Presentation for use with the textbook Data Structures and
Algorithms in Java, 6t edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N
N

Quick-Sort

| 74962524679 |

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

Quick-Sort

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

= Divide: pick a random

element x (called pivot) and
partition S into

» L elements less than x

+ E elements equal x

* G elements greater than x
m Recur:sort Land G

= Conquer: join L, E and G

N

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

=<

m=<

O<

N

After partitioning

© 2014 Goodrich, Tamassia, Goldwasser

= What can you say about
the position of the pivot?

Quick-Sort

Importance of Partitioning

=<

m=<

O<

Importance of Partitioning

After partitioning

N

= What can you say about X

the position of the pivot?

+ The pivot is at the
correct spot

s Also, two smaller

subproblems
+ Not including the pivot

=<
M~

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

O<

L

Partition L

N

partition an input sequence: | Algorithm partition(S, p) - _
= remove each element y from Input sequence S, position p of pivot

S and Output subsequences L, E, G of the
: fvinto L E or G elements of S less than, equal to,
= Insertyinto L, =ort, or greater than the pivot, resp.

depending on the result of
the comparison with the
pivot X
Each insertion and removal is
at the beginning or at the

L, E, G « empty sequences
X <~ S.remove(p)
while —=S.isEmpty()

y «— S.remove(S.first())

iIfy<x
end of a sequence, and L addLast(y)
hence takes O(1) time else if y = X
4 partition step of quick-sort E.addLast(y)
takes O(n) time else {y>x}
G.addLast(y)
return L, E, G

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 5

Partition the list recursively

‘Merge the lists and the pivot

In-place Quick Sort

O(1) extra space
Same basic algorithm

= Partition based on a pivot

= Quick Sort on the two partitions
Partitioning uses O(1) extra space

= Left and right indices to scan for elements on the
“wrong side”:
+ Smaller elements that are on the right side
» Larger element that are on the left side

N

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 8

H

H

{
{
{
{
{
J

H

© 2014 Goodrich, Tamassia, Goldwasser

H
i
4
i
i

H

H

P
H

& | ot ||| ion | pvor |

=

H

0]
(9]
(92}
‘a‘
=
=)
o
O
©
(9]
K]
©
£
T
Q
—
o)
(@)
G
4
i
=
~N

P

P

!
{

i
i

—
O
2
o
—
e
(@))
—
‘ o
Y
“

=

P

H

H

@270‘147 Goo(?:lrich,r TamaSsia,f Goldwasser

H

P

!
{

i
i

H

H

H

0]
(9]
(92}
‘a‘
=
=)
o
O
©
(9]
K]
©
£
T
Q
—
o)
(@)
G
4
i
=
~N

=
<<4m m Jm?f
o) MN

m — m
- 3
- 1

m N

m -)
o
<<<<<< § o
- 1

: ™

-
<<4m m w(f
m — m
- 8
-]
m N
m - |
o
<<<<<< : i) ©
- <
m o m

In-Place Quick-Sort

Algorithm inPlaceQuickSort(S, start, end)
Input sequence S, start and end indices

Output sequence S sorted between start and end
if start > end return

N

L/

left « start
right «—end -1 I/ before pivot
pivot «-S[end] I/ pivot is the last element

while left <=right // still have elements
while (left <= right & S[left] < pivot) // find element larger than pivot

left++

while (left <= right & S[right] >pivot) // find element smaller than pivot
right--

if (left <= right) // put the two elements in the correct partitions

swap S[left] and S[right]; left++; right—
Swap S[end] and S[left] // put pivot at the correct spot
InPlaceQuickSort(S, start, left — 1)
iInPlaceQuickSort(S, left + 1, end)
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 16

Worst-case Time Complexity

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n — 1 and the other has size 0

The running time is proportional to the sum
n+(N—-1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [J
1 n-1 () []

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 17

Expected Time Complexity

N

O(n log n)

Proof in the book
= And skipped slides at the end

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

18

Selection of Pivots

N

Last element (or first element)
= If the list is partially sorted
» might be the smallest/largest element
= the worst-case scenario
Ideas?

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

19

Selection of Pivots

N

Last element (or first element)

= If the list is partially sorted

» might be the smallest/largest element
» the worst-case scenario

Random element

= But calling random() has time overhead
Median-of-three

= Median of first, last, and middle elements

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

20

Summary of Sorting Algorithms

N

L/

Algorithm Time |Notes
selection-sort O(n?) : fsrllc-)l\?\:a(cgeood for small inputs)
Insertion-sort O(n?) : LTC_)I\:/)Ja(Cgeood for small inputs)
quick-sort C;E(np(lgc();?eg) : :cr;:zlezie(,g?:dd ?g:ilzaer(;e inputs)
heap-sort O(n log n) : :‘Z:’zl?;:sod for large inputs)
e O(n log n) = sequential data access

= fast (good for huge inputs)

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

21

Skipping the rest

N

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

22

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761] | 72943761]
(2431) (797) 1) (7294376)
Good call Bad call

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~)

Bad pivots Good pivots Bad pivots

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 23

Expected Running Time, Part 2

& Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k

For a node of depth i, we expect
= i/2 ancestors are good calls

Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

expected height

A

O(log n)

= The size of the input sequence for the current call is at most (3/4)"2n

time per level

(s(r) J ————————————— O(n)

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

total expected time: O(n log n)

24

Quick-Sort Tree

An execution depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962524679

N

(79 579

N N
2-2)) [] @>9

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 25

(42 5 24|

Execution Example

N

Pivot selection

| 729437561

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

26

N

Execution Example (cont.)

Partition, recursive call, pivot selection

(72943761]

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

27

Execution Example (cont.)

N

Partition, recursive call, base case

(72943761]

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

28

Execution Example (cont.)

N

#Recursive call, ..., base case, join

[72943761]

/

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

29

Execution Example (cont.)

N

Recursive call, pivot selection

[72943761]

(24315123 4] 7 9 7

r—-

151 (43 > 3 4]

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

30

Execution Example (cont.)

N

Partition, ..., recursive call, base case

[72943761]
(24315123 4] (797

151 (43 > 3 4] B 959

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort

31

Execution Example (cont.)

N

#Join, join

| 72943761 5123467709 |

=

(24315123 4] (7972 5> 729 |

151 (43 > 3 4] B 959

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 32

In-Place Partitioning

Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

(32510735927989769] (pivot =6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan Kk to the left until finding an element < x.
s Swap elements at indices j and k

k -
(32510[7[3592[79897609 |
HVH

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 33

