Marketing and CS

Philip Chan

Enticing you to buy a product

1. What is the content of the ad?
2. Where to advertise?
 - TV, radio, newspaper, magazine, internet, …
3. Who is the target audience/customers?
 - Which question is the most important?

Target customers

- The more you know about the customers
 - The more effective to find the “right” customers
- Advertising kids’ toys
 - Where to advertise?
 - How to advertise?

Traditional vs Modern Media

- Traditional media (TV, Newspaper, …)
 - non-interactive
 - mostly broadcast
- Modern media (via internet)
 - interactive
 - more individualize
 - more information on individuals

Problems to Study

- Problem 1
 - Ranking Ad’s on Search Engines
- Problem 2
 - Product Recommendation

Ranking Ad’s on Search Engines

Problem 1
Advertising on Search Engines

- User
 - Query
- Advertiser
 - Ad
 - Keyword
 - for triggering the ad to be considered
 - Bid on a keyword
 - How much it’s willing to pay
 - https://adwords.google.com/select/KeywordToolExternal?defaultView=3
- Search Engine
 - Score and rank ad’s to display
 - Advertiser pays only when its ad is clicked

Factors affecting the score

- Advertiser’s bid
 - Highest bidder wins (auction)
 - Is that sufficient?

Factors affecting the score

- Advertiser’s bid
 - Highest bidder wins (auction)
 - Is that sufficient?

- Bigger companies have deeper pocket…
- What if the ad is not relevant?
 - Bid on keywords that are very popular
 - e.g. “ipod” but selling furniture
 - What if the ad/company/product is not “well received”?

Importance of audience/customer

- If the ad is not relevant
 - The users don’t click
 - Doesn’t matter how high the advertiser bids

- Displaying ad’s relevant to users is important
 - Advertisers get more visits/revenue
 - Search engines get more revenue
 - User experience is better

Problem Formulation

- Given (Input)
 - Ad
 - Keyword
 - Bid
 - Query
 - (part of the algorithm is to decide other factors)
- Find (Output)
 - Score of Ad
Ad Rank score [Google AdWords]
- Cost Per Click (CPC) bid
- Quality Score

https://support.google.com/adwords/answer/1722122

Quality Score [Google AdWords]
- Ad's relevance
- Keyword relevance
- Landing page experience

Quality Score [Google AdWords]
- Clickthrough Rate (CTR) of ad via that keyword [clicks / displays]
- CTR of display URL (URL in the ad)
- CTR of other ad’s of the advertiser
- Relevance of keyword to ad
- Relevance of keyword to query

Quality Score [Google AdWords]
- Clickthrough Rate (CTR) of ad via that keyword [clicks / displays]
- CTR of display URL (URL in the ad)
- CTR of other ad’s of the advertiser
- Relevance of keyword to ad
- Relevance of keyword to query
- Usefulness and clarity of landing page
- Relevance of landing page

Quality Score [Google AdWords]
- Clickthrough Rate (CTR) of ad via that keyword [clicks / displays]
- CTR of display URL (URL in the ad)
- CTR of other ad’s of the advertiser
- Relevance of keyword to ad
- Relevance of keyword to query
- Usefulness and clarity of landing page
- Relevance of landing page
- Advertiser’s performance in geographical location
- Ad’s performance on a site
- Ad’s performance on devices
- Others
 - https://support.google.com/adwords/answer/2454010
 - https://support.google.com/adwords/answer/1659694
Weighted Linear Sum

\[\text{Score} = w_1 x_1 + w_2 x_2 + w_3 x_3 + \ldots + w_n x_n \]

Product Recommendation

Problem 2

Product Recommendation

Shopping sites: amazon, netflix, …

To sell more products
- Recommend products the customers might buy

Can you read minds?

“Can you read minds?” (amazon.com recruitment T-shirt)

Why does amazon.com want employees who can read minds?

Recommendation Systems

amazon.com
- Based on what you have looked at, bought, on your wish list, what similar customers bought, …
- Recommends products

netflix.com
- Based on your ratings of movies, what similar customers rate, …
- Recommends movies

Netflix Prize (2006)

Task
- Given customer ratings on some movies
- Predict customer ratings on other movies
- If John rates “Mission Impossible” a 5
 “Over the Hedge” a 3, and “Back to the Future” a 4, how would he rate “Harry Potter”, …?

Performance
- Error rate (accuracy)
- www.netflixprize.com
Performance of Algorithms

<table>
<thead>
<tr>
<th>Root Mean Square Error (RMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\frac{\sum (real - prediction)^2}{n}}$</td>
</tr>
</tbody>
</table>

Cash Award

- **Grand Prize**
 - $1M
 - 10% improvement
 - by 2011 (in 5 years)

Leader Board

- **Announced on Oct 2, 2006**
- **Progress**
- **Improvement by the top algorithm**
 - after 1 week: ~ 0.9%
 - after 2 weeks: ~ 4.5%
 - after 1 month: ~ 5%
 - after 1 year: 8.43%
 - after 2 years: 9.44%
 - after ~3 years: 10.06% [July 26, 2009]

Problem Formulation

- **Given (input)**
 - Movie
 - MovieID, title, year
 - Customer:
 - CustID, MovieID, rating, date
- **Find (output)**
 - Rating of a movie by a user
- **Simplification:** no actors/actresses, genre, ...

Netflix Data (1998-2005)

<table>
<thead>
<tr>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>480,189 (ID: 1 – 2,649,429)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Movies</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,770 (ID: 1 – 17,770)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratings given in Training Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,480,507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>min=1; max=17,653; avg=209 ratings per customer</td>
</tr>
</tbody>
</table>

| Rating scale: |
| 1 – 5 |

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating to predict in Qualifying Set</td>
</tr>
<tr>
<td>2,817,131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>About 1 GB (700 MB compressed)</th>
</tr>
</thead>
</table>

Naïve Algorithm 1

- **Calculate the average rating for each movie**
- **Always predict the movie average**
 - with no regard to the customer
- **RMSE** = 1.0515
- **“improvement”** = -11%
Naïve Algorithm 2

- For each movie
 - Instead of simple average
 - Weighted average
 - customers who have rated more movies are weighted higher
- RMSE = 1.0745
- “Improvement” = -13%

Naïve Algorithm 3

- Calculate the average rating for a customer
- Always predict the customer average
 - with no regard to the movies
- RMSE = 1.0422
- “Improvement” = -10%

Naïve Algorithm 4

- Weight the two average ratings by their standard deviation
- \[\text{rating}(\text{custID}, \text{movID}) = \frac{sc \times \text{avgRating}(\text{movID}) + sm \times \text{avgRating}(\text{custID})}{sc + sm} \]
- RMSE = 0.9989
- “Improvement” = -5%

Getting more serious…

- Find customers who:
 - Rated the same movies
 - Gave the same ratings

Getting more serious…

- Find customers who:
 - Rated the same movies and
 - Gave the same ratings
 - How likely you'll find such customer?

Getting more serious…

- Find customers who:
 - Rated the same movies?
 - Gave the same ratings?
 - Rated the same movies and more?
 - Ratings might not be the same
Superset customers

- For each customer \(X \)
 1. Find “superset” customer \(Y \)
 2. Use the “superset” customers to predict \(X \)’s rating

Superset Example

<table>
<thead>
<tr>
<th></th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
<th>m5</th>
<th>m6</th>
<th>m7</th>
<th>m8</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ? = unknown rating to be predicted
- (for simplicity, only for c1)
- c2 and c3 are supersets of c1
- How to predict “?”

Algorithm for Rating Prediction

- Average the movie ratings of the “superset” users
- Can we improve this algorithm?

Algorithm for Rating Prediction

- Average the movie ratings of the “superset” users
- Weighted average based on how “close” the “superset” users are
 - distance(\(X, Y \)) = ?

Algorithm for Rating Prediction

- Average the movie ratings of the “superset” users
- Weighted average based on how “close” the “superset” users are
 - distance(\(X, Y \)) = “RMSE(\(X, Y \))”
 - But smaller distance, higher weight, so we want “similarity(\(X, Y \))” not “distance(\(X, Y \))”
 - similarity(\(X, Y \)) = ?
Algorithm for Rating Prediction

- Average the movie ratings of the “superset” users
- Weighted average based on how “close” the “superset” users are
 - \(\text{distance}(X, Y) = \text{“RMSE}(X, Y)\) ”
 - But smaller distance, higher weight, so we want “\(\text{similarity}(X, Y) \) ” not “\(\text{distance}(X, Y) \) ”
 - \(\text{similarity}(X, Y) = \text{maxDist} - \text{distance}(X, Y) \)
 - maxDist = ?

Algorithm for Rating Prediction

- Average the movie ratings of the “superset” users
- Weighted average based on how “close” the “superset” users are
 - \(\text{distance}(X, Y) = \text{“RMSE}(X, Y)\) ”
 - But smaller distance, higher weight, so we want “\(\text{similarity}(X, Y) \) ” not “\(\text{distance}(X, Y) \) ”
 - \(\text{similarity}(X, Y) = \text{maxDist} - \text{distance}(X, Y) \)
 - maxDist = 4

Euclidean Distance

- 2-dimensional
 - A: \((x_1, y_1)\)
 - B: \((x_2, y_2)\)
 - \(\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \)

- n-dimensional
 - A: \((a_1, a_2, \ldots, a_n)\)
 - B: \((b_1, b_2, \ldots, b_n)\)
 - \(\sqrt{\sum (a_i - b_i)^2} \)

- Similarity
 - \(1 / \text{EuclideanDistance} \)

Prediction Range

- Netflix allows rating prediction in fractional values, e.g. 3.4, but users can only rate in integers
 - Why?

- Do we want to predict smaller than 1 or larger than 5?
 - Why?

What if a customer doesn’t have a superset

- What to predict?

Key operation

- For each customer \(X \)
 1. Find “superset” customer \(Y \)
 2. Use the “superset” customers to predict \(X \)’s rating

- Which step is more time consuming?
Superset Problem
- $O(C^2)$ problem
 - $C = \text{number of customers}$
 - $C(C - 1)$ pairs of customers
 - check if A is a superset of B
 - check if B is a superset of A
 - could be neither, why?
- To find the supersets
 - ignore ratings

To find the supersets
go back

B is potentially a superset of A

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>N</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>N</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>?</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Implementation for Superset
- Key operation:
 - Find supersets of customer X
- How to store which customer rated which movie?

2D Boolean Array
- $C = \text{number of customers}$
- $M = \text{number of movies}$
- $C \times M \text{ Boolean array}$
 - $480189 \times 17770 \times 1 \approx 8 \text{ GB}$

Bit Vector
- Movie ID list for each customer
 - c1: 1, 4, 7, 8
 - c2: 1, 7
 - c1 is a superset of c2
- Bit (Boolean) Vectors
Bit Vector
- Movie ID list for each customer
 - c1: 1,4,7,8
 - c2: 1,7
 - c1 is a superset of c2
- Bit (Boolean) Vectors
 - c1: 10010011
 - c2: 10000010
 - c1 is a superset of c2

Bit Vectors
- 1 bit per Boolean value
- \[\frac{17770}{32} = 556 \] words per customer
- \[480189 \times 556 \times 4 \approx 1 \text{ GB} \]
- If you have 1GB physical memory, is this a good idea?

Array of Linked Lists
- 100,480,507 ratings
- Each movie ID needs 2 bytes
 - \[100,480,507 \times 2 = \approx 0.2 \text{ GB} \]
- Each pointer needs 4 bytes
 - \approx 0.4 GB
- Array of \approx 500K pointers, 4 bytes each
 - \approx 0.002 GB
- Total: \approx 0.6 GB
- If you have 1GB physical memory, is this a good idea?

Just storing the data

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Size in GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Boolean array</td>
<td>\approx 8</td>
</tr>
<tr>
<td>Array of bit vectors</td>
<td>\approx 1</td>
</tr>
<tr>
<td>Array of linked lists</td>
<td>\approx 0.6</td>
</tr>
</tbody>
</table>

What is in the memory?
- Running on my office Linux machine:
 - Operating system
 - Web browser
 - Email reader
 - emacs
 - xterm
 - Viewer for pdf, ps
 - ...

Superset Implementation 1
- Instead of storing the movie IDs in memory
 - Read from the text files when needed
 - Each customer has two text files
 - Training set
 - Qualifying set
 - Use pointer arithmetic, inlining, ...
 - Run the program for a while and extrapolate its completion time
 - How long was the extrapolated completion time?
Some Hints

- 230 billion pairs of customers to compare
- Average 209 movies per customer
- ~48.2 trillion movie comparisons
- 1 day = 86,400 seconds (~100K)
- Walk clock time
- On the background with medium priority

- How many days?
- Probably making your head hurt

Estimated Completion 1

- ~109 days
- ~41 microseconds per customer pair

Superset Implementation 2

- Text files were preprocessed into binary files
- Read from the binary files when needed
- Run the program for a while and extrapolate its completion time

Estimated Completion 2

- ~9 days (> 10x faster)
- ~3.4 microseconds per customer pair

Superset Implementation 3

- One binary file:
 - All movie IDs in customer order (~2 GB)
 - Index to the offset for each customer (~2 MB)
 - Read from the file and store in memory
 - Basically most of the data are memory resident
- Run the program for a while and extrapolate its completion time

Estimated Completion 3

- ~4 days (~2x faster)
- ~1.5 microseconds per customer pair
Just storing the data

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Size in GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Boolean array</td>
<td>~8</td>
</tr>
<tr>
<td>Array of bit vectors</td>
<td>~1</td>
</tr>
<tr>
<td>Array of linked lists</td>
<td>~0.6</td>
</tr>
<tr>
<td>Array + Offset</td>
<td>~0.2</td>
</tr>
</tbody>
</table>

Revisit customers without supersets

- Find customers Y that intersect (overlap) X
 - If intersection(X, Y) = X
 - Y is a superset of X
 - If no supersets
 - Find Y such that intersection(X, Y) is a subset of X
 - Overlap is less than 100% of X

Intersection Algorithm: 3 cases

1. intersection(X, Y) = X [superset]
2. intersection(X, Y) is a subset of X [subset]
3. intersection(X, Y) is empty

Intersection example

<table>
<thead>
<tr>
<th>m1 m2 m3 m4 m5 m6 m7 m8 m9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 3 4</td>
</tr>
<tr>
<td>c1 3 3 4</td>
</tr>
<tr>
<td>c2 4 3 3</td>
</tr>
<tr>
<td>c3 4 3 3</td>
</tr>
<tr>
<td>c4 3 3 4</td>
</tr>
<tr>
<td>c5 3 3 4</td>
</tr>
</tbody>
</table>

- X is c1
- How to compute/compare similarity(X, Y) if the intersections are of different sizes?
- c2, c3, c4 all have the same RMSE=0

Distance

- Two factors
 - RMSE
 - %NotRated
- Distance = RMSE + %NotRated
 - RMSE is 4 times more important because max is 4.
- Distance = RMSE/4 + %NotRated
 - If we want them to be equally important/weighted
Distance
- Error is automatically 4 (MaxDist)
- When there is no rating

Missing Rating
- Replace it with:
 - 0 [MaxDist is 5]
 - Good:
 - Bad:

- Replace it with:
 - 0
 - Good: more zeros, more error
 - Bad: no rating means Y “hates” the movie?
 - 3
 - Neutral value
 - No rating means Y is neutral on the movie

Intersection Algorithm: 3 cases
1. \(\text{intersection}(X, Y) = X \) [superset]
 - weighted average of supersets
2. \(\text{intersection}(X, Y) \) is a subset of \(X \) [subset]
 - weighted average of subsets
3. \(\text{intersection}(X, Y) \) is empty
 - global averages weighted with standard deviation

Summary of Intersection Algorithm
- If \(X \) has supersets, use supersets only
- If \(X \) does not have supersets, but has subsets, use subsets
- If \(X \) does not have supersets nor subsets, use naïve algorithm.
k-Nearest Neighbor Algorithm

- Distance/Similarity for any pair of customers
- Find the top \(k \) most similar customers (nearest neighbors)
 - Weighted by similarity
- Customers with no supersets or subsets do not have neighbors—use naïve alg
- One issue is how to determine \(k \)

Summary

- Problem 1
 - Ranking Ad's on Search Engines
- Problem 2
 - Product Recommendation