
CSE 4510/5241 HW2
Submit server: course=dc, project=hw2

Due 5pm, Feb 25, 2009

Design and implement a “peer” (estalk), a daemon
(estalkd), and the protocol for ESTALK (Extremely Sim-
ple Talk) that allows two peers to interactively exchange
messages. The daemon serves as the middle-person for
setting up the two peers and is NOT needed after the
estalk peers are ready to communicate directly with each
other.

The user commands have these formats:

estalk <user>@<host> <local-user> <estalkd-port>

estalkd <estalkd-port>

The estalk peer program could “initiate” a talk session
or “respond” to one. The “initiator” contacts the remote
estalk daemon, supplies information about itself to the
daemon, and waits for the “responder” to reply. The “re-
sponder” is started by the user after the user is notified
by the local daemon; it then gets information from the lo-
cal daemon about the initiator and starts communicating
with the initiator.

An estalk daemon runs on each machine, accepts estalk
requests from an initiator, gathers information about the
initiator, notifies the local user about the request by print-
ing a message on the screen, (upon a responder’s request)
provides information about the initiator to the responder,
and removes the information.

Since the estalk peer program can either be an initiator
or a responder, with the same command format, how does
it know which role it is playing?

The messages are synchronized as in the users take turn
sending a message. A message can have up to 80 char-
acters and ends with a return key stroke. When the first
four letters of a message are “Quit” (from either the ini-
tiator or the responder), the program cleans up, sends a
”terminate” message to its peer, and terminates. Upon
receiving a terminate message, the peer cleans up and
terminates.

A session might look like:

tarpon% estalkd 55555 &

tarpon% estalk Mary@shark John
[Contacting]
[Ready to talk]

Mary@shark: Hi John, what’s up?
John@tarpon: Hi, are you done with the estalk program yet?

Mary@shark: Yes, how about you?
John@tarpon: It’s finally done after an all-nighter.
...

John@tarpon: Quit
[Terminating]

-------------------------

shark% estalkd 55555 &
estalkd: estalk request from John at tarpon, respond by "estalk John@tarpon Mary"

shark% estalk John@tarpon Mary
[Ready to talk]

Mary@shark: Hi John, what’s up?
John@tarpon: Hi, are you done with the estalk program yet?

Mary@shark: Yes, how about you?
John@tarpon: It’s finally done after an all-nighter.
...

John@tarpon: Quit
[Terminating by John]

CSE 5241 students only
Additional features:

1. two simultanteous two-way estalk sessions: for ex-
ample, Mary on host1 talks to John on host2, and
at the same time seperately (in another window) to
Mike on host3.

2. a three-way estalk session: for example, Kate on
host1, Jane on host2, and Mark on host3. When
one writes, the other two sees. [For simplification,
assume a fixed global order and the users rotate to
write: Kate (initiator), Jane (user1), Mark (user2),
Kate ...]

estalk <user1>@<host1> <user2>@<host2> <local-user> <estalkd-port>

What to turn in:

1. Detailed description of your ESFTP protocol (in the
README file)

2. Compilation instructions (preferably makefile)

3. Source code

4. Sample session (script on unix)

Useful functions:
C/C++: char *cuserid(char *s); int gethostname(char

*name, int namelen);
Java: System.getProperty(”user.name”); InetAd-

dress localhost = InetAddress.getLocalHost(); local-
host.getHostName();


