
CSE 4510/5241 HW3
Submit server: course=dc, project=hw3

Due 5pm, Mar 18, 2009

The objective is to design and implement
(un)marshalling objects that have pointers using an
IDL. The properties are:

1. An object that is pointed by multiple objects should
NOT be marshalled more than once.

2. The number of objects and the “pointer structure”
among objects remains the SAME on both hosts.

The IDL complier compiles the IDL file into the class
definition and stub files. The library has class-definition-
independent methods and additional data structures for
(un)marshalling. The class defintion, stub, and library
are compiled and linked with the user source. Your imple-
mentation marshalls, transmits, and unmarshalls a linked
list.

1. each node has: name, age, city

2. data: www.cs.fit.edu/~pkc/classes/dc/hw3data.txt

Your design should be flexible to handle different field
names, field orderings, numbers of fields (only int and
string “basic” types), and different values in the objects.

--- Node.idl (Interface Definition Language file) ---
class Node
String name

int age
String city

Node next

--- Node.java/h: generated by the IDL compiler from Node.idl ---

public class Node
{

String name;
int age;

String city;
Node next;

};

--- NodeStub.java/c: generated by the IDL compiler from Node.idl ---

void marshallNode(Node node, byte[] msg) {...}
Node unmarshallNode(byte[] msg) {...}

--- Library.java/c ---
void marshallString(String str, byte[] msg) {... print marshalling str @ loc in msg and new/existing?}

void marshallInt(int num, byte[] msg) {...}
String unmarshallString(byte[] msg) {... print unmarshalling objID}

int unmarshallInt(byte[] msg) {...}
void printMarhsallObjectTable() {...}

--- Sender.java/c ---
sendList()

{
Node list = buildList() // from hw3data.txt
print list

marshallNode(list, msg)
printMarshallObjectTable()

print length of msg
send(msg)

receive(ack)
}

--- Receiver.java/c ---
receiveList()

{
receive(msg)

print length of msg
send(ack)
Node list = unmarshallNode(msg)

printList()
}

CSE 5241 students only
Additional features for the same program:

• binary search tree (BST):

1. bstNode.idl with class bstNode

2. sendBst() in sender.java/c and receiveTree() in
receiver.java/c

3. buildBst() with hw3data.txt

4. printBst): pre-order traversal, indent more at
each level, one node per line

• String objects can be shared between the list and the
tree.

What to turn in:

1. Detailed description of your “external marshalled
format” (in the README file)

2. Compilation instructions (preferably makefile)

3. Source code

4. Sample session (script on unix)


