
1

Slides for Chapter 8:

Distributed File Systems

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 4, © Pearson Education 2005

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Learning Objectives

�Understand the requirements that affect the design
of distributed storage services

�Case study on NFS: understand how a relatively
simple, widely used service is designed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed storage systems

�Earlier storage systems are file systems (e.g. NFS);
units are files.

�More recently, distributed object systems (e.g.
CORBA, Java); units are objects.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (DSM, Ch. 18)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Peer-to-peer storage system OceanStore (Ch. 10)

1

1

1

2

Types of consistency:

1: strict one-copy. : slightly weaker guarantees. 2: considerably weaker guarantees.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Characteristics of (non-distributed) file systems

�data and attributes (Fig 8.3)

�directory: mapping from text names to internal file
identifiers

� layers of modules in file systems (Fig 8.2)

�file operation system calls in UNIX (Fig. 8.4)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File attributes

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed file system requirements

� transparency:
�access

� location
�mobility

�performance

�scaling

� concurrent file updates
� file replication
� consistency
� fault tolerance
� hardware and os heterogeneity
� security
� efficiency

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture (Author’s model)

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File service architecture

�Flat file service

�unique file identifiers (UFID)

�Directory service

�map names to UFIDs

�Client module

�integrate/extend flat file and directory services

�provide a common application programming interface (can
emulate different file interfaces)

�stores location of flat file and directory services

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flat file service interface

�RPC used by client modules

�not by user-level programs (which use client modules)

�More fault tolerant compared to UNIX

�Repeatable (idempotent) operations
⌧[except for Create: re-execution gets a new file]

⌧at-least-once semantics

⌧no open (hence close) so no state to remember

⌧specify starting location and UFID (from directory service) in Read/Write

�Stateless server
⌧Can be restarted without the server or client restoring any state

information

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Flat file service operations

Read(FileId, i, n) -> Data
— throws BadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throws BadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in Figure 8.3).

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Access control

� UNIX checks access rights when a file is opened

� subsequent checks during read/write are not necessary

� distributed environment

� server has to check

� stateless approaches
1. access check once when UFID is issued

• client gets an encoded "capability" (who can access and how)

• capability is submitted with each subsequent request

2. access check for each request.

� second is more common

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Directory service operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, FileId)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the
regular expression Pattern.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Hierarchical file system

�Directories containing other directories and files

�Each file can have more than one name
(pathnames)

�how in UNIX, Windows?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

File groups

� a logical collection of files on one server

�a server can have more than one group

�a group can change server

�filesystems in unix

�different devices for non-distributed

�different hosts for distributed

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Case Study: Sun NFS

�Industry standard for local networks since the 1980’s

�OS independent

�unix implementation

�rpc

�udp or tcp

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS architecture: virtual file system

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system

O
th

e
r

fi
le

 s
y
s
te

m

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Virtual file system

� access transparency
� part of unix kernel
� NFS file handle, 3 components:

�filesystem identifier
⌧different groups of files

� i-node (index node)
⌧structure for finding the file

� i-node generation number
⌧ i-nodes are reused

⌧ incremented when reused

� VFS
�struct for each file system

�v-node for each open file
⌧ file handle for remote file

⌧ i-node number for local file

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client integration

�nfs client emulates Unix file semantics

� in the kernel, not in a library, because:

�access files via system calls

�single client module for multiple user processes

�encryption can be done in the kernel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Access control

�nfs server is stateless, doesn't keep open files for
clients

�server checks identity each time (uid and gid)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS server operations (simplified)

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory
dirfh.

create(dirfh, name, attr) ->
newfh, attr

Creates a new file name in directory dirfh with attributes attr and
returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system
call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time and

modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.
Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, toname)
-> status

Changes the name of file name in directory dirfh to toname in
directory to todirfh.

link(newdirfh, newname, dirfh, name)
-> status

Creates an entry newname in the directory newdirfh which refers to
file name in the directory dirfh. Continues on next slide ...

What do you notice about read() and write()?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NFS server operations (simplified) – 2

symlink(newdirfh, newname, string)
-> status

Creates an entry newname in the directory newdirfh of type
symbolic link with the value string. The server does not interpret
the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file
identified by fh.

mkdir(dirfh, name, attr) ->

newfh, attr
Creates a new directory name with attributes attr and returns the
new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->

entries
Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opaque
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the following
entry. If the value of cookie is 0, reads from the first entry in the
directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fh.

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mount service

� the process of including a new filesystem is called mounting

� /etc/exports has filesystems that can be mounted by others

� clients use a modified mount command for remote
filesystems

� communicates with the mount process on the server in a
mount protocol

� hard-mounted
�user process is suspended until request is successful

�when server is not responding

�request is retried until it's satisfied

� soft-mounted
� if server fails, client returns failure after a small # of retries

�user process handles the failure

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Local and remote file systems

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Pathname translation

�pathname: /users/students/dc/abc

�server doesn't receive the entire pathname for
translation, why?

�client breaks down the pathnames into parts

� iteratively translate each part

�translation is cached

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Automounter

�what if a user process reference a file on a remote
filesystem that is not mounted

�table of mount points (pathname) and servers

�NFS client sends the reference to the automounter

�automounter check find the first server that is up

�mount it at some location and set a symbolic link
(original impl)

�mount it at the mount point (later impl)

�could help fault tolerance, the same mount point with
multiple replicated servers.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server caching

� caching file pages, directory/file attributes

� read-ahead: prefetch pages following the most-recently read
file pages

� delayed-write: write to disk when the page in memory is
needed for other purposes

� "sync" flushes "dirty" pages to disk every 30 seconds

� two write option

1. write-through: write to disk before replying to the client

2. cache and commit:

⌧ stored in memory cache

⌧ write to disk before replying to a "commit" request from the client

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching

�caches results of read, write, getattr, lookup, readdir

�clients responsibility to poll the server for
consistency

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: reading (1)

� timestamp-based methods for consistency
validation

� Tc: time when the cache entry was last validated

� Tm: time when the block was last modified at the server

� cache entry is valid if:

1. T - Tc < t, where t is the freshness interval
⌧ t is adaptively adjusted:

• files: 3 to 30 seconds depending on freq of updates

• directories: 30 to 60 seconds

2. Tmclient = Tmserver

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: reading (2)

� need validation for all cache accesses

� condition #1 can be determined by the client alone--
performed first

� Reducing getattr() to the server [for getting Tmserver]

1. new value of Tmserver is received, apply to all cache
entries from the same file

2. piggyback getattr() on file operations

3. adaptive alg for update t (condition #1)

� validation doesn't guarantee the same level of
consistency as one-copy

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Client caching: writing

�dirty: modified page in cache

�flush to disk: file is closed or sync from client

�bio-daemon (block input-output)

�read-ahead: after each read request, request the next file
block from the server as well

�delayed write: after a block is filled, it's sent to the server

�reduce the time to wait for read/write

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Other optimization

�UDP, RPC

�extended to 9 kilobytes--entire block in a single
packet

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Security

�stateless nfs server

�user's identity in each request

�Kerberos authentication during the mount process,
which includes uid and host address

�server maintain authentication info for the mount

�on each file request, nfs checks the uid and address

�one user per client

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Performance

�overhead/penalty is low

�main problems

�frequent getattr() for cache validation (piggybacking)

�relatively poor performance if write-through is used on the
server (delay-write/commit in current versions)

�write < 5%

� lookup is almost 50% (step by step pathname
translation)

7

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Summary for NFS

� access transparency: same system calls for local or remote files

� location transparency: could have a single name space for all files
(depending on all the clients to agree the same name space)

� mobility transparency: mount table need to be updated on each client (not
transparent)

� scalability: can usually support large loads, add processors, disks,
servers...

� file replication: read-only replication, no support for replication of files with
updates

� hardware and OS: many ports

� fault tolerance: stateless and idempotent

� consistency: not quite one-copy for efficiency

� security: added encryption--Kerberos

� efficiency: pretty efficient, wide-spread use

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

WebNFS (p. 360)

�HTTP and NFS both can read files, what NFS can do
more than HTTP in terms of reading? [what can
read() do in a file system that HTTP can’t?]

�NFS is designed to be on “fast” LANs

�WebNFS is designed to be on “slower” WANs

�WebNFS clients talk to NFS servers

�Small set up cost (thiner client)
⌧public files, mostly read access, no authentication

⌧no mounting

�access portions of a file

�nfs://xyz.com/someFile

