Presentation for use with the textbook Data Structures and
Algorithms in Java, 6t edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N
N

Bucket-Sort and Radix-Sort

(v[s,a]—Ls, b]/v[7,d]—[7,g]—[7,e]

SEINEREEEREE
01234567809

N

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 1

C_gs

Bucket-Sort

/ﬁ Let be S be a sequence of n (key, element) items
= with keys in the range [0, N — 1]

N

keys as indices into an auxiliary array B of sequences
(buckets)

Phase 1: Empty sequence S by moving each entry
(k, 0) into its bucket B[k]

Phase 2: Fori=0, ..., N-1, move the entries of
bucket BJi] to the end of sequence S

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 2

Example
Key range [0, 9]

N
\J

)

7, e

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort

Bucket Sort

C_gs

f‘\

© 2014 Goodrict

Algorithm bucketSort(S):

Input: Sequence S of entries with integer keys in the
range [0, N — 1]

Output: Sequence S sorted in nondecreasing order of the
keys

let B be an array of N sequences, each of which is initially
empty

foreachentryeinSdo // Phase 1
k = the key of e
remove e from S
insert e at the end of bucket B[K]
fori=0toN-1do // Phase 2
for each entry e in B[i] do
remove e from BJ[i]

insert e at the end of S
1, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 4

Performance Analysis

n items, N buckets

N

Time Complexity
= Phase 1 takes O(n) time
= Phase 2 takes O(n + N) time

0O(n + N) time

Linear time, faster than O(nlogn) !
= What is the catch?

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 5

Performance Analysis

n items, N buckets

N

Time Complexity
= Phase 1 takes O(n) time
= Phase 2 takes O(n + N) time

0O(n + N) time

Linear time, faster than O(nlogn) !
= What is the catch?
= O(n + N) space, not O(n) space
+ What if N buckets >> n items?

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 6

Properties

Key-type Property
= The keys are used as indices into an array and cannot be
arbitrary objects

N

I

Stable Sort Property

= The relative order of any two items with the same key is
preserved (before and after sorting)

= Consider prices of a product and zip codes of the corresponding
stores

» Each zip code has multiple stores
» Given a list of sorted prices
m Sorting on zip codes doesn't affect the order of prices

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 7

Extensions
" @ Integer keys in the range [a, b]

+ Put entry (k, o) into bucket B[k — a]

N

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 8

Extensions
" @ Integer keys in the range [a, b]

+ Put entry (k, o) into bucket B[k — a]

N

String keys from a set D of possible strings,
where D has constant size (e.g., names of
the 50 U.S. states)

+ Sort D and compute the rank r(k) of each string k of D in the
sorted sequence

» Put entry (k, o) into bucket B[r(k)]

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 9

Skipping the rest

N

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort

10

Lexicographic Order

A d-tuple is a sequence of d keys (ky, k,, ..., Ky)
m key k; is said to be the i-th dimension of the tuple

Example:
= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(X145 Xpy ey Xg) < (Y1s Yor eees Yg)
ey

X <Y1 V X =Y A (Xgr eees Xg) < Yoy oees Vo)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

N

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 11

N

& C
= comparator that compares two
tuples by their i-th dimension

stableSort(S, C)

= a stable sorting algorithm that
uses comparator C

executing d times

= StableSort
+ once per dimension

#® O(dT(n)) time
= T(n) is the running time of
stableSort

Lexicographic-Sort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i < d downto 1
stableSort(S, C))

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1, 4) (3, 2, 4)
(2,1,4)(3,2,4) (51,5) (7,4,6) (2,4,6)
(2,1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2,1,4)(2,4,6) (3,2,4) (51,5) (7,4,6)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 12

Radix-Sort

specialization of
lexicographic-sort
» bucket-sort as the stable
sorting algorithm

N

keys in each dimension i
are integers in the
range [0, N — 1]

Radix-sort runs in time
O(d(n +N))

Algorithm radixSort(S, N)
Input sequence S of d-tuples such
that (0, ..., 0) < (X4, ..., x4) and
(Xpp eees X)) S(N—=1, ..i; N—1)
for each tuple (Xy, «..y x4) IN'S
Output sequence S sorted in
lexicographic order

for 1 « d downto 1
bucketSort(S, N)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 13

Radix-Sort for
Binary Numbers a ’h

n b-bit integers
X = Xb—l coe XlXO

N

Algorithm binaryRadixSort(S)
Input sequence S of b-bit
Integers

& O(bn) time Output sequence S sorted
replace each element x
of S with the item (0, x)

radix-sort with N =2

For example, we can sort a fori<Otob—1
sequence of 32-bit integers replace the key k of
in linear time each item (k, x) of S

with bit x; of x
bucketSort(S, 2)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 14

Example

N

Sorting a sequence of 4-bit integers

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort

) 9 B B9 oo
B9 @Y @ @O @
G0 =) @00 = 0 = BN =) @
o) G @Y @9 @
G0 @Y @F @9 2@

15

