CSE 2010, HW4
Due Thu Mar 13 at the start of your lab section; Canvas:
HW4
Due Thu Mar 13 at the end of your lab section; Canvas:
HW4a

To add an element of surprise/excitement (and perhaps
more revenue), an online retail/auction site tries to sell multi-
ple items of the same product at random times over a period
of time (e.g. 1,000 items at random times over 24 hours). How
would you design an efficient system to match items to bids
from customers?

The goal of HW4 is to design a system that can efficiently
match items with the highest bidding price at different times.
The system allows customers to enter bids. Each bid consists
of a price and quantity. For simplicity, each customer can have
one bid and there is only one product. If two bids have the
same price, the earlier bid has a higher priority (assume the
timestamp of a bid is unique). Also, to not lose money, the
site does not sell an item if the highest bidding price is lower
than the minimum acceptable price, which can be updated
over time by the retailer (e.g. higher at the beginning).

To manage and find the highest bid efficiently, use a priority
queue implemented with a heap. Each entry of the priority
queue has: bid price (key), timestamp (secondary key), and
customer name (value). Assume at most 100 entries. A tie
in the price is broken by the timestamp. Functions/methods
include:

e insert(entry)

e removeMax() // return and remove entry with the maxi-
mum key

e getMax() // return entry with the maximum key
e isFull()
e isEmpty()

To implement the priority queue, you may modify/rewrite
Code Fragment 9.8 on pp. 377-378 (Programs 9.20 and 9.21 on
pp. 352-355 in Standish) We will be evaluating your submis-
sion on code0l.fit.edu; we strongly recommend you to ensure
that your submission functions properly on code0l.fit.edu.

Input: The command-line argument for HW4.java is the
name of the input file, which has:

e EnterBid time name price quantity

UpdateMinimumAcceptablePrice time price
SellOneltem time
DisplayHighestBid time

Time is an integer in HHMM format, where HH is 00-23 and
MM is 00-59 (leading zeros are optional). Sample input files
are on the course website. You may assume names are unique.

Output: Output goes to the standard output (screen), each
line corresponds to an action:

e EnterBid time name price quantity

e UpdateMinimumA-cceptablePrice time price

e SellOneltem time name price [NoBids / HighestBidding-
PricelsTooLow]

e DisplayHighestBid time name bidIT'ime price quantity

Sample output is on the course website.

Extra Credit (10 pts): Separate submission via
HW4Extra.java. Consider the customers are also allowed to
update bids. Additional possible input action is:

e UpdateBid time name price quantity
and output result is:

e UpdateBid time name price quantity [customerNot-
Found]

Although the priority queue is designed to find the highest bid
quickly, it is not designed to find a customer quickly [faster
than O(N), where N is the number of customers].

1. Design and implement an additional data structure that
can help find a customer and update the priority queue
faster than O(N).

2. In the comments at the top of your program (or in a sep-
arate PDF file):

(a) explain why your additional data structure can help
UpdateBid become faster than O(N) with an analy-
sis of the time complexity of UpdateBid.

(b) for UpdateBid, discuss the different cases and how
the heap (priority queue) needs to be adjusted.

(c) explain why EnterBid becomes slower than O(log V)
[It’s OK for now; it can be can be remedied with data
structures to be discussed later in the course.]

Submission: Submit HW4.java that has the main method
and other program files. Submissions for HW4 and HW4a have
the same guidelines as HW1.

Note the late penalty on the syllabus if you submit after the
due date and time as specified at the top of the assignment.

For extra credit, submit HW4Extra.java that has the main
method and other program files. HW4a submission is not ap-
plicable to extra credit. Late submission for extra credit is not
accepted.



