
1

Chapter 6

• Array Basics

• Arrays in Classes and Methods

• Programming with Arrays and

Classes

• Sorting Arrays

• Multidimensional Arrays

Arrays

Motivation

• How to organize 100 Student objects?

• 100 different Student object names?

• Organize data for efficient access

– Class: different data types in one object

– Array: multiple objects of the same type

Overview
• An array

– a single name for a collection of data values

– all of the same data type

– subscript notation to identify one of the values

• A carryover from earlier programming languages

• More than a primitive type, less than an object

– like objects when used as method parameters and return
types

– do not have or use inheritance

• Accessing each of the values in an array
– Usually a for loop

Creating Arrays

• General syntax for declaring an array:

Base_Type[] Array_Name = new Base_Type[Length];

• Examples:
80-element array with base type char:

char[] symbol = new char[80];

100-element array of doubles:

double[] reading = new double[100];

70-element array of Species:
Species[] specimen = new Species[70];

Three Ways to Use [] (Brackets)

with an Array Name
1. Declaring an array: int[] pressure

• creates a name of type "int array"

– types int and int[] are different
• int[]: type of the array

• int : type of the individual values

2. To create a new array, e.g. pressure = new int[100];

3. To refer to a specific element in the array
- also called an indexed variable, e.g.

pressure[3] = keyboard.nextInt();
System.out.println("You entered" + pressure[3]);

Some Array Terminology

temperature[n + 2]

temperature[n + 2]

temperature[n + 2]

temperature[n + 2] = 32;

Array name

Index - also called a subscript
- must be an int,
- or an expression that evaluates to an int

Indexed variable - also called an
element or subscripted variable

Note that "element" may refer to either a single indexed
variable in the array or the value of a single indexed variable.

Value of the indexed variable
- also called an element of the array

2

Array Length
• Specified by the number in brackets when created with new

– maximum number of elements the array can hold

– storage is allocated whether or not the elements are assigned
values

• the attribute length,

Species[] entry = new Species[20];

System.out.println(entry.length);

• The length attribute is established in the declaration and
cannot be changed unless the array is redeclared

Subscript Range

• Array subscripts use zero-numbering

– the first element has subscript 0

– the second element has subscript 1

– etc. - the nth element has subscript n-1

– the last element has subscript length-1

• For example: an int array with 4 elements

Subscript: 0 1 2 3
Value: 97 86 92 71

Subscript out of Range Error

• Using a subscript larger than length-1 causes a run time

(not a compiler) error

– an ArrayOutOfBoundsException is thrown

• you do not need to catch it

• you need to fix the problem and recompile your

code

• Other programming languages, e.g. C and C++, do not

even cause a run time error!

– one of the most dangerous characteristics of these

languages is that they allow out of bounds array

indices.

Array Length Specified at Run-

time
// array length specified at compile-time

int[] array1 = new int[10];

// array length specified at run-time

// calculate size…

int size = …;

int[] array2 = new int[size];

Programming Tip:

Use Singular Array Names

• Using singular rather than plural names for arrays

improves readability

• Although the array contains many elements the most

common use of the name will be with a subscript, which

references a single value.

• It is easier to read:

– score[3] than

– scores[3]

Initializing an Array's Values

in Its Declaration
• can be initialized by putting a comma-separated list in braces

• Uninitialized elements will be assigned some default value, e.g. 0 for
int arrays (explicit initialization is recommended)

• The length of an array is automatically determined when the values are

explicitly initialized in the declaration

• For example:

double[] reading = {5.1, 3.02, 9.65};

System.out.println(reading.length);

- displays 3, the length of the array reading

3

Initializing Array Elements in a

Loop
• A for loop is commonly used to initialize array elements

• For example:

int i;//loop counter/array index

int[] a = new int[10];

for(i = 0; i < a.length; i++)

a[i] = 0;

– note that the loop counter/array index goes from 0 to length - 1

– it counts through length = 10 iterations/elements using the zero-
numbering of the array index

Programming Tip:

Do not count on default initial values for array elements

– explicitly initialize elements in the declaration or in a loop

Arrays, Classes, and Methods

 public void getFigures()
 {
 System.out.println("Enter number of sales associates:");
 numberOfAssociates = SavitchIn.readLineInt();
 SalesAssociate[] record =
 new SalesAssociate[numberOfAssociates];
 for (int i = 0; i < numberOfAssociates; i++)
 {
 record[i] = new SalesAssociate();
 System.out.println("Enter data for associate " + (i + 1));
 record[i].readInput();
 System.out.println();
 }
 }

each array element is
a SalesAssociate

variable

use the readInput

method of
SalesAssociate

An array of a class can
be declared and the
class's methods applied
to the elements of the
array.

This excerpt from the Sales Report program
in the text uses the SalesAssociate class

to create an array of sales associates:

create an array of
SalesAssociates

Arrays and Array Elements

as Method Arguments

• Arrays and array elements can be

– used with classes and methods just like other

objects

– be an argument in a method

– returned by methods

Indexed

Variables

as Method

Arguments

nextScore is

an array of
ints

an element of
nextScore is

an argument of
method
average

average

method definition

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 16

Excerpt from ArgumentDemo
program in text.

public static void main(String[] arg)

{

Scanner keyboard = new Scanner(System.in);a

System.out.println("Enter your score on exam 1:");

int firstScore = keyboard.nextInt();

int[] nextScore = new int[3];

int i;

double possibleAverage;

for (i = 0; i < nextScore.length; i++)

nextScore[i] = 80 + 10*i;

for (i = 0; i < nextScore.length; i++)

{

possibleAverage = average(firstScore, nextScore[i]);

System.out.println("If your score on exam 2 is "

+ nextScore[i]);

System.out.println("your average will be "

+ possibleAverage);

}

}

public static double average(int n1, int n2)

{

return (n1 + n2)/2.0;

}

Passing Array Elements

 public static void main(String[] arg)
 {
 SalesAssociate[] record = new SalesAssociate[numberOfAssociates];
 int i;
 for (i = 0; i < numberOfAssociates; i++)
 {
 record[i] = new SalesAssociate();
 System.out.println("Enter data for associate " + (i + 1));
 record[i].readInput();
 }
 m(record[0]);
 }
 public static void m(SalesAssociate sa)
 {
 }

When Can a Method Change an

Indexed Variable Argument?
• primitive types are “call-by-value”

– only a copy of the value is passed as an argument

– method cannot change the value of the indexed variable

• class types are reference types (“call by reference”)

– pass the address of the object

– the corresponding parameter in the method definition

becomes an alias of the object

– the method has access to the actual object

– so the method can change the value of the indexed

variable if it is a class (and not a primitive) type

4

Passing Array Elements

int[] grade = new int[10];

obj.method(grade[i]); // grade[i] cannot be changed

… method(int grade) // pass by value; a copy

{

}

__

Person[] roster = new Person[10];

obj.method(roster[i]); // roster[i] can be changed

… method(Person p) // pass by reference; an alias

{

}

Array Names as Method

Arguments
• Use just the array name and no brackets

• Pass by reference

– the method has access to the original array and can change the

value of the elements

• The length of the array passed can be different for each call

– when you define the method you do not need to know

the length of the array that will be passed

– use the length attribute inside the method to avoid

ArrayIndexOutOfBoundsExceptions

Example: An Array as an Argument

in a Method Call

public static void showArray(char[] a)

{

int i;

for(i = 0; i < a.length; i++)

System.out.println(a[i]);

}

char[] grades = new char[45];

MyClass.showArray(grades);

the method's argument
is the name of an array
of characters

uses the length attribute

to control the loop
allows different size arrays
and avoids index-out-of-
bounds exceptions

Arguments for the Method main

• The heading for the main method shows a parameter that is an array

of Strings:

public static void main(String[] arg)

• When you run a program from the command line, all words after the

class name will be passed to the main method in the arg array.

java TestProgram Josephine Student

• The following main method in the class TestProgram will print

out the first two arguments it receives:

• In this example, the output from the command line above will be:

Hello Josephine Student

Public static void main(String[] arg)

{

System.out.println(“Hello “ + arg[0] + “ “ + arg[1]);

}

Using = with Array Names:

Remember They Are Reference Types

int[] a = new int[3];

int[] b = new int[3];

for(int i=0; i < a.length; i++)

a[i] = i;

b = a;

System.out.println(a[2] + " " + b[2]);

a[2] = 10;

System.out.println(a[2] + " " + b[2]);

The output for this code will be:

2 2

10 10

This does not create a
copy of array a;
it makes b another name

for array a.

A value changed in a

is the same value
obtained with b

Using == with array names:

remember they are reference types
int i;

int[] a = new int[3];

int[] b = new int[3];

for(i=0; i < a.length; i++)

a[i] = 0;

for(i=0; i < b.length; i++)

b[i] = 0;

if(b == a)

System.out.println("a equals b");

else

System.out.println("a does not equal b");

a and b are both
3-element arrays of ints

all elements of a and b are
assigned the value 0

tests if the
addresses of a
and b are equal,

not if the array
values are equal

The output for this code will be " a does not equal b"

because the addresses of the arrays are not equal.

5

Behavior of Three Operations

Depends on

primitive/

class type

Pass by

reference

(address)

Pass by

reference

(address)

Pass by

value

(content)

Parameter

Passing

Depends on

primitive/

class type

Compare

address

Compare

address

Compare

content

Equality

(==)

Depends on

primitive/

class type

Copy

address

Copy

address

Copy contentAssignment

(=)

Array

Element

Entire

Array

Class

Type

Primitive

Type

Testing Two

Arrays for

Equality

• To test two arrays for

equality you need to
define an equals

method that returns

true if and only the

arrays have the same

length and all

corresponding values

are equal

public static boolean equals(int[] a,

 int[] b)

 {

 boolean match = false;

 if (a.length == b.length)

 {

 match = true; //tentatively

 int i = 0;

 while (match && (i < a.length))

 {

 if (a[i] != b[i])

 match = false;

 i++;

 }

 }

 return match;

 }

Methods that

Return an

Array

• the address of
the array is
passed

• The local array
name within the
method is just
another name
for the original
array

 public class returnArrayDemo
 {

 public static void main(String arg[])

 {

 char[] c;

 c = vowels();

 for(int i = 0; i < c.length; i++)

 System.out.println(c[i]);

 }

 public static char[] vowels()

 {

 char[] newArray = new char[5];

 newArray[0] = 'a';

 newArray[1] = 'e';

 newArray[2] = 'i';

 newArray[3] = 'o';

 newArray[4] = 'u';

 return newArray;

 }

 } c, newArray, and

the return type of
vowels are

all the same type:
char []

Wrapper Classes for Arrays
• Arrays can be made into objects by creating a wrapper class

– similar to wrapper classes for primitive types

• In the wrapper class:

– make an array an attribute

– define constructors

– define accessor methods to read and write element values and parameters

• The text shows an example of creating a wrapper class for an array of objects
of type OneWayNoRepeatsList

– the wrapper class defines two constructors plus the following methods:

addItem, full, empty, entryAt, atLastEntry, onList,

maximumNumberOfEntries, numberOfEntries, and

eraseList

Partially Filled Arrays
• Sometimes only part of an array has been filled with data

• Array elements always contain something

– elements which have not been written to

• contain unknown (garbage) data so you should avoid reading them

• There is no automatic mechanism to detect how many elements have

been filled

– you, the programmer need to keep track!

• An example: the instance variable countOfEntries (in the class

OneWayNoRepeatsList) is incremented every time addItem is

called (see the text)

Example of a Partially Filled

Array
entry[0] Buy milk.

entry[1] Call home.

entry[2] Go to beach.

entry[3]

entry[4]

countOfEntries - 1

garbage values

countOfEntries has a value of 3.

entry.length has a value of 5.

6

Searching an Array

• There are many techniques for searching an array for a particular value

• Sequential search:

– start at the beginning of the array and proceed in sequence until either
the value is found or the end of the array is reached*

• if the array is only partially filled, the search stops when the last
meaningful value has been checked

– it is not the most efficient way

– but it works and is easy to program

* Or, just as easy, start at the end and work backwards toward the beginning

Example: Sequential Search of an Array

 public boolean onList(String item)

 {

 boolean found = false;

 int i = 0;

 while ((! found) &&

 (i < countOfEntries))

 {

 if (item.equals(entry[i]))

 found = true;

 else

 i++;

 }

 return found;

 }

The onList method of
OneWayNoRepeatsList

sequentially searches the
array entry to see it the
parameter item is in the

array

www.cs.fit.edu/~pkc/classes/cse1001/Search.java

Gotcha: Returning an

Array Attribute (Instance Variable)
• Access methods that return references to array instance variables cause

problems for information hiding.

Example:

Even though entries is declared private, a method outside the class

can get full access to it by using getEntryArray.

• In most cases this type of method is not necessary anyhow.

• If it is necessary, make the method return a copy of the array instead of

returning a reference to the actual array.

class …

{

private String[] entry;

…

public String[] getEntryArray()

{

return entry;

}

Sorting an Array
• Sorting a list of elements is another very common problem (along with

searching a list)

– sort numbers in ascending order

– sort numbers in descending order

– sort strings in alphabetic order

– etc.

• There are many ways to sort a list, just as there are many ways to

search a list

• Selection sort

– one of the easiest

– not the most efficient, but easy to understand and program

Selection Sort Algorithm

for an Array of Integers
To sort an array on integers in ascending order:

1. Find the smallest number and record its index

2. swap (interchange) the smallest number with the first

element of the array

– the sorted part of the array is now the first element

– the unsorted part of the array is the remaining

elements

3. repeat Steps 2 and 3 until all elements have been placed

– each iteration increases the length of the sorted part

by one

Selection Sort Example

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]
7 6 11 17 3 15 5 19 30 14

Problem: sort this 10-element array of integers in ascending order:

1st iteration: smallest value is 3, its index is 4, swap a[0] with a[4]

7 6 11 17 3 15 5 19 30 14before:

3 6 11 17 7 15 5 19 30 14after:

2nd iteration: smallest value in remaining list is 5, its index is 6, swap a[1] with a[6]

3 6 11 17 7 15 5 19 30 14

3 5 11 17 7 15 6 19 30 14

How many iterations are needed?

Key:
smallest remaining value
sorted elements

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 36

7

Example: Selection Sort

• Notice the precondition: every array element has a value

• may have duplicate values

• broken down into smaller tasks
– "find the index of the smallest value"

– "interchange two elements"

– private because they are helper methods (users are not
expected to call them directly)

/**

*Precondition:

*Every indexed variable of the array a has a value.

*Action: Sorts the array a so that

*a[0] <= a[1] <= ... <= a[a.length - 1].

**/

public static void sort(int[] a)

{

int index, indexOfNextSmallest;

for (index = 0; index < a.length - 1; index++)

{//Place the correct value in a[index]:

indexOfNextSmallest = indexOfSmallest(index, a);

interchange(index,indexOfNextSmallest, a);

//a[0] <= a[1] <=...<= a[index] and these are

//the smallest of the original array elements.

//The remaining positions contain the rest of

//the original array elements.

}

}

Selection Sort Code

Insertion Sort

• Basic Idea:

– Keeping expanding the sorted portion by one

– Insert the next element into the right position in the sorted portion

• Algorithm:

1. Start with one element [is it sorted?] – sorted portion

2. While the sorted portion is not the entire array

1. Find the right position in the sorted portion for the next
element

2. Insert the element

3. If necessary, move the other elements down

4. Expand the sorted portion by one

Insertion Sort: An example

• First iteration

– Before: [5], 3, 4, 9, 2

– After: [3, 5], 4, 9, 2

• Second iteration

– Before: [3, 5], 4, 9, 2

– After: [3, 4, 5], 9, 2

• Third iteration

– Before: [3, 4, 5], 9, 2

– After: [3, 4, 5, 9], 2

• Fourth iteration

– Before: [3, 4, 5, 9], 2

– After: [2, 3, 4, 5, 9]

Bubble Sort

• Basic Idea:

– Expand the sorted portion one by one

– “Sink” the largest element to the bottom after comparing adjacent

elements

– The smaller items “bubble” up

• Algorithm:

– While the unsorted portion has more than one element

• Compare adjacent elements

• Swap elements if out of order

• Largest element at the bottom, reduce the unsorted portion by

one

Bubble Sort: An example

• First Iteration:

– [5, 3], 4, 9, 2 � [3, 5], 4, 9, 2

– 3, [5, 4], 9, 2 � 3, [4, 5], 9, 2

– 3, 4, [5, 9], 2 � 3, 4, [5, 9], 2

– 3, 4, 5, [9, 2] � 3, 4, 5, [2, 9]

• Second Iteration:

– [3, 4], 5, 2, 9 � [3, 4], 5, 2, 9

– 3, [4, 5], 2, 9 � 3, [4, 5], 2, 9

– 3, 4, [5, 2], 9 � 3, 4, [2, 5], 9

• Third Iteration:

– [3, 4], 2, 5, 9 � [3, 4], 2, 5, 9

– 3, [4, 2], 5, 9 � 3, [2, 4], 5, 9

• Fourth Iteration:

– [3, 2], 4, 5, 9 � [2, 3], 4, 5, 9

8

How to Compare Algorithms in

Efficiency (speed)

• Empirical Analysis

– Wall-clock time

– CPU time

– Can you predict performance before implementing the

algorithm?

• Theoretical Analysis

– Approximation by counting important operations

– Mathematical functions based on input size (N)

How Fast/Slow Can It Get?

(10G Hz, assume 1010 operations/sec)

Eternity??100,000,000132,87710,000

Forever??1,000,0009,9661,000

1.3 x 1030

(4 x1012 years)

10,000664100

(10-8 sec)

1,0241003310

2NN2Nlog2NN

Theoretical Analysis (Sorting)

• Counting important operations

– Comparisons (array elements)

• >, <, …

– Swaps/moves (array elements)

• 1 swap has 3 moves

• Comparison is the more important operation—could be expensive

• Size of input (N) = Number of array elements

• Three cases for analysis

– Worst case (interesting, popular analysis)

– Best case (not so interesting)

– Average case (discussed in another course)

Selection Sort

• Comparisons

– N – 1 iterations

– First iteration: how many comparisons?

– Second iteration: how many comparisons?

– (N – 1) + (N – 2) + … + 2 + 1 = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: every element is in the wrong location)

– N – 1 iterations

– First iteration: how many swaps/moves?

– Second iteration: how many swaps/moves?

– (N – 1) x 3 = 3N - 3

Insertion Sort

• Comparisons (worst case: correct order)

– N – 1 iterations

– First iteration: how many comparisons?

– Second iteration: how many comparisons?

– 1 + 2 + … + (N – 2) + (N – 1) = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: reverse order)

– N – 1 iterations

– First iteration: how many moves?

– Second iteration: how many moves?

– 3 + 4 + … + N + (N + 1) = (N + 4)(N - 1)/2 = (N2 + 3N - 4)/2

Bubble Sort

• Comparisons

– N – 1 iterations

– First iteration: how many comparisons?

– Second iteration: how many comparisons?

– (N – 1) + (N – 2) + … + 2 + 1 = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: reverse order)

– N – 1 iterations

– First iteration: how many swaps/moves?

– Second iteration: how many swaps/moves?

– [(N – 1) + (N – 2) + … + 2 + 1] x 3 = 3N(N-1)/2 = (3N2 – 3N)/2

9

Summary of Worst-case Analysis

(3N2 – 3N)/2(N2 – N)/2Bubble

(N2 + 3N - 4)/2(N2 – N)/2Insertion

3N - 3(N2 – N)/2Selection

MovesComparisons

(more important)

Sorting Algorithm Tradeoffs
• Easy to understand algorithms

– not very efficient

– less likely to have mistakes

– require less time to code, test, and debug

– Selection, Insertion, Bubble Sorting algorithms

– Bubble Sort is the easiest to implement

• Complicated but more efficient

– useful when performance is a major issue

– programming project for Chapter 11 describes a more efficient
sorting algorithm

"Getting the wrong result is always inefficient."

Multidimensional Arrays

• Arrays with more than one index

– number of dimensions = number of indexes

• Arrays with more than two dimensions are a simple extension of two-

dimensional (2-D) arrays

• A 2-D array corresponds to a table or grid

– one dimension is the row

– the other dimension is the column

– cell: an intersection of a row and column

– an array element corresponds to a cell in the table

Table as a 2-Dimensional Array

Balances for Various Interest Rates
Compounded Annually

(Rounded to Whole Dollar Amounts)
Year 5.00% 5.50% 6.00% 6.50% 7.00% 7.50%

1 $1050 $1055 $1060 $1065 $1070 $1075
2 $1103 $1113 $1124 $1134 $1145 $1156
3 $1158 $1174 $1191 $1208 $1225 $1242
4 $1216 $1239 $1262 $1286 $1311 $1335
5 $1276 $1307 $1338 $1370 $1403 $1436
… … … … … … …

• The table assumes a starting balance of $1000

• First dimension: row identifier - Year

• Second dimension: column identifier - percentage

• Cell contains balance for the year (row) and percentage (column)

• Balance for year 4, rate 7.00% = $1311

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 52

Table as a 2-D Array

Indexes 0 1 2 3 4 5
0 $1050 $1055 $1060 $1065 $1070 $1075
1 $1103 $1113 $1124 $1134 $1145 $1156
2 $1158 $1174 $1191 $1208 $1225 $1242
3 $1216 $1239 $1262 $1286 $1311 $1335
4 $1276 $1307 $1338 $1370 $1403 $1436
… … … … … … …

• Generalizing to two indexes: [row][column]

• First dimension: row index

• Second dimension: column index

• Cell contains balance for the year/row and percentage/column

• All indexes use zero-numbering

– Balance[3][4] = cell in 4th row (year = 4) and 5th column (7.50%)

– Balance[3][4] = $1311 (shown in yellow)

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 53

Row Index 3
(4th row)

Column Index 4
(5th column)

Java Code to Create a 2-D Array

• Syntax for 2-D arrays is similar to 1-D arrays

• Declare a 2-D array of ints named table

– the table should have ten rows and six columns

int[][] table = new int[10][6];

10

Method to Calculate the Cell

Values• balance(starting, years, rate) = (starting) x (1 + rate)years

• The repeated multiplication by (1 + rate) can be done in a
for loop that repeats years times.

 public static int balance(double startBalance, int years,
 double rate)

 {

 double runningBalance = startBalance;

 int count;

 for (count = 1; count <= years; count++)

 runningBalance = runningBalance*(1 + rate/100);

 return (int) (Math.round(runningBalance));

 }

balance method in

class InterestTable

Processing a 2-D Array:
for Loops Nested 2-Deep

• To process all elements of an n-D array nest n for loops

– each loop has its own counter that corresponds to an index

• For example: calculate and enter balances in the interest table

– inner loop repeats 6 times (six rates) for every outer loop iteration

– the outer loop repeats 10 times (10 different values of years)

– so the inner repeats 10 x 6 = 60 times = # cells in table

int[][] table = new int[10][6];

int row, column;

for (row = 0; row < 10; row++)

 for (column = 0; column < 6; column++)

 table[row][column] = balance(1000.00,

row + 1, (5 + 0.5*column));

Excerpt from
main method of
InterestTable

Multidimensional Array Parameters

and Returned Values
• Methods may have multi-D array parameters

• Methods may return a multi-D array as the value returned

• The situation is similar to 1-D arrays, but with more brackets

• Example: a 2-D int array as a method argument

 public static void showTable(int[][] displayArray)
 {
 int row, column;
 for (row = 0; row < displayArray.length; row++)
 {
 System.out.print((row + 1) + " ");
 for (column = 0; column < displayArray[row].length; column++)
 System.out.print("$" + displayArray[row][column] + " ");
 System.out.println();
 }
 }

Notice how the number
of columns is obtained

Notice how the number
of rows is obtained

showTable

method from class
InterestTable2

Implementation of

Multidimensional Arrays

• Multidimensional arrays are implemented as arrays of arrays.

Example:

int[][] table = new int[3][4];

– table is a one-dimensional array of length 3

– Each element in table is an array with base type int.

• Access a row by only using only one subscript:

– table[0].length gives the length (4) of the first row in the

array

0

1

2

0 1 2 3

table[0] refers to the first

row in the array, which is a
one-dimensional array.

Note: table.length

(which is 3 in this
case) is not the
same thing as
table[0].length

(which is 4).

Ragged Arrays

• Ragged arrays have rows of unequal length

– each row has a different number of columns, or entries

• Ragged arrays are allowed in Java

• Example: create a 2-D int array named b with 5 elements in the first

row, 7 in the second row, and 4 in the third row:

int[][] b = new int[3][];

b[0] = new int[5];

b[1] = new int[7];

b[2] = new int[4];

Programming Example:

Employee Time Records

• The class TimeBook uses several arrays to keep track of employee

time records:

public class TimeBook

{

private int numberOfEmployees;

private int[][] hours;

private int[] weekHours;

private int[] dayHours;

. . .

}

hours[i][j] has

the hours for
employee j on day i

weekHours[j] has

the week's hours for
employee j+1

dayHours[i] has the

total hours worked by all
employees on day i

11

Nested Loops with Multidimensional Arrays

• The method computeWeekHours uses nested

for loops to compute the week's total hours for

each employee.

• Each time through the outer loop body, the inner

loop adds all the numbers in one column of the
hours array to get the value for one element in

the weekHours array.

for (employeeNumber = 1;

employeeNumber <= numberOfEmployees; employeeNumber++)

{ // Process one employee

sum = 0;

for (dayNumber = 0; dayNumber < 5; dayNumber++)

sum = sum + hours[dayNumber][employeeNumber – 1];

weekHours[employeeNumber – 1] = sum;

}

hours

array

weekHours

array

2

3

4

0

1

8

8

8

8

8

210

8

8

8

0

0

8

4

8

9

9

210

382440

Parallel Arrays

public class Course

{

private String _name;

private String[] _studentName;

private int[] _studentId;

private float[] _studentGrade;

private String[] _assignmentName; // parallel array?

public Course(String name, int numOfStudents)

{

_name = name;

_studentName = new String[numOfStudents];

_studentId = new int[numOfStudents];

_studentGrade = new float[numOfStudents];

for (int i = 0; i < numOfStudents; i++)

{

_studentName[i] = “none”;

_studentId[i] = 0;

_studentGrade[i] = 0.0;

}

}

}

Array of Objects
public class Student

{

private String _name;

private int _id;

private float _grade;

public Student() { _name = “none”; _id = 0; _grade = .0; }

public Student(String name, int id, float grade)

{ _name = name; _id = id; _grade = grade;}

}

public class Course

{

private String _name;

private Student[] _student;

public Course(String name, int numOfStudents)

{

_name = name;

_student = new Student[numOfStudents];

for (int i = 0; i < numOfStudents; i++)

_student[i] = new Student(); // how to init name,id,grade for each obj

}

}

Summary
Part 1

• An array may be thought of as a collection of

variables, all of the same type.

• An array is also may be thought of as a single

object with a large composite value of all the

elements of the array.

• Arrays are objects created with new in a

manner similar to objects discussed previously.

Summary
Part 2

• Array indexes use zero-numbering:

– they start at 0, so index i refers to the(i+1)th element;

– the index of the last element is (length-of-the-array - 1).

– Any index value outside the valid range of 0 to length-1 will cause an

array index out of bounds error when the program runs.

• A method may return an array.

• A "partially filled array" is one in which values are stored in an initial

segment of the array:

– use an int variable to keep track of how many variables are stored.

Summary
Part 3

• An array element can be used as an argument to a method any place
the base type is allowed:

– if the base type is a primitive type, the method cannot change the
array element;

– if the base type is a class, the method can change the array
element.

• When you want to store two or more different values (possibly of
different data types) for each index of an array,

– parallel arrays (multiple arrays of the same length)

– use a class that have multiple types/values.

• An accessor method that returns an array corresponding to a private
instance variable of an array type should be careful to return a copy of
the array, and not return the private instance variable itself (like any
object).

12

Summary

Part 3

• Sorting algorithms

– Selection

– Insertion

– Bubble

• Analysis

– Empirical

– Theoretical

• Comparisons: Quadratic-time (N2) algorithms

Summary
Part 4

• Arrays can have more than one index.

• Each index is called a dimension.

• Hence, multidimensional arrays have multiple indexes,

– e.g. an array with two indexes is a two-dimensional array.

• A two-dimensional array can be thought of as a grid or table with rows and

columns:

– one index is for the row, the other for the column.

• Multidimensional arrays in Java are implemented as arrays of arrays,

– e.g. a two-dimensional array is a one-dimensional array of one-

dimensional arrays.

