Recursion

Chapter 11

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Objectives

+ become familiar with the idea of recursion

+ learn to use recursion as a programming tool

» become familiar with the binary search
algorithm as an example of recursion

+ become familiar with the merge sort algorithm
as an example of recursion

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

How do you look up a name in
the phone book?

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

One Possible Way

Search:

middle page = (first page + last page)/2

Go to middle page;

If (name is on middle page)
done; //this is the base case

else if (name is alphabetically before middle page)
last page = middle page //redefine search area to front half
Search //same process on reduced number of pages

else //name must be after middle page
first page = middle page //redefine search area to back half
Search //same process on reduced number of pages

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

Overview

Recursion: a definition in terms of itself.

Recursion in algorithms:
« Natural approach to some (not all) problems

A recursive algorithm uses itself to solve one or more
smaller identical problems

Recursion in Java:
» Recursive methods implement recursive algorithms
» A recursive method includes a call to itself

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Recursive Methods
Must Eventually Terminate

A recursive method must have
at least one base, or stopping, case.

» A base case does not execute a recursive call
— stops the recursion

» Each successive call to itself must be a "smaller
version of itself”

— an argument that describes a smaller problem
— a base case is eventually reached

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

Key Components of a Recursive
Algorithm Design

1. What is a smaller identical problem(s)?
® Decomposition

2. How are the answers to smaller problems combined to
form the answer to the larger problem?
® Composition

3. Which is the smallest problem that can be solved easily
(without further decomposition)?

® Base/stopping case

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Examples in Recursion

 Usually quite confusing the first time
+ Start with some simple examples
— recursive algorithms might not be best
+ Later with inherently recursive algorithms
— harder to implement otherwise

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Factorial (V!)

« N=(N-1) *N [for N> 1]
=1

-« 3
=2*3
= (11*2)*3
=1*2*3
* Recursive design:
- Decomposition: (N-1)!
— Composition: * N
— Basecase: 1!

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

factorial Method

public static int factorial(int n)
{
int fact;
if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; composition
else // base case
fact = 1;

return fact;

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

public static int factorial(int 3)
{
int fact;
if (n > 1)
fact = factorial(2) * 3;
else
fact = 1;
return fact;

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

public static int factorial(int 3)
{
int fact;
if (n > 1)
fact = factorial (2)[* 3;
else
fact = 1;
return fact;

}

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

public static int factorial (int Z)
(
int fact;
if (n > 1)
fact = factorial(l) * 2;
else
fact = 1;
return fact;

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

public static int factorial(int 3) public static int factorial(int 3)
int fact; int fact;
if (n > 1) if (n > 1)
fact = factorial(2) * 3; fact = factorial(2) ;
else else
fact = 1; fact = 1;
return fact; return fact;
} }
public static int factorial(int 2) public static int factorial (int 2)
{
int fact; int fact;
if (n > 1) 1)
fact = factorial (1) * 2; factorial (1) ;
else
fact = 1;
return fact; returh fact;
} }

public static int factorial (int-1) public static int factorial (int 1)
{ {
int fact; int fact;
if (n > 1) if (n > 1)
fact = factorial(n - 1) * n; fact = factorial(n - 1) * n;
else else
fact = 1; =1;
return fact s Ll
JAVA: An Introduction to Problem $dlving & Programming, Fourth Edition by Walter Savitch. JAVA: An Introd To-Problem “vmg&, ing, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
public static int factorial(int 3) public static int factorial(int 3)
int fact; int fact;
if (n > 1)
fact = factorial(2) ; 2) ;
else
fact = 1;
return fact;
}
public static int factorial(int 2) public static int factorial(int 2)
{
int fact;
) if (n > 1)
1 ; fact = 1 ;
else
1; fact = 1;
return fact; \\/ ;
}

public static int factorial(int 1)
{

int fact;
if (n > 1)
fact = factorial(n - 1) * n;
else
fact =
JAVA: An Introductien to-Problem ilving & P ing, Fourth Edition by Walter Savitch. JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved. ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.
A
public static int factorial(int 3) public static int factorial(int 3)
{
int fact; int fact;
if (n > 1)
; fact = 2 * 3;
else
fact = 1;
X i
public static int factorial (int 2)
int fact;
if (n > 1)
fact = 1 i
else
\\/ fact = 1;
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch. JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

public static int factorial(int n)

. {
Execution Trace int fact;

if (n > 1) // recursive case (decomposition)

[fact = factorial(n - 1) * n; (composition)
(decomposition) | ..l e il

fact = 1;
return fact;

public static int factorial(int n)

factorial (4)

N

factorial (3) 4

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

. {
Execution Trace int fact;

if (n > 1) // recursive case (decomposition)
LR fact = factorial(n - 1) * n; (composition)
(decomposition) | el sace case
fact = 1;
return fact;

}

factorial (4)

T

factorial (3) 4

‘/\

factorial (2) 3

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

public static int factorial(int n)

. {
Execution Trace int fact;

if (n > 1) // recursive case (decomposition)

et fact = factorial(n - 1) * n; (composition)
(decomposition) | ..l el il

fact = 1;
return fact;

factorial (4)

.

factorial (3) 4

factorial (2) 3

T

factorial(1l) 2

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

public static int factorial(int n)

. (
Execution Trace | i et

if (n > 1) // recursive case (decomposition)

N) fact = factorial(n - 1) * n; (composition)
(composition) clee 1/ bese case
fact = 1;

return fact;

}

factorial (4)

A

factorial(3) 4

factorial(2) 3

factorial(1l)-> 2

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

public static int factorial(int n)

. {
Execution Trace int fact;

if (n > 1) // recursive case (decomposition)

(composition) WpieTatinirmel i I
fact = 1;

return fact;

factorial (4)

factorial (3) 4

factorial(2)->2 3

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

public static int factorial (int n)

. {
Execution Trace int face;

if (n > 1) // recursive case (decomposition)

(composition) clon i pane case 1) 7 n (eomposicion)
fact = 1;

return fact;
}

factorial (4)

factorial (3)->6 4

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri _gh_ls reserved.

public static int factorial(int n)

. {
Execution Trace | i fect

if (n > 1) // recursive case (decomposition)

(composition) cro)) e enaan @ 1 T feemeosttion)
fact = 1;

return fact;

}

factorial (4)->24

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Improved factorial Method

public static int factorial(int n)
{

int fact=1l; // base case value
if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; // composition

// else do nothing; base case

return fact;

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Fibonacci Numbers

« The Mth Fibonacci number is the sum of the previous
two Fibonacci numbers

+0,1,1,23,5,8,13, ...
» Recursive Design:
— Decomposition & Composition
« fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
— Base case:
« fibonacci(1) =0
« fibonacci(2) = 1

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

fibonacci Method

public static int fibonacci(int n)

{

int fib;
if (n > 2)
fib = fibonacci(n-1) + fibonacci(n-2);
else if (n == 2)
fib = 1;
else
fib = 0;
return fib;
}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

Execution Trace (decomposition)

fibonacci (4)

N

fibonacci (3) fibonacci(2)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Execution Trace (decomposition)

fibonacci (4)

7N

fibonacci (3) fibonacci (2)

2N

fibonacci(2) fibonacci (1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

Execution Trace (composition)

fibonacci (4)

fibonacci(3) fibonacci(2)

.

fibonacci (2)-> fibonacci (1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Execution Trace (composition)

fibonacci (4)

AN

fibonacci(3)-> fibonacci(2)->

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Execution Trace (composition)

fibonacci(4)->2

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

Template

.. method(...)
{

if (..)// base case

{

}

else // decomposition & composition

{

}

return .. ; // if not void method
}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Remember:
Key to Successful Recursion
« if-else statement (or some other branching
statement)
« Some branches: recursive call

—"smaller" arguments or solve "smaller"
versions of the same task (decomposition)

— Combine the results (composition) [if
necessary]

» Other branches: no recursive calls
— stopping cases or base cases

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

Template (only one base case)
.. method(...)
{
. result = .. ;//base case
if (..) // not base case
{ //decomposition & composition
result = ..
}
return result;
}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

What Happens Here?

public static int factorial(int n)
{
int fact=1;

if (n > 1)
fact = factorial(n) * n;

return fact;

}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

What Happens Here?

public static int factorial(int n)
{
return factorial(n - 1) * nj;

}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Warning: Infinite Recursion May
Cause a Stack Overflow Error

« Infinite Recursion
— Problem not getting smaller (no/bad decomposition)

— Base case exists, but not reachable (bad base case
and/or decomposition)

— No base case
+ Stack: keeps track of recursive calls by JVM (OS)
— Method begins: add data onto the stack
— Method ends: remove data from the stack
« Recursion never stops; stack eventually runs out of space

— Stack overflow error
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Mistakes in recursion

* No composition -> ?
* Bad composition -> ?

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

Number of Zeros in a Number

* Example: 2030 has 2 zeros

* If n has two or more digits

— the number of zeros is the number of zeros in n with the
last digit removed

— plus an additional 1 if the last digit is zero

* Examples:

— number of zeros in 20030 is number of zeros in 2003
plus 1

— number of zeros in 20031 is number of zeros in 2003
plus O

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

numberOfZeros Recursive Design

* numberOfZeros in the number N
* K= number of digits in N
» Decomposition:
— numberOfZeros in the first K- 1 digits
— Last digit
+ Composition:
— Add:
» numberOfZeros in the first K- 1digits
« 1 if the last digit is zero
+ Base case:
— N has one digit (K= 1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

numberOfZeros method

public static int numberOfZeros (int n) Which is
{ . (are) the
int zeroCount; base
if (n==0) case(s)?
zeroCount = 1; Why?
else if (n < 10) // and not O
zeroCount = 0; // 0 for no zeros Decompo
else if (n%10 == 0) stion,
zeroCount = numberOfZeros (n/10) + 1; Why?
else // n%1l0 !'= 0
zeroCount = numberOfZeros (n/10); Compositi
return zeroCount; on, why?

}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

public static int numberOfZeros (int n)

. {
Execution Trace ' it zerocount;
o e if (n==0)
(decomposition) zeroCount = 1;
else if (n < 10) // and not O
0; // 0 for no zeros

zeroCount

Each method else if (n%10 == 0)
invocation will zeroCount = numberOfZeros(n/10) + 1;
execute one of the else //c“%1t° = °mb ez (n/10)
. zeroCoun! = nu er eros (n H
if-else gases return zeroCount;
shown at right. }
numberOfZeros (2005)
numberOfZeros (200) 5
numberOfZeros (20) \ 0
umberOfZeros (2) 0

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

public static int numberOfZeros(int n)

. {
Execution Trace * ise zerocount;
o if (n==0)
(composition) zerocount = 1;
else if (n < 10) // and not 0
) zeroCount = 0; // 0 for no zeros
Recursive calls else if (n%10 == 0)
return zeroCount = numberOfZeros(n/10) + 1;
else // n%10 != 0
zeroCount = numberOfZeros (n/10);
return zeroCount;

numberOfZeros (2005) —>2
+
numberOfZeros (200) —>2 5->0
/+\
numberOfZeros (20) ->1 0-—>1

+
fumberOfZeros (2)->0 0-—>1

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBBCI' Saddle River, NJ. All righls reserved.

Number in English Words

* Process an integer and print out its digits
in words

—Input: 123
—Output: "one two three”
* RecursionDemo class

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

inWords Resursive Design

* inWords prints a number N in English words
e K =number of digits in N
* Decomposition:
— inWords for the first K — 1 digits
— Print the last digit
* Composition:
— Execution order of composed steps [more later]
* Base case:
— Nhas one digit (K=1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rh_;h_ts reserved.

inWords method

public static void inWords(int numeral)

{
if (numeral < 10)
System.out.print(digitWord(numeral) + " ");
else //numeral has two or more digits
{
inWords(numeral/10);
System.out.print(digitWord(numeral%10) + " "};
}

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

Execution Trace (decomposition)
inwords(987)

T

inwords(98) [print “seven”]

inwords(9) [print “eight”]

|

[print “nine”

No output yet, why?

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Execution Trace (composition)

inwords(987)
inwords(98) print “seven”
inwords(9) print “eight”

print “nine”

Output: nine eight seven

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

inWords (987) 1
if (987 < 10)

What Happens
// print digit here . .
else //Izwo Zr mcg)r;: digits left Wlth a ReCurSIVe
{
inWords (987/10) ; Call

// print digit here

« inWords (slightly simplified) with
argument 987

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBBer Saddle River, NJ. All righls reserved.

inWords (987)

if (987 < 10) Execution
// print digit here
else //two or more digits left TraCe

{
inWords (987/10) ;
/ g nt digit here
2 inWords (98)
if (98 < 10)
// print digit here
else //two or more digits left

{

inWords (98/10);
// print digit here
}

e The if condition is false

e recursive call to inWords, with 987/10

or 98 as the argument
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

inWords (987)
if (987 < 10)
// print digit here
else //two or more digits left
{

Execution Trace

inWords (987/10);

// print digit here
} inWords (98)
if (98 < 10)

// print digit here
else //two or more digits left
{

inWords (98/10);

// pri - digitnee-
) P 9 inWords (9)
3 if (9 < 10)

. . s . // print digit here
the If COnd|t|0n IS false else //two or more digits left
* another recursive callis
inWords (numeral/10) ;
made' // print digit here

}
JAVA: An Introduction to Problem Solving & rrugrammurg; rourar caraomr vy vwarer vayicer:
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rh_;h_ts reserved.

inWords (987)
if (987 < 10)
// print digit here
else //two or more digits left

{

Execution Trace

inWords (987/10) ; Output: nine
// print digit here
} inWords (98)

if (98 < 10)

// print digit here
else //two or more digits left 4
{

inWords (98/10) ;

// print 98 % 10 [

}
« if condition is true (base // print nine
case)
* prints nine and returns
* no recursive call

JAVA: An Introduction to Problem Solving & r TUUTUT DUTUUIT Uy VaItoT SavIToln:
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

inWords (987)
if (987 < 10)
// print out digit here

Execution Trace
else //two or more digits left 5
{

inWords (987/10) ;
// print digit here

// print out 98 % 10 here

Output: nine eight

« executes the next statement after the recursive call
+ prints eight and then returns

Execution Trace

// print 987 % 10 Output: nine eight seven

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

» executes the next statement after
the recursive method call.

* prints seven and returns

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Composition Matters

public static void inWords(int numeral)

{
if (numeral < 10)
System.out.print(digitWord(numeral) + " ");
else //numeral has two or more digits
{
System.out.print(digitWord(numeral%10) + " ");
inWords(numeral/10);
}
}

Recursive Design:
1. Print the last digit
2. inWords for the first K— 1 digits

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

Execution Trace (decomposition)
inwords(987)

—

print “seven” inwords(98)

Output: seven

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

Execution Trace (decomposition)
inwords(987)

T

print “seven” inwords(98)

T

print “eight” inwords(9)

Output: seven eight

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Execution Trace (decomposition)
inwords(987)

T

print “seven” inwords(98)

—

print “eight” inwords(9)

|

print “nine”

Output: seven eight nine

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri _gh_ls reserved.

10

Execution Trace (composition)

inwords(987)
print “seven” inwords(98)
print “eight” inwords(9)

print “nine”

No additional output

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

"Name in the Phone Book" Revisited

Search:

middle page = (first page + last page)/2

Go to middle page;

If (name is on middle page)
done;/ /this is the base case

else if (name is alphabetically before middle page)
last page = middle page/ /redefine to front half
Search/ /recursive call

else //name must be after middle page
first page = middle page/ /redefine to back half
Search/ /recursive call

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Binary Search Algorithm

» Searching a list for a particular value

— sequential and binary are two common
algorithms

» Sequential search (aka linear search):
— Not very efficient
— Easy to understand and program

* Binary search:
— more efficient than sequential

—but the list must be sorted first!
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

Why Is It Called "Binary" Search?

Compare sequential and binary search algorithms:
How many elements are eliminated from the list each
time a value is read from the list and it is not the
"target" value?

Sequential search: only one item
Binary search: half the list!

That is why it is called binary -
each unsuccessful test for the target value
reduces the remaining search list by 1/2.

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

private int search(int target, int first, int last)

Binary Search
MethOd int location = -1; // not found

if (first <= last) // range is not empty
{
int mid = (first + last)/2;

¢ public
find(target) calls
private
search (target,

first, last) if (target == a[mid])

location = mid;
else if (target < a[mid]) // first half
location = search(target, first, mid - 1);
else //(target > a[mid]) second half

e returns the index of the
entry if the target value is
found or -1 if it is not

found location = search(target, mid + 1, last);
e Compare it to the }

pseudocode for the

"name in the phone return location;

book" problem }
JAVA: An Introduction to Problem — ..., . R

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Where is the composition?

e If no items
— not found (-1)

* Else if target is in the middle
— middle location

e Else

search(first half) or
search(second half)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

11

Binary Search Example

target is 33

The array a looks like this:

Indices © 1 2 3 4 5 6 7 8 9
Contents|5[7 [9 [13[32[33[42[54[56[88 |

mid = (0 + 9) / 2 (whichis 4)
33 > a[mid] (thatis, 33 > a[4])
So, if 33 is in the array, then 33 is one of:
5 6 7 8 9

ETT T 55 o] 54 so] e |

Eliminated half of the remaining elements from
57 consideration because array elements are sorted.

VAL AN IIOQUCHUN 10 T 1oULent suiving o riogrammung, rourur caon by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

targetis3s ~ Bipary Search Example
The array a looks like this:

Indexes © 1 2 3 4 5 6 7 8 9
Contents[5] 7 [9 [13]32] 33]42]54] 56[88 |

mid = (5 + 9) / 2 (whichis 7)

33 < almid] (thatis, 33 < a[7]) Eliminate
So, if 33 is in the array, then 33 is one of: half of the
5 6 remaining

I 1

mid = (5 + 6) / 2 (whichis 5)
33 == a[mid]
So we found 33 at index 5:

INEENE N

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Tips

* Don’t throw away answers (return values)--
need to compose the answers
— Common programming mistake: not capturing
and composing answers (return values)
* Only one return statement at the end
— Easier to keep track of and debug return values

— “One entry, one exit”
¢ www.cs.fit.edu/~pkc/classes/cse1001/BinarySearch/BinarySearch.java

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Worst-case Analysis

* ltem not in the array (size N)

* T(N) = number of comparisons with array elements
e T(1)=1

TIN=1+T(N/2)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

Worst-case Analysis

» Item not in the array (size N)
* T(N) = number of comparisons with array elements
« T(1) =1
* TINN=1+T(N/2)
=1+[1+T(N/4)]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Worst-case Analysis

+ ltem not in the array (size N)
* T(N) = number of comparisons with array elements
e T(1) =1
c TIN=1+T(N/2)
=1+[1+T(N/4)]
=2+ T(N/4)
=2+[1+T(N/8)]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

12

Worst-case Analysis

* Item not in the array (size N)
* T(N) = number of comparisons with array elements
e T(1)=1

« T(N)=1+T(N/2) <«
=1+[1+T(N/4)]
=2+ T(N/4) <«
=241+ T(N/8)]
=3+ T(N/8) €«

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Worst-case Analysis

+ Item not in the array (size N)
* T(N) = number of comparisons with array elements
e T(1)=1

« TN =1+T(N/2) <«
=1+[1+T(N/4)]
=2+ T(N/4) <
=2+[1+T(N/8)]
=3+T(N/8) <«
= k+T(N/2K) 1]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Worst-case Analysis

e T(IN)=k+T(N/2k) [1]

« T(N/2k) gets smaller until the base case: T(1)
—2k=N
— k=log,N

* Replace terms with kin [1]:
T(N) =log,N + T(N/ N)
=log,N + T(1)
=log,N + 1
* “log,N”algorithm
* We used recurrence equations

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Main steps for analysis

* Set up the recurrence equations for the
recursive algorithm

* Expand the equations a few times
* Look for a pattern
* Introduce a variable to describe the pattern

¢ Find the value for the variable via the base
case

¢ Get rid of the variable via substitution

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Binary vs. Sequential Search

+ Binary Search
— log,N + 1 comparisons (worst case)

» Sequential/Linear Search
— N comparisons (worst case)

+ Binary Search is faster but
— array is assumed to be sorted beforehand

» Faster searching algorithms for “non-sorted arrays”
— More sophisticated data structures than arrays
— Later courses

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ls reserved.

Recursive Versus Iterative
Methods

All recursive algorithms/methods
can be rewritten without recursion.

« lterative methods use loops instead of recursion

+ lterative methods generally run faster and use less
memory--less overhead in keeping track of method
calls

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

13

So When Should You Use
Recursion?

+ Solutions/algorithms for some problems are
inherently recursive

— iterative implementation could be more
complicated

« When efficiency is less important

— it might make the code easier to understand
» Bottom line is about:

— Algorithm design

— Tradeoff between readability and efficiency

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Pages 807 NOT a good tip

[Programming Tip: Ask Until the User Gets It Right]

* Recursion continues until user enters valid input.

public void getCount ()

(read a number
System.out.println("Enter a positive number:";,
count = SavitchIn.readLineInt();
if (count <= 0)

{

System.out.println("Input must be positive. Use a recursive
System.out.println("Try again."); call to get
getCount (); //start over

} another number.

}

* No notion of a smaller problem for recursive design
« Easily implemented using iteration without loss

of readability

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Merge Sort—
A Recursive Sorting Algorithm

» Example of divide and conquer algorithm
* Recursive design:

— Divides array in half and merge sorts the
halves (decomposition)

— Combines two sorted halves
(composition)

— Array has only one element (base case)

* Harder to implement iteratively

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Execution Trace (decomposition)
[3l6[8]2]5]4]7]1]
/ \

5[4]7]1]

316] [8l2] [sla] [7]1]

alo II Il II

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Execution Trace (composition)
[112]3]4]5]6]7]s]

[2]3]6]8] |1]4]5]7]

316] [28] [4]5] [1]7]
ZONZEN

7
BIl] [e][e] [l [0

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ls reserved.

Merging Two Sorted Arrays

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

14

Merging Two Sorted Arrays
203 | |

E 28]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Merging Two Sorted Arrays
20306 |

28]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Merging Two Sorted Arrays
2[3/6/8]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

Merge Sort Algorithm

1. If array a has more than one element:

a. Copy the first half of the elements in a to array
front

. Copy the rest of the elements in ato array tail
. Merge Sort front

. Merge Sort tail

. Merge the elements in front and tail into a

2. Otherwise, do nothing

O QO O T

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righls reserved.

Merge Sort

public static void sort (int[] a)

Yo (a. length >= 2) do recursive case if
F -length >= true, base case if false
int halfLength = a.length / 2;

int[] front = new int[halfLength];
int[] tail = new int[a.length - halfLength];

I_l

recursive make "smaller”
_calls problems by
Combine the
// else do no h:l.ng two sorted
} It

base case: a. lengm ==1s0

a is sorted and no recursive
JAVA: An Introd call is necessary. ming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Worst-case Theoretical Analysis

Comparisons of array elements

None during decomposition

Only during merging two sorted arrays

(composition)

—To get an array of size N from two sorted
arrays of size N/2

— N -1 comparisons (worst case: the largest
two elements are in different halves)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

15

Analysis: Array of size N

+ Let T(N) be the number of comparisons
« T(1)=0
s TIV=2T(N/2)+ (N-1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Analysis: Array of size N

+ Let T(N) be the number of comparisons

« T(1)=0

s TINN=2T(N/2)+(N-1)
=2[2T(N/4)+ (N/2-1)]+(N-1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Analysis: Array of size N

+ Let T(N) be the number of comparisons

« T(1)=0

s TIV=2T(N/2)+(N-1)
=2[2T(N/4)+ (N/2—=1)]+(N-1)
=4T(N/4)+(N-2) + (N-1)
=4[2T(N/8) +(N/4—-1)1+(N-2) + (N-1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., UBEer Saddle River, NJ. All righls reserved.

Analysis: Array of size N

+ Let T(N) be the number of comparisons

- T(1)=0

« TN =2T(N/2)+(N-1) <
=2[2T(N/4)+ (N/2—=1)]+ (N=1)
=4T(N/4)+(N-2)+ (N-1) <«

=4[2T(N/8) +(N/d=1)]+(N=2)+ (N=1)
=8T(N/8)+(N=4)+ (N-2) + (N=1) €

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

Analysis: Array of size N

+ Let T(N) be the number of comparisons

« T(1)=0

c TIN=2T(N/2)+(N-1) <
=2[2T(N/4)+ (N/2-1)]+(N-1)
=4T(N/4)+(N=-2)+ (N-1) <

(
—4[2T(N/8)+ (N/4—1)]+(N=2) +(N-1)
=8T(N/8)+ (N-4)+ (N-2) + (N-1) €
=8T(N/8)+3N~—(1+2+4)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

Analysis: Array of size N

+ Let T(N) be the number of comparisons

- T()=0
« TIN=2T(N/2)+(N-1) <«
=2[2T(N/4)+ (N/2—1)]+ (N=1)

=4T(N/4)+(N=-2)+ (N-1) <«

(
=4[2T(N/8)+(N/4—1)]+(N=2) +(N-1)
=8T(N/8)+ (N-4)+ (N-2) + (N-1) €
=8T(N/8) +3N-(1+2+4)

=2KT(N/2K) + KN—(1 +2 + ... 2KT) [1]
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ri_gh_ls reserved.

16

Analysis Continued

« TN =2KT(N/2K) + kN—(1+2+ ... 2K1) [1]

=2KkT(N/2k) + kN —(2k - 1) [2]
» T(N/2k) gets smaller until the base case T(1):
—2k=N
— k=log,N

» Replace terms with kin [2]:
T(N)=NT(N/N) + log,N*N—(N—-1)
=NT(1) + Mog,N—(N-1)
= Mog,N-N + 1

» “Nlog,N”algorithm
JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Geometric Series and Sum

c 142+448+...42K
-1+2=3
-1+2+4=7
-1+2+4+8=15

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Geometric Series and Sum

e 1+2+4+8+...+2k
—142=3 @-1)
—142+4=7 8-1)
—1+2+44+48=15 (16-1)

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Geometric Series and Sum

c 1+2+4+8+...+2K
-1+2=3 4-1)
—142+4=7 B8-1)
-1+2+4+8=15 (16-1)

c 14+2+44+8+...42K
=2k+1 _ 4

el +r+P+R+. .+ ¥
=P+ +PP+P+ .+
=(r1—=1)/(r-1) [for r> 1]

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Merge Sort Vs.
Selection/Insertion/Bubble Sort

» Merge Sort
— “NogN” algorithm (in comparisons)
« Selection/Insertion/Bubble Sort
— “NP” algorithm (in comparisons)
* “NogN”is “optimal” for sorting
— Proven that the sorting problem cannot be solved
with fewer comparisons
— Other NogN algorithms exist, many are recursive

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ls reserved.

Real Data Set: Web Server Log

+ http://www.cs.fit.edu/~pkc/classes/writing/data/jan99.1
09

+ 4.6 MB (44057 entries)

+ Example entry in log:
ip195.dca.primenet.com - - [04/Jan/1999:09:16:51 -
0500] "GET / HTTP/1.0" 200 762

+ Extracted features
— remote-host names (strings)
— file-size (integers)

e List size - 100 to 44000 entries

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All ﬁ_&ls reserved.

CPU Time: Randomly Ordered Integers

CPU time vs. List size for random list of
integers (R- real data set; S- synthetic data set)
1000000

100000 ‘l

10000 "/"//“/,./
1000

-
100 =

1o S
N

0.1

CRUtInre(rillisecands)

1 100 1000 5,000 10,000 20,000 30,000 44,000
List size

—&— R-Bubble S-Bubble —e— R-Merge S-Merge

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.
ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CPU Time: Randomly Ordered Strings

CPU time vs. List size for random list of strings
(Real Data Set)
10000000

1000000

100000 _—
10000 /

1000

100 /. /
10 -
1 /

0.1 T T T T T T

—m— R-Bubble | 100 1000 5,000 10,000 20,000 30,000 44,000
—e— R-Merge List size

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CRUtine (rrillissoonds)

Google’s PageRank (1998)

e PageRank(x) depends on:
1. How many pages (y’s) linking to x
* how many incoming links (citations) from y’s to x
2. How important those pages (y’s) are:
* PageRank(y)’s
* How to determine PageRank(y)’s?
e What is the base case?

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., nger Saddle River, NJ. All righls reserved.

Summary

* Recursive call: a method that calls itself
» Powerful for algorithm design at times
* Recursive algorithm design:
» Decomposition (smaller identical problems)
» Composition (combine results)
+ Base case(s) (smallest problem, no recursive calls)
+ Implementation
— Conditional (e.g. if) statements to separate different cases
— Avoid infinite recursion
+ Problem is getting smaller (decomposition)
» Base case exists and reachable
— Composition could be tricky

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All righ[s reserved.

Summary

e Binary Search
— Given an ordered list
— “logN” algorithm (in comparisons)
— “Optimal”

* Merge Sort
— Recursive sorting algorithm
— “NlogN” algorithm (in comparisons)
— “Optimal”

JAVA: An Introduction to Problem Solving & Programming, Fourth Edition by Walter Savitch.

ISBN 013149020. © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rm_;h_ts reserved.

18

