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N
N

Quick-Sort

| 74962524679 |

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort




Quick-Sort

# Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

= Divide: pick a random

element x (called pivot) and
partition S into

» L elements less than x

+ E elements equal x

* G elements greater than x
m Recur:sort Land G

= Conquer: join L, E and G

N
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# After partitioning
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= What can you say about
the position of the pivot?

Quick-Sort

Importance of Partitioning
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Importance of Partitioning

# After partitioning

N

= What can you say about X

the position of the pivot?

+ The pivot is at the
correct spot

s Also, two smaller

subproblems
+ Not including the pivot

=<
M~
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Partition L

N

# partition an input sequence: | Algorithm partition(S, p) - _
= remove each element y from Input sequence S, position p of pivot

S and Output subsequences L, E, G of the
: fvinto L E or G elements of S less than, equal to,
= Insertyinto L, =ort, or greater than the pivot, resp.

depending on the result of
the comparison with the
pivot X
# Each insertion and removal is
at the beginning or at the

L, E, G « empty sequences
X <~ S.remove(p)
while —=S.isEmpty()

y «— S.remove(S.first())

iIfy<x
end of a sequence, and L addLast(y)
hence takes O(1) time else if y = X
4 partition step of quick-sort E.addLast(y)
takes O(n) time else {y>x}
G.addLast(y)
return L, E, G
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Partition the list recursively




‘Merge the lists and the pivot




In-place Quick Sort

# O(1) extra space
# Same basic algorithm

= Partition based on a pivot

= Quick Sort on the two partitions
# Partitioning uses O(1) extra space

= Left and right indices to scan for elements on the
“wrong side”:
+ Smaller elements that are on the right side
» Larger element that are on the left side

N
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In-Place Quick-Sort

Algorithm inPlaceQuickSort(S, start, end)
Input sequence S, start and end indices

Output sequence S sorted between start and end
if start > end return

N

L/

left « start
right «—end -1 I/ before pivot
pivot «-S[end] I/ pivot is the last element

while left <=right  // still have elements
while (left <= right & S[left] < pivot) // find element larger than pivot

left++

while (left <= right & S[right] >pivot) // find element smaller than pivot
right--

if (left <= right) // put the two elements in the correct partitions

swap S[left] and S[right]; left++; right—
Swap S[end] and S[left] // put pivot at the correct spot
InPlaceQuickSort(S, start, left — 1)
iInPlaceQuickSort(S, left + 1, end)
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Worst-case Time Complexity

# The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

# One of L and G has size n — 1 and the other has size 0

# The running time is proportional to the sum
n+(N—-1)+...+2+1

# Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [ J
1 n-1 () [ ]
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Expected Time Complexity

N

# O(n log n)

# Proof in the book
= And skipped slides at the end
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Selection of Pivots

N

# Last element (or first element)
= If the list is partially sorted
» might be the smallest/largest element
= the worst-case scenario
# Ideas?
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Selection of Pivots

N

# Last element (or first element)

= If the list is partially sorted

» might be the smallest/largest element
» the worst-case scenario

# Random element

= But calling random() has time overhead
# Median-of-three

= Median of first, last, and middle elements
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Summary of Sorting Algorithms

N

L/

Algorithm Time |Notes
selection-sort O(n?) : fsrllc-)l\?\:a(cgeood for small inputs)
Insertion-sort O(n?) : LTC_)I\:/)Ja(Cgeood for small inputs)
quick-sort C;E(np(lgc();?eg) : :cr;:zlezie(,g?:dd ?g:ilzaer(;e inputs)
heap-sort O(n log n) : :‘Z:’zl?;:sod for large inputs)
e O(n log n) = sequential data access

= fast (good for huge inputs)
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Skipping the rest

N
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Expected Running Time

# Consider a recursive call of quick-sort on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761 ] | 72943761 ]
(2431 ) (797 ) 1) (7294376 )
Good call Bad call

# A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~ )

Bad pivots Good pivots Bad pivots
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Expected Running Time, Part 2

& Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k

# For a node of depth i, we expect
= i/2 ancestors are good calls

# Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
# The amount or work done at the
nodes of the same depth is O(n)

# Thus, the expected running time
of quick-sort is O(n log n)

expected height

A

O(log n)

= The size of the input sequence for the current call is at most (3/4)"2n

time per level

( s(r) J ————————————— O(n)
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total expected time:  O(n log n)
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Quick-Sort Tree

# An execution depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962524679

N

(79 579

N N
2-2) ) [ ] @>9
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Execution Example

N

# Pivot selection

| 729437561
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Execution Example (cont.)

# Partition, recursive call, pivot selection

(72943761 ]
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Execution Example (cont.)

N

# Partition, recursive call, base case

(72943761 ]
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Execution Example (cont.)

N

#Recursive call, ..., base case, join

[ 72943761 ]

/
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Execution Example (cont.)

N

# Recursive call, pivot selection

[ 72943761 ]

(24315123 4] 7 9 7

r—-

151 (43 > 3 4]

______
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Execution Example (cont.)

N

# Partition, ..., recursive call, base case

[ 72943761 ]
(24315123 4] (797

151 (43 > 3 4] B 959
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Execution Example (cont.)

N

#Join, join

| 72943761 5123467709 |

=

(24315123 4] (7972 5> 729 |

151 (43 > 3 4] B 959
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In-Place Partitioning

# Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

(32510735927989769 ] (pivot =6)

# Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan Kk to the left until finding an element < x.
s Swap elements at indices j and k

k -
(32510[7[3592[79897609 |
HVH
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