Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

AVL Trees

12

© 2014 Goodrich, Tamassia, Goldwasser

AVL Trees

1

AVL Tree Definition

- Adelson-Velsky and Landis
- binary search tree
- balanced
 - each internal node v
 - the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes

n(2) / 3 4 n(1)

Height of an AVL Tree

Fact: The height of an AVL tree storing n keys is O(log n). Proof (by induction): n(h): the minimum number of internal nodes of an AVL tree of height h.

n(1) = 1 and n(2) = 2

For n > 2, an AVL tree of height h contains the root node, one AVL subtree of height n-1 and another of height n-2.

- That is, n(h) = 1 + n(h-1) + n(h-2)
- Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction), n(h) > 2ⁱn(h-2i)
- Solving the base case we get: $n(h) > 2^{h/2 1}$
- Taking logarithms: h < 2log n(h) +2</p>
- Thus the height of an AVL tree is O(log n)

© 2014 Goodrich, Tamassia, Goldwasser

Insertion

Insertion is as in a binary search tree
 Always done by expanding an external node.
 Insert 54:

Insertion

Overview of 4 Cases of Trinode Restructuring

© 2014 Goodrich, Tamassia, Goldwasser

Red-Black Trees

Rotation operation

Consider subTree points to y and we also have x and y

- 1. y.left = x.right
- 2. x.right = y
- 3. subTree = x
- © 2014 Goodrich, Tamassia, Goldwasser

With a linked structure

O(1) time

•

Constant number of updates

- Not balanced at a, the smallest key
- x has the largest key c
- Result: middle key b at the top

AVL Trees

Keys: a < b < c Nodes: grandparent z is not balanced, y is parent, x is

 T_2

 T_3

10

- x is rotated above y
- x is then rotated above z
- Result: middle key b at the top

Trinode Restructuring: Case 4

Keys: a < b < c
Nodes: grandparent z is not balanced, y is parent, x is node

b = x

- double rotation
- Not balanced at c, the largest key
- x has the middle key b
- x is rotated above y
- x is then rotated above x
- Result: middle key b at the top

c =

 T_3

© 2014 Goodrich, Tamassia, Goldwasser

a = v

AVL Trees

double rotation

Trinode Restructuring

summary

 Case	imbalance/ grandparent z	Node x	Rotation
1	Smallest key a	Largest key c	single
2	Largest key c	Smallest key a	single
3	Smallest key a	Middle key b	double
4	Largest key c	Middle key b	double

Trinode Restructuring

Summary

 Case	imbalance/ grandparent z	Node x	Rotation
1	Smallest key a	Largest key c	single
2	Largest key c	Smallest key a	single
3	Smallest key a	Middle key b	double
4	Largest key c	Middle key b	double

The resulting balanced subtree has:

- middle key b at the top
- smallest key a as left child
 - T0 and T1 are left and right subtrees of a
- largest key c as right child
 - T2 and T3 are left and right subtrees of c

© 2014 Goodrich, Tamassia, Goldwasser

Removal

Removal begins as in a binary search tree

- the node removed will become an empty external node.
- Its parent, w, may cause an imbalance.
- Remove 32, imbalance at 44

© 2014 Goodrich, Tamassia, Goldwasser

Rebalancing after a Removal

- z = first unbalanced node encountered while travelling up the tree from w.
 - y = child of z with the larger height,
 - x = child of y with the larger height

trinode restructuring to restore balance at z—Case 1 in example

© 2014 Goodrich, Tamassia, Goldwasser

Rebalancing after a Removal

- this restructuring may upset the balance of another node higher in the tree
 - continue checking for balance until the root of T is reached

© 2014 Goodrich, Tamassia, Goldwasser

AVL Tree Performance

n entries

- O(n) space
- A single restructuring takes O(1) time
 - using a linked-structure binary tree

Operation	Worst-case Time Complexity	
Get/search	O(log n)	Up to height log n
Put/insert	O(log n)	O(log n): searching & restructuring
Remove/delete	O(log n)	O(log n): searching & restructuring up to height log n

AVL Trees

Image: balanced Binary Search Tree (BST) Insert/delete operations include rebalancing if needed • Worst-case time complexity: $O(\log n)$ expected O(log n) for skip lists No duplicated keys in skip lists No moving a bunch of keys in sorted array