Particle Physics/Simulation and Analysis Project for Sr. Design Class

Dr Marcus Hohlmann Pietro lapozzuto piapozzuto2015@my.fit.ed

Project 1: Analysis & Dark Matter Physics Simulation for the Dark Photon

Project 2: Mapping for a Cylindrical Micro-Resistive Well Detector used for Dark Matter Searches at the EIC

Dark matter is an invisible and hypothetical form of matter that does not interact with light

All Indicates the presence of unseen mass!

- The bending of light by massive objects reveals the presence of unseen mass that's warping spacetime.
- Stars in galaxies orbit the center much faster than they should based on the visible matter alone.
- The movement of galaxies within clusters also indicate unseen mass.

Dark Sector Standard Model

Beyond The Standard Model Questions:

Could dark matter have a hidden dark sector with interactions similar to the Standard Model, and if so, how might it manifest at high energies?

No in-depth analysis to simulate a dark photon using the current ePIC detector geometry simulation environment has been attempted!

3. Approach: Using the Epic Detector Reconstruction Environment

Full Epic Detector Simulation with Neutral Particles

Inner Barrel MPGD with Dark Photon Model

Geant4 Simulation Cylindrical Argon Shell Detector

Goals for Project 1:

-Modify the current ePIC detector inner barrel tracker xml file to incorporate a cylindrical argon shell

-Choose a small set of mass and lifetime values to run through simulation to see most probable mass of Dark Photon, and location of displaced vertex.

-Perform Study of Signal (Dark Photon vs Backround (other particles)

Project 2: Mapping for Cylindrical Micro-Resistive Well Detector

Goals For Project 2:

- -To achieve accurate mapping of pulse hits to strips on the device via C++ script -Help characterize the efficiency of the detector
- -Repete for 2 different setup and all event data taken.

Needed Knowledge and Skill

For EIC Dark Matter Simulation Project: Linux, Bash, Troubleshooting Skills, Software Implementation, Basic, Geant4. Getting EIC software to work.

Detector Mapping Project : C++ , Python, Root. -Attend Weekly HEP lab meeting

Student will learn skills and abilities used to be in Computational/Software/Simulation physics

Contact info:

Pietro lapozzuto piapozzuto 2015@my.fit.edu

<u>Dr. Marcus Hohlmann</u> <u>hohlmann@fit.edu</u>

