed to “Elephant”,

klingon is changed also.

earth

klingon

Black rhino

11

2

Klingon ox

10

15

Before the assignment
statement, earth and

klingon refer to two
different objects.

earth

klingon

Klingon ox

10

15

After the assignment
statement, earth and
klingon refer to the

same object.

Variables of a Class Type

Assignment with Variables of a Class Type

• Aliases

– Multiple class variables that have the same

memory address

– They point to the same object

Species mouse = new Species(“Mouse”, 10, 5);

Species cat = mouse;

Species lion = cat;

// lion and cat are aliases of mouse

Comparing Class Variables

• A class type variable

– memory address of the object

• Equality operator == with two class variables

– the addresses of the objects are compared!

– not the content of the objects

– rarely what you want to do!

• Use the class’s equals() method to compare

the content of objects referenced by class

variables

Example: Comparing Class Variables

Use equals() method (not the double-equals sign) to
compare class variables

//User enters first string

String firstLine = keyboard.nextLine();

//User enters second string

String secondLine = keyboard.nextLine();

if(firstLine == secondLine)

//this compares their addresses

{

<body of if statement>

}

if(firstLine.equals(secondLine)

//this compares their values

{

<body of if statement>

}

== with Class Type Variables

16

== with Class Type Variables == with Class Type Variables

Programming Example Programming Example, contd.

Programming Example, cont. Class Types as Method Parameters

• class variable names used as parameters in a method call

– copy the address in the argument to the formal parameter

– formal parameter name contains the address of the
argument

– the formal parameter name is an alias for the argument

name

Any action taken on the formal parameter

is actually taken on the original argument!

• Different for parameters of primitive types

– the original argument is not protected for class types!

17

Class Parameters, cont.

• Example
if (s1.equals(s2))

…

public boolean equals(Species otherObject)

causes otherObject to become an alias of s2,

referring to the same memory location, which

is equivalent to

otherObject = s2;

Example: Class Type as a Method Parameter

• The method call makes otherObject an alias for s2, therefore

the method acts on s2, the DemoSpecies object passed to the

method!

• This is unlike primitive types, where the passed variable cannot

be changed.

//Method definition with a DemoSpecies class parameter

public void makeEqual(DemoSpecies otherObject)

{

otherObject.name = this.name;

otherObject.population = this.population;

otherObject.growthRate = this.growthRate;

}

//Method invocation

DemoSpecies s1 = new DemoSpecies("Crepek", 10, 20);

DemoSpecies s2 = new DemoSpecies();

s1.makeEqual(s2); // s2 is changed!

Comparing Class Parameters and

Primitive-Type Parameters, cont.

Comparing Class Parameters and

Primitive-Type Parameters, cont.

Summary

• Classes and objects

• Attributes (instance variables) and methods

• Private attributes (instance variables), public

methods

• Information hiding and encapsulation

• Class type variables have addresses of objects

• Issues with assignment, equality, and parameters

