
© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 1

AVL Trees

6

3 8

4

v

z

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 2

AVL Tree Definition

• Adelson-Velsky and

Landis

• binary search tree

• balanced

 each internal node v

 the heights of the

children of v can

differ by at most 1

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the

heights are shown next to the nodes

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).

Proof (by induction): n(h): the minimum number of internal
nodes of an AVL tree of height h.

n(1) = 1 and n(2) = 2

For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.

That is, n(h) = 1 + n(h-1) + n(h-2)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 h/2 - 1

Taking logarithms: h < 2log n(h) +2

Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 4

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Insert 54:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 5

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Insert 54:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion

Imbalance
Node z

Insert
Node w

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 6

Overview of 4 Cases of
Trinode Restructuring

2

4

6

6

2

4

6

4

2

2

6

4

2 6

4

Case 1 Case 2 Case 3 Case 4

z ->
y ->
x ->

© 2014 Goodrich, Tamassia, Goldwasser

Rotation operation

AVL Trees 7

With a linked structure
• Constant number of updates
• O(1) time

Consider subTree points to y
and we also have x and y

1. y.left = x.right
2. x.right = y
3. subTree = x

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 8

Trinode Restructuring:
Case 1

Single Rotation:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

• Keys: a < b < c
• Nodes: grandparent z is not

balanced, y is parent, x is
node

• Not balanced at a, the smallest key
• x has the largest key c

• Result: middle key b at the top

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 9

Example for Case 1

Case 1

T0 T1 T2 T3

T0

T1

T2 T3

2

6

4

2 6

4

z
y
x

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 10

Trinode Restructuring:
Case 2

Single Rotation:

Not balanced at c, the largest key

x has the smallest key a

Result: middle key b at the top

• Keys: a < b < c
• Nodes: grandparent z is not

balanced, y is parent, x is
node

T 3
T 2

T 1

T 0

a = x

b = y

c = z

T
0

T 1 T 2

T

3

a = x
b = y

c = z
single rotation

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 11

Example for Case 2

Case 2

T0 T1 T2 T3

T0 T1

T2

T3

6

2

4

2 6

4

z
y
x

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 12

Trinode Restructuring:
Case 3

double rotation:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

• Keys: a < b < c
• Nodes: grandparent z is not

balanced, y is parent, x is
node

• Not balanced at a, the largest key
• x has the middle key b
• x is rotated above y
• x is then rotated above z

• Result: middle key b at the top

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 13

Example for Case 3

Case 3

T0 T1 T2 T3

T0

T1 T2

T3

T0

T1

T2 T3

2

6

4

2 6

4

2

4

6

z
y
x

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 14

Trinode Restructuring:
Case 4

• double rotation

• Not balanced at c, the largest key

• x has the middle key b

• x is rotated above y

• x is then rotated above x

• Result: middle key b at the top

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

• Keys: a < b < c
• Nodes: grandparent z is not

balanced, y is parent, x is
node

T0 T0 T1 T2

T3 T1
T2

T3

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 15

Example for Case 4

Case 4

T0 T1 T2 T3

T0 T1

T3

T2
T1

T0 T2

T3

6

2

4

2 6

4

6

4

2

z
y
x

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 16

Insert 54 (Case 3 or 4?)

88

44

17

78 32 50

48

62
2

4

1

1

2 2

3

1

54

1

T 0 T 1

T 2

T 3

x

y z

unbalanced...

...balanced

T 1

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T 0 T 2

T 3

x

y

z

Draw the double
rotation

© 2014 Goodrich, Tamassia, Goldwasser

Trinode Restructuring
summary

Case imbalance/
grandparent z

Node x Rotation

1 Smallest key a Largest key c single

2 Largest key c Smallest key a single

3 Smallest key a Middle key b double

4 Largest key c Middle key b double

AVL Trees 17

© 2014 Goodrich, Tamassia, Goldwasser

Trinode Restructuring
Summary

Case imbalance/
grandparent z

Node x Rotation

1 Smallest key a Largest key c single

2 Largest key c Smallest key a single

3 Smallest key a Middle key b double

4 Largest key c Middle key b double

AVL Trees 18

The resulting balanced subtree has:
• middle key b at the top
• smallest key a as left child

• T0 and T1 are left and right subtrees of a
• largest key c as right child

• T2 and T3 are left and right subtrees of c

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 19

Removal
Removal begins as in a binary search tree
 the node removed will become an empty external node.

 Its parent, w, may cause an imbalance.

Remove 32, imbalance at 44

44

17

78 32 50

88 48

62

54

44

17

78 50

88 48

62

54

before deletion of 32 after deletion

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 20

Rebalancing after a Removal
z = first unbalanced node encountered while travelling up the tree from w.

 y = child of z with the larger height,

 x = child of y with the larger height

trinode restructuring to restore balance at z—Case 1 in example

44

17

78 50

88 48

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 21

Rebalancing after a Removal
this restructuring may upset the balance of another node

higher in the tree

 continue checking for balance until the root of T is reached

44

17

78 50

88 48

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

© 2014 Goodrich, Tamassia, Goldwasser

Balanced tree

AVL Trees 22

20

1

30

60

50

70

80

55

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser

Delete 80

AVL Trees 23

20

1

30

60

50

70

80

55

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser

Not balanced at 70

AVL Trees 24

20

1

30

60

50

70

55

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser

Single rotation

AVL Trees 25

20

1

30

55

50

60

70

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser

Anything wrong?

AVL Trees 26

20

1

30

55

50

60

70

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser

Not balanced at 50!

AVL Trees 27

20

1

30

55

50

60

70

35

40

45

10

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 28

AVL Tree Performance
n entries

 O(n) space

 A single restructuring takes O(1) time

 using a linked-structure binary tree

Operation Worst-case
Time
Complexity

Get/search O(log n) Up to height log n

Put/insert O(log n) O(log n): searching & restructuring

Remove/delete O(log n) O(log n): searching & restructuring up to height log n

© 2014 Goodrich, Tamassia, Goldwasser

AVL Trees

balanced Binary Search Tree (BST)

Insert/delete operations include
rebalancing if needed

Worst-case time complexity: O(log n)

 expected O(log n) for skip lists

 No duplicated keys in skip lists

 No moving a bunch of keys in sorted array

AVL Trees 29

