
1

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001. Distributed Systems Course

Operating System Support

Chapter 6:

6.1 Introduction

6.2 The operating system layer

6.4 Processes and threads

6.5 Communication and invocation

6.6 operating system architecture

2

Learning objectives

� Know what a modern operating system does to
support distributed applications and middleware

– Definition of network OS

– Definition of distributed OS

� Understand the relevant abstractions and
techniques, focussing on:

– processes, threads, ports and support for invocation
mechanisms.

� Understand the options for operating system
architecture

– monolithic and micro-kernels
*

3

System layers

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Figure 6.1

Figure 2.1
Software and hardware service layers in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

* 4

Middleware and the Operating System

� Middleware implements abstractions that support network-

wide programming. Examples:

� RPC and RMI (Sun RPC, Corba, Java RMI)

� event distribution and filtering (Corba Event Notification, Elvin)

� resource discovery for mobile and ubiquitous computing

� support for multimedia streaming

� Traditional OS's (e.g. early Unix, Windows 3.0)
– simplify, protect and optimize the use of local resources

� Network OS's (e.g. Mach, modern UNIX, Windows NT)

– do the same but they also support a wide range of communication

standards and enable remote processes to access (some) local

resources (e.g. files).

*

5

Networked OS to Distributed OS

� Distributed OS

– Presents users (and applications) with an integrated
computing platform that hides the individual computers.

– Has control over all of the nodes (computers) in the
network and allocates their resources to tasks without user
involvement.

� In a distributed OS, the user doesn't know (or care) where his

programs are running.

– One OS managing resources on multiple machines

– Examples:

� Cluster computer systems

� Amoeba, V system, Sprite, Globe OS

6

The support required by middleware and distributed applications

� OS manages the basic resources of computer
systems

� Tasks:

– programming interface for these resources:

� abstractions such as: processes, virtual memory, files,

communication channels

� Protection of the resources used by applications

� Concurrent processing

– provide the resources needed for (distributed) services and
applications:

� Communication - network access

� Processing - processors scheduled at the relevant computers

*

2

7

Core OS functionality

Communication

manager

Thread manager Memory manager

Supervisor

Process manager

Figure 6.2

* 8

Protection:

� Why does the kernel need to be protected?

� Kernels and protection

– kernel has all privileges for the physical resources, processor, memory..

� execution mode

– kernel and user

� address space

– kernel and user

� user transferred to kernel

- system call trap
� try to invoke kernel resources

� switch to kernel mode

� cost

– switching overhead to provide protection

9

Processes and Threads (1)

� process has one environment

� thread: activity, "thread" of execution in one environment

� execution environment:

– an address space

– synchronization and communication resources

– i/o resources

� why execution environment?

� threads share one execution environment, why?

� older names: heavyweight and lightweight processes

� Address space

10

Processes and Threads (2)

� Address space

– unit of management of a process' virtual memory

� Regions

– Text, heap, stack

� Each region

– beginning virtual address and size

– read/write/exe permissions for the process' threads

– growth direction

� Why regions:

– different functionalities, for example:

� different stack regions for threads

� memory-mapped file

� Shared memory regions among processes?

– libraries

– kernel

– data sharing and communication

11

Processes and Threads (3): Process address space

Stack

Text

Heap

Auxiliary
regions

0

2
N

*

Figure 6.3

12

Processes and Threads (4): process creation

� Distributed OS

– choice of target host

– actual creation of execution env

� choice of target host

– transfer policy: local or remote?

– location policy: if not local, which host/processor

� V and Sprite system: user has a command and OS chooses

� Amoeba: a run server decides, more transparent

� static and adaptive location policies

– static: predetermined function

– adaptive: depends on current state of the processing nodes

� load-sharing systems

– centralized: one load manager

– hierarchical: tree of managers

– decentralized: nodes exchange information, local decision

– sender-initiated

– receiver-initiated

� process migration

– moved while it's running

– what need to be sent?

3

13

Processes and Threads (5)

� creating an execution env

– address space with initial contents

– initialization

� statically defined format from a list of regions

� derived from an existing exe env

• fork in unix

• derived from the parent

• shares the text region

• a copy of the heap and stack

• copy-on-write

14

Processes and Threads (6): Copy-on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

*

Figure 6.4

15

Process

Thread activations

Activation stacks
(parameters, local variables)

Processes and Threads (7): Thread memory regions

'text' (program code)Heap (dynamic storage,
objects, global variables)

system-provided resources
(sockets, windows, open files)

* 16

Processes and Threads (8): Client and server

Figure 6.5

Client

Thread 2 makes

Thread 1

requests to server

generates

results

Server

N threads

Input-output

Requests

Receipt &
queuing

*

The 'worker pool' architecture

See Figure 4.6 for an example of this architecture

programmed in Java.

17

Processes and Threads (9)

� average interval of successive job completions

– one request: 2 milliseconds of processing and 8 for i/o
delay

– one thread: 2+8 = 10 milliseconds, 100 requests/second

– two threads: 125 requests/second, serial i/o, why?

– two threads: 200 requests/second, concurrent i/o, why?

– two threads with cache (75% hit):

� 2 milliseconds (.75*0 + .25*8), 500 requests/sec

– cpu overhead of caching: 2.5 milliseconds, 400
requests/sec

18

Processes and Threads (10): server threading architectures

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

Figure 6.6

*

remote

workers

I/O

objects

server

process

remote

per-connection threads

objects

server
process

remoteI/O

per-object threads

objects

server

process

– Implemented by the server-side ORB in CORBA

(a) would be useful for UDP-based service, e.g. NTP (network time protocol)

(b) is the most commonly used - matches the TCP connection model

(c) is used where the service is encapsulated as an object. E.g. could have

multiple shared whiteboards with one thread each. Each object has only one

thread, avoiding the need for thread synchronization within objects.

4

19

Execution environment Thread

Address space tables Saved processor registers
Communication interfaces, open files Priority and execution state (such as

BLOCKED)
Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

Figure 6.7 State associated with execution environments and threads

Processes and Threads (11): Threads vs processes

� Creating a thread is (much) cheaper than a process (~10-20 times)

� Switching to a different thread in same process is (much) cheaper (5-50 times)

� Threads within same process can share data and other resources more

conveniently and efficiently (without copying or messages)

� Threads within a process are not protected from each other

* 20

Processes and Threads (12): Concurrency

� Issues in concurrency:

– Race condition

– Deadlock

– Starvation

� Programming support

– library (POSIX pthreads)

– language support (Ada95, Modula-3, Java)

21

Processes and Threads (13)

� thread (process) execution

– create/fork

– exit

– join/wait

– yield

22

Processes and Threads (14)

� Synchronization

– coordinate current tasks and prevent race conditions on
shared objects

– Critical region: only one thread/process at a time is
allowed

– Why critical regions should be as small as possible?

� Programming support

– Mutual exclusion

– Condition Variables

– Semaphores

23

Processes and Threads (15): Mutual Exclusion

� Mutual exclusion (mutex)

– critical region/section

– before entering critical region, try to lock

– mutex_lock(l):

� if try to lock is successful

• lock and continue

� else

• blocked

– mutex_unlock(l): release the lock

24

Processes and Threads (16)

� One producer, one consumer, producer can produce many items
(1P1CinfD)

� How about nPnCinfD ?

Producer Consumer

mutex_lock(D) mutex_lock(D)

while (no data) // count <= 0

mutex_unlock(D)

sleep (how long? spin poll)

mutex_lock(D)

produce one item consume one item

mutex_unlock(D) mutex_unlock(D)

5

25

Processes and Threads (17): Condition Variables

� Condition variable
– wait for an event (condition) before proceeding

– Assoicated mutex with the condition

� Waiting for an event
1. lock associated mutex m

2. while (predicate is not true) // "if" could work, but less safe

3. cv_wait(c, m)

4. do work

5. unlock associated mutex m

� Signaling an event
1. lock associated mutex m

2. set predicate to true

3. cv_signal(c) // signal condition variable (wake-up one or all)

4. unlock associated mutex m
26

Processes and Threads (18)

� cv_wait(c, m):

1. unlock associated mutex m

2. block thread

3. put it on the queue to wait for a signal

4. lock associated mutex m // why?

� cv_signal(c):

– wake up a thread waiting on the condition

27

Processes and Threads (19)

Producer Consumer

mutex_lock(D) mutex_lock(D)

while (no data)

cv_wait(yesD, D)

produce one item consume one item

cv_signal(yesD)

mutex_unlock(D) mutex_unlock(D)

28

Processes and Threads (20): Semaphores

� binary semaphores = mutex

� counting/integer semaphores

– P(s) [prolagen -- decrease (Dutch)]

� if s > 0

• decrement s

� else

• blocked

– V(s) [verhogen -- increase]

� increment s

29

Processes and Threads (21): first try

Producer Consumer

D=1 //initialization

P(D) P(D)

while (no data)

V(D)

sleep

P(D)

produce one item consume one item

V(D) V(D)

� Does this work?

� What are basically P and V used for?

30

Processes and Threads (22): 1P1CinfD (nPnCinfD)

Producer Consumer

D=1 // critical region

Count=0 // # of items

P(Count)

P(D) P(D) // mutex; binary semaphore

produce one item consume one item

V(D) V(D)

V(Count)

P(Count)

P(D) P(D) // mutex; binary semaphore

produce one item consume one item

V(Count)

V(D) V(D)

P(D) P(D) // mutex; binary semaphore

P(Count)

produce one item consume one item

V(Count)

V(D) V(D)

6

31

Processes and Threads (23)

� Versions 1 and 2 work

– Version 1 has more concurrency

� Versions 3 doesn’t work

� Exercises

– One producer, one consumer, one data item (1P1C1D)
[lock steps, PCPC...]

– One producer, one consumer, up to n data items
(1P1CnD) same for nPnCnD

32

Processes and Threads (24)

� What could happen here?

mutex_lock(B) mutex_lock(A)

mutex_lock(A) mutex_lock(B)

do work do work

mutex_unlock(B) mutex_unlock(A)

mutex_unlock(A) mutex_unlock(B)

� How to prevent the problem?

33

Processes and Threads (25): Scheduling

� Preemptive

– a thread can be suspended at any point for another thread
to run

� Non-preemptive

– a thread can only be suspended when it de-schedules
itself (e.g. blocked by I/O, sync...) [critical region between
calls that de-schedule]

34

Processes and Threads (26): Thread Implementation

� Kernel-level
– Win NT, Solaris, Mach, Chorus

– Kernel schedules threads

� User-level
– library based (pthreads, or in the language like java)

– run-time system in user space manages threads

– Kernel schedules processes

� Disadvantages of user-level threads
– can't take advantage of multiprocessors

– one thread is blocked because of a page fault, the process is blocked, all the
others threads in the same process are blocked

– threads in different processes aren't scheduled in the same environment

� Advantages of user-level threads
– less costly to manage

– scheduling can be customized

– more user-level threads can be supported

35

Processes and Threads (27)

� Mixed

– Mach:

� user-level code to provide scheduling hints to the kernel

– Solaris:

� assign each user-level thread to a kernel-level thread (multiple

user threads can be in one kernel thread)

� creation/switching at the user level

� scheduling at the kernel level

36

Processes and Threads (28)

� FastThread package
– hierarchical, event-based scheduling

– each process has a user-level thread scheduler

– virtual processors are allocated to processes
� the # of virtual processors depends on a process's needs

� physical processors are assigned to virtual processors

� virtual processors can be dynamically allocated and deallocated to
a process according to its needs.

– Scheduler Activation (SA)
� event/call from kernel to user-level scheduler

� represents a time slice on a virtual processor (# of SA's < # of
virtual processors)

� user-level scheduler can assign threads to SA's (time slices).

7

37

Processes and Threads (29)

� Events from user-level scheduler to kernel
– P idle: virtual processor is idle

– P needed: new virtual processor needed

� Events from kernel to user-level scheduler
– virtual processor allocated (P added):

– User-level: scheduler can choose a ready thread to run

– SA blocked (in kernel):

– Kernel: sends a new SA

– User-level: a ready thread is assigned to the new SA to run

– SA unblocked (in kernel):

– user-level: thread is back on the ready queue

– kernel: allocate new virtual processor to process or preempt another SA

– SA preempted (in kernel):

– user-level: puts the thread back to the ready queue

38

Processes and Threads (30): Scheduler activations

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors

 to processes

B. Events between user-level scheduler & kernel

 Key: P = processor; SA = scheduler activation

Skip Sections 6.5 and 6.6

