
1

Geography and CS

Philip Chan

Maps

 Problem 1
 Where am I?

 “Localization”

 Problem 2
 How do I get there?

 “Navigation”

Localization

Problem 1

Localization--Where am I?

 Cell phone

 GPS—Global Positioning System

Localization--Where am I?

 Cell phone
 Reference points:

 GPS—Global Positioning System
 Reference points:

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 GPS—Global Positioning System
 Reference points: satellites

2

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 GPS—Global Positioning System
 Reference points: satellites

 How many reference points are needed to fix
the location?

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 Need 3 reference points

 GPS—Global Positioning System
 Reference points: satellites

 How many reference points are needed to fix
the location?

Localization--Where am I?

 Cell phone
 Reference points: cell towers
 Need 3 reference points

 GPS—Global Positioning System
 Reference points: satellites
 Need 4 reference points,
 but 3 are ok if I know that I’m not floating in

space above the satellites

 How many reference points are needed to fix
the location?

Localization [2D]
(Problem Formulation)

 Given (input)
 Coordinates of the reference points

 Distances from the reference points

 Find (output)
 Coordinates of the location

Localization [2D]
(Problem Formulation)

 Given (input)
 Coordinates of the reference points

 (x1, y1), (x2, y2), (x3, y3)

 Distances from the reference points
 d1, d2, d3

 Find (output)
 Coordinates of the location

 (x, y)

Algorithm

 What is the mathematical relationship among
the variables?

3

Algorithm

 What is the mathematical relationship among
the variables?

 Hint: given two points [two pairs of (x,y)
coordinates], what is the distance between
them?

Navigation

Problem 2

Navigation
[Problem understanding]
 Finding a route from the origin to the

destination

 “Static” directions
 Mapquest, Google maps

 “Dynamic” on-board directions
 GPS navigation

 if the car deviates from the route, it finds a new
route

Navigation
[Problem Formulation]

 Given (input)
 Map

 Address of the origin

 Address of the destination

 Find (output)
 Turn-by-turn directions

 Simplification
 In the same city, all two-way streets, all left and

right turns are allowed, no overpass/tunnels…

Navigation
[Problem Formulation Graph Problem]

 Given (input)
 Map ?

 Address of the origin ?

 Address of the destination ?

 Find (output)
 Turn-by-turn directions ?

 Simplification
 In the same city, all two-way streets, all left and

right turns are allowed, no overpass/tunnels…

Navigation
[Problem Formulation Graph Problem]

 Given (input)
 Map edge=street, vertex=intersection, weight=length

 Address of the origin vertex

 Address of the destination vertex

 Find (output)
 Turn-by-turn directions ?

 Simplification
 In the same city, all two-way streets, all left and

right turns are allowed, no overpass/tunnels…

4

Navigation
[Problem Formulation Graph Problem]

 Given (input)
 Map edge=street, vertex=intersection, weight=length

 Address of the origin vertex

 Address of the destination vertex

 Find (output)
 Turn-by-turn directions shortest path

 Simplification
 In the same city, all two-way streets, all left and

right turns are allowed, no overpass/tunnels …

Map/Street Data (input)

 Need more thoughts:
 What do we need to know about the streets?

 How could they be represented?

Map/Street Data (input)

 Tessellation or Vector?
 Tessellation:

 Vector:

Map/Street Data (input)

 Tessellation or Vector?
 Tessellation: “image” of the streets

 Vector: “description” of the streets

Map/Street data (input)

 Vector
 Name

 Two end points in x,y coordinates

 Range of house numbers

 What if the street is curvy (not straight)?

Map/Street data (input)

 Vector
 Name

 Two end points in x,y coordinates

 Range of house numbers

 What if the street is curvy (not straight)?
 “Polyline”

 Additional intermediate x,y coordinates and
house numbers

 Street name, (x1, y1, h1), (x2, y2, h3), …

5

Map/Street data (input)

 What if a straight street has multiple
intersections?

Map/Street data (input)

 What if a straight street has multiple
intersections?
 Polyline (like curvy street)

 Additional x,y coordinates and house numbers

Algorithm Overview

1. Preprocessing
 Convert the map, origin & destination into a

graph

2. Main algorithm
 Dijkstra’s shortest path algorithm

3. Postprocessing
 Convert shortest path to turn-by-turn

directions

Vertices in the graph

 What should be a vertex?
 Intersections

 How about intermediate points in the polyline
of a curvy street?

Vertices in the graph

 What should be a vertex?
 Intersections

 How about intermediate points in the polyline
of a curvy street?
 No, fewer vertices, but need to sum segment distances

 (Yes, make program simpler)

 Each vertex corresponds to a pair of x,y
coordinates

 What is the weight of an edge?

Curvy streets vs intersections

 An intermediate point of a polyline could be:
 intersection a vertex

 part of a curvy street not a vertex

 Vector representation:
 Street name, (x1, y1, h1), (x2, y2, h3), …

 How could we tell the difference?

6

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

 No additional info in vector representation
 Intersection: Two streets with the same vertex ID

 A convenient vertex ID would be?

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

 No additional info in vector representation
 Intersection: Two streets with the same vertex ID

 A convenient vertex ID would be?

 (concatenation of) x, y coordinates

 Time-space tradeoffs?

Converting Address to Vertex

 For the origin and destination

 Given street name and house number
 Create:

 One temporary vertex (unless at an intersection)

 Two temporary edges, why?

Converting Address to Vertex

 For the origin and destination
 Given street name and house number

 Create:
 One temporary vertex (unless at an intersection)
 Two temporary edges, why?

 What are the x,y coordinates of the new
temporary vertex?

 What are the weights of the two new
temporary edges?

 Tradeoffs between:
1. Replace original edge with temporary vertex

& edges [then reverse the process later]

2. Add temporary vertex & edges [then reverse the
process later]

Converting Address to Vertex

7

Main Algorithm

 If you do not know about Dijkstra’s algorithm

 How would you solve the shortest path
problem?

Main Algorithm—Greedy Algorithm

 Greedy algorithm
1. Pick the closest vertex (shortest edge)

2. Go to the vertex

3. Repeat until the destination vertex is reached

 Does this always find the shortest path?

 If not, what could be a counter example?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 What are the key ideas?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS

Main Algorithm-- Dijkstra’s shortest
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS

 BFS is a special case of Dijkstra’s, why?

8

Main Algorithm-- Dijkstra’s shortest
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS

 BFS is a special case of Dijkstra’s, why?
 fewest # of levels = shortest length so far

 if edges are not weighted or have the same
weight

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Why does it guarantee to find the shortest
path?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Why does it guarantee to find the shortest
path?
 The shortest path to vertex A is finalized

 When?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Why does it guarantee to find the shortest
path?
 The shortest path to vertex A is finalized

 when every path to the “non-finalized” vertices is
longer

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Why does it guarantee to find the shortest
path?
 The shortest path to vertex X is finalized

 when every path to the “non-finalized” vertices is
longer
 no way to get to vertex X with a shorter path via “non-

finalized” vertices

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Can we potentially stop the algorithm early?

9

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Can we potentially stop the algorithm early?
 Single source/origin—all destinations

 Stop when our destination is reached

 Works with directed graphs too, why?

Main Algorithm-- Dijkstra’s shortest
path algorithm

 Can we potentially stop the algorithm early?
 Single source/origin—all destinations

 Stop when our destination is reached

 Works with directed graphs too, why?

 Interesting applet to demonstrate the alg:

 http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html

Turn-by-turn directions (output)

 “Turn LEFT onto COUNTRY CLUB RD.
0.2 mi”
 Turn direction

 Street name

 Distance on the street

Turn-by-turn directions (output)

 Given vertices on the shortest path and map,
find:
 Turn direction

 How do you decide you’re making a turn or not?

 If making a turn, which direction is the turn?

Turn-by-turn directions (output)

 Given vertices on the shortest path and map,
find:
 Turn direction

 How do you decide you’re making a turn or not?
 If making a turn, which direction is the turn?

 Street name
 Lookup

 Distance
 Lookup/calculate (and possibly addition, why?)

Summary of Algorithm

1. Preprocessing (converting input)
 Input the map--street names, end points, house

numbers

 Create the graph—vertices/intersections,
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

10

Implementation

 Again to pick data structures for
efficiency/speed

 We analyze ? of the ?

Implementation

 Again to pick data structures for
efficiency/speed

 We analyze key operations of the algorithm

 These key operations could be time
consuming for large amounts of data

Implementation—Where are the bulk
of data stored?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

Implementation—Where are the bulk
of data stored?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices Main
Algorithm

 Dijkstra’s shortest path

2. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices ->
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

11

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices ->
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children; pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices ->
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance -> vertex to street name

Implementation—How to prioritize the
key operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices ->
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance -> vertex to street name

Implementation—How to prioritize the
key operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house
numbers

 Create the graph—vertices/intersections,
edges/distances -> neighboring intersections #4 or 1.5?

 Convert origin/destination addresses to vertices ->
address to x,y #3

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf #1

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name,

distance -> vertex to street name #2

Implementation—Selecting data
structures
 Need to find neighbors (to become “children”)

quickly [in Dijkstra’s]
 Which graph is sparser: friends or streets?

 Graph (input):
 Adjacency Matrix?
 Adjacency List?

 Time
 Space

Implementation—Selecting data
structures
 Need to find neighboring vertices quickly [in

converting Map to Graph]
1. intersections (& points on a curvy street) -> vertices

2. neighboring vertices -> edges

 Map (input)
 Street name, (x1, y1, h1), (x2, y2, h3), …

 Graph (output)
 Adjacency list

 Time

 Space

12

Summary

 Problem 1: Where am I?
 Localization

 Geometry

 Problem 2: How do I get there?
 Navigation

 Preprocessing to create the graph

 Dijkstra’s Shortest Path algorithm

 Postprocessing to give turn by turn directions

Reading Assignment

 Handout on the advertising portion in
“Prepping the Google Rocket”
 Ken Auletta

 Googled—The End of the World as We Know
It

 Penguin Press, 2009

