
© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 1

Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 2

Bucket-Sort
Let be S be a sequence of n (key, element) items

 with keys in the range [0, N - 1]

keys as indices into an auxiliary array B of sequences
(buckets)

Phase 1: Empty sequence S by moving each entry
(k, o) into its bucket B[k]

Phase 2: For i = 0, …, N - 1, move the entries of
bucket B[i] to the end of sequence S

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 3

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 4

Bucket-Sort

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the
range [0, N − 1]
Output: Sequence S sorted in nondecreasing order of the
keys

let B be an array of N sequences, each of which is initially
empty

for each entry e in S do // Phase 1
 k = the key of e
 remove e from S
 insert e at the end of bucket B[k]
for i = 0 to N−1 do // Phase 2
 for each entry e in B[i] do
 remove e from B[i]

 insert e at the end of S

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 5

Performance Analysis
n items, N buckets

Time Complexity
 Phase 1 takes O(n) time

 Phase 2 takes O(n + N) time

O(n + N) time

Linear time, faster than O(n log n) !
 What is the catch?

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 6

Performance Analysis
n items, N buckets

Time Complexity
 Phase 1 takes O(n) time

 Phase 2 takes O(n + N) time

O(n + N) time

Linear time, faster than O(n log n) !
 What is the catch?

 O(n + N) space, not O(n) space
 What if N buckets >> n items?

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 7

Properties

Key-type Property

 The keys are used as indices into an array and cannot be
arbitrary objects

Stable Sort Property

 The relative order of any two items with the same key is
preserved (before and after sorting)

 Consider prices of a product and zip codes of the corresponding
stores

 Each zip code has multiple stores

 Given a list of sorted prices

 Sorting on zip codes doesn’t affect the order of prices

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 8

Extensions
Integer keys in the range [a, b]

 Put entry (k, o) into bucket B[k - a]

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 9

Extensions
Integer keys in the range [a, b]

 Put entry (k, o) into bucket B[k - a]

String keys from a set D of possible strings,
where D has constant size (e.g., names of
the 50 U.S. states)

 Sort D and compute the rank r(k) of each string k of D in the
sorted sequence

 Put entry (k, o) into bucket B[r(k)]

© 2014 Goodrich, Tamassia, Goldwasser

Skipping the rest

Bucket-Sort and Radix-Sort 10

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 11

Lexicographic Order

A d-tuple is a sequence of d keys (k1, k2, …, kd)

 key ki is said to be the i-th dimension of the tuple

Example:

 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows
(x1, x2, …, xd) < (y1, y2, …, yd)

x1 < y1 x1 = y1 (x2, …, xd) < (y2, …, yd)

 I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 12

Lexicographic-Sort
Ci
 comparator that compares two

tuples by their i-th dimension

stableSort(S, C)
 a stable sorting algorithm that

uses comparator C

executing d times
 stableSort

 once per dimension

O(dT(n)) time
 T(n) is the running time of

stableSort

Algorithm lexicographicSort(S)

 Input sequence S of d-tuples
 Output sequence S sorted in
 lexicographic order

 for i d downto 1

 stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 13

Radix-Sort
specialization of
lexicographic-sort
 bucket-sort as the stable

sorting algorithm

keys in each dimension i

are integers in the
range [0, N - 1]

Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)

 Input sequence S of d-tuples such

 that (0, …, 0) (x1, …, xd) and
 (x1, …, xd) (N - 1, …, N - 1)
 for each tuple (x1, …, xd) in S
 Output sequence S sorted in
 lexicographic order

 for i d downto 1

 bucketSort(S, N)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 14

Radix-Sort for
Binary Numbers

n b-bit integers
 x = xb - 1 … x1x0

radix-sort with N = 2

O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

Algorithm binaryRadixSort(S)

 Input sequence S of b-bit
 integers
 Output sequence S sorted

 replace each element x
 of S with the item (0, x)

 for i 0 to b - 1

 replace the key k of
 each item (k, x) of S
 with bit xi of x

 bucketSort(S, 2)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 15

Example

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

