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AVL Trees 
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Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 
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AVL Tree Definition 

• Adelson-Velsky and 

Landis 

• binary search tree 

• balanced 

  each internal node v  

 the heights of the 

children of v can 

differ by at most 1 

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 

heights are shown next to the nodes 
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Height of an AVL Tree 
Fact: The height of an AVL tree storing n keys is O(log n). 

Proof (by induction): n(h): the minimum number of internal 
nodes of an AVL tree of height h. 

n(1) = 1 and n(2) = 2 

For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2. 

That is, n(h) = 1 + n(h-1) + n(h-2) 

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So 
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction), 

n(h) > 2in(h-2i) 

Solving the base case we get: n(h) > 2 h/2 - 1 

Taking logarithms: h < 2log n(h) +2 

Thus the height of an AVL tree is O(log n) 
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Insertion 
Insertion is as in a binary search tree 
Always done by expanding an external node. 
Insert 54: 
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17 78 

32 50 88 

48 62 
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48 62 

before insertion 

after insertion 
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Insertion 
Insertion is as in a binary search tree 
Always done by expanding an external node. 
Insert 54: 

44 

17 78 

32 50 88 

48 62 

54 
w 

b=x 

a=y 

c=z 

44 

17 78 

32 50 88 

48 62 

before insertion 

after insertion 

Imbalance 
Node z 

Insert 
Node w 
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Overview of 4 Cases of 
Trinode Restructuring 
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Case 1 Case 2 Case 3 Case 4 

z -> 
y -> 
x -> 
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Rotation operation 

AVL Trees 7 

With a linked structure 
• Constant number of updates 
• O(1) time 

Consider subTree points to y 
and we also have x and y 
 
1. y.left = x.right 
2. x.right = y 
3. subTree = x 
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Trinode Restructuring: 
Case 1 

Single Rotation: 

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

• Keys: a < b < c 
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node  

• Not balanced at a, the smallest key 
• x has the largest key c 

 
• Result: middle key b at the top 
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Example for Case 1 

Case 1 

T0 T1 T2 T3 

T0 

T1 

T2 T3 

2 
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z 
y 
x 
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Trinode Restructuring: 
Case 2 

Single Rotation: 

Not balanced at c, the largest key 

x has the smallest key a 

 

Result: middle key b at the top 

• Keys: a < b < c 
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node  

T 3 
T 2 

T 1 

T 0 

a = x 

b = y 

c = z 

T 
0 

T 1 T 2 

T 

3 

a = x 
b = y 

c = z 
single rotation 
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Example for Case 2 

Case 2 

T0 T1 T2 T3 

T0 T1 

T2 

T3 

6 

2 

4 

2 6 
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y 
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Trinode Restructuring: 
Case 3 

double rotation: 

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

• Keys: a < b < c 
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node  

• Not balanced at a, the largest key 
• x has the middle key b 
• x is rotated above y 
• x is then rotated above z 

 
• Result: middle key b at the top 
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Example for Case 3 

Case 3 

T0 T1 T2 T3 

T0 

T1 T2 

T3 

T0 

T1 

T2 T3 
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z 
y 
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Trinode Restructuring: 
Case 4 

• double rotation 

• Not balanced at c, the largest key 

• x has the middle key b 

• x is rotated above y 

• x is then rotated above x 

 

• Result: middle key b at the top 

 
double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

• Keys: a < b < c 
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node  

T0 T0 T1 T2 

T3 T1 
T2 

T3 
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Example for Case 4 

Case 4 

T0 T1 T2 T3 

T0 T1 

T3 

T2 
T1 

T0 T2 

T3 
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Insert 54 (Case 3 or 4?) 
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48 
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54 

1 

T 0 T 1 

T 2 

T 3 

x 

y z 

unbalanced... 

...balanced 

T 1 
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54 

1 

T 0 T 2 

T 3 
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y 

z 

Draw the double 
rotation 
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Trinode Restructuring 
summary 

Case imbalance/ 
grandparent z 

Node x Rotation 

1 Smallest key a Largest key c single 

2 Largest key c Smallest key a single 

3 Smallest key a Middle key b double 

4 Largest key c Middle key b double 

AVL Trees 17 
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Trinode Restructuring 
Summary 

Case imbalance/ 
grandparent z 

Node x Rotation 

1 Smallest key a Largest key c single 

2 Largest key c Smallest key a single 

3 Smallest key a Middle key b double 

4 Largest key c Middle key b double 

AVL Trees 18 

The resulting balanced subtree has:  
• middle key b at the top 
• smallest key a as left child 

• T0 and T1 are left and right subtrees of a 
• largest key c as right child 

• T2 and T3 are left and right subtrees of c 
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Removal 
Removal begins as in a binary search tree 
 the node removed will become an empty external node.  

 Its parent, w, may cause an imbalance. 

Remove 32, imbalance at 44 

44 

17 

78 32 50 

88 48 

62 

54 

44 

17 

78 50 

88 48 

62 

54 

before deletion of 32 after deletion 
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Rebalancing after a Removal 
z = first unbalanced node encountered while travelling up the tree from w.  

 y = child of z with the larger height,  

 x = child of y with the larger height 

trinode restructuring to restore balance at z—Case 1 in example 
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88 48 

62 
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Rebalancing after a Removal 
this restructuring may upset the balance of another node 

higher in the tree 

 continue checking for balance until the root of T is reached 
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Balanced tree 
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Delete 80 

AVL Trees 23 

20 

1 

30 

60 

50 

70 

80 

55 

35 

40 

45 

10 



© 2014 Goodrich, Tamassia, Goldwasser 

Not balanced at 70 
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Single rotation 
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Anything wrong? 
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Not balanced at 50! 
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AVL Tree Performance 
n entries 

 O(n) space 

 A single restructuring takes O(1) time 

 using a linked-structure binary tree 

 

Operation Worst-case 
Time 
Complexity 

Get/search O(log n) Up to height log n 

Put/insert O(log n) O(log n): searching & restructuring 

Remove/delete O(log n) O(log n): searching & restructuring up to height log n 
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AVL Trees 

balanced Binary Search Tree (BST) 

Insert/delete operations include 
rebalancing if needed 

Worst-case time complexity: O(log n) 

 expected O(log n) for skip lists 

 No duplicated keys in skip lists 

 No moving a bunch of keys in sorted array 

AVL Trees 29 


