
Primitive Data and Objects

The programmer computes on data. Data in Java is divided into
primitive data and non-primitive data.

int is primitive, String is not. double is primitive, arrays are not.

(Wrapper classes allow primitive data to be treated like objects.
The advantage of using wrapper classes is that all data can be
treated uniformly. The disadvantage is some extra overhead.)

Data Abstraction

Good design enables easy handling and high volume

Data Abstraction

Programmer not only designs the flow of control (loops, etc), but
also designs the value to compute with.
This may be the most important desing task the programmer has,
since the control flow could spring naturally from that data if the
design is good

Primitive Data and Reference Data

Usual characteristics of primitive data:

I small size, all values fit in the machine’s word size

I uncomplicated (no substructure)

I operations on the data are supported in the hardware

The majority of data the programmer wants is not primitive:
images, music, graphs, sequences, etc. Java supports this vast,
endless variety of data by allowing programmer to define new data
types and by implementing some in the libraries. User-defined data
types are created using classes.
Instances of classes are allocated in a managed storage area called
the heap and variables in the program refer indirectly to the
instances. We call these instances objects, but referenced data
might be a less overused term.

Storage

During execution the entire program is laid out in (virtual) storage,
which we can envisioned as a gigantic array of words indexed by a
(virtual) address. All the data appears somewhere in storage.

...

0x402A

0x4029

0x4028

...

Primitive Data and Objects

Primitive data values are stored directly (“unboxed”) and objects
are stored indirectly (“boxed”). For example,

int i = 123; String s = "Hello";

00 00 2F 870x4029 String s

...

00 00 00 7B0x3D2A int i

"Hello"

The space for objects is found in the heap. Of course, the heap
must be found somewhere in storage.

0x403A

00 00 2F 870x4029 String s

0x4028

...

00 00 00 050x2F87 (length)

48 65 6C 6C0x2F86 'H' 'e' 'l' 'l'

6F 00 00 000x2F85 'o'

0x2F84

Other Languages

Other languages, like Haskell and C# do not require the
programmer to distinguish between boxed and unboxed data. But
both languages have boxed and unboxed values, integers, for
instance. But in these languages the programmers only have one
data type for integers. Unboxed is more efficient for computation
and boxed is more uniform. Haskell and C# go back and forth
between the two implementations automatically.
Java too, goes back and forth automatically. But for each
primitive data type there are two distinct types in the language: for
example, int and Integer.

The Integer Wrapper Class

00 00 00 7B0x3B05 int i

00 00 28 A00x3B04 Integer j

0x3B03

...

00 00 00 7B0x28A0 int value

0x289F

Creating Objects

When you declare a variable for a values of a primitive data type,
an address is assigned which can hold a value of the primitive type
(int, etc.)
When you declare a variable for objects, a box is assigned which
can hold a reference to an instance of that type. No
object/instance is created. An object/instance can only be created
by new.
All non-primitive data objects are created (directly or indirectly) by
executing the new.
The syntax of the new expression:

new <class name> ([arguments])

it creates and returns an object of type class name.

There is an implicit new in special cases: strings, arrays, wrapper
classes.

String s = new String("abc"); // redundant
Integer i = new Integer (123);
int[] a = new int[] {1,2,3};

String s = "abc";
Integer i = 123; // Auto -boxing!
int[] a = {1,2,3}; // new is optional in decl

new java.lang.Object ()
new java.lang.StringBuilder (s)
new java.math.BigDecimal (203.99)
new java.awt.Color (r,g,b)
new java.util.Scanner (System.in)
new java.util.Locale (lang , country)
new java.io.File (dir , name)
new java.io.URL (protocol , host , file)
new java.util.ArrayList <String > ()
new javax.swing.JApplet ()

I 0, 1, or more arguments

I package name may be omitted if one uses an import

I generic instantiation

I some classes are never instantiated, i.e, Math

I other ways to get objects: “factory methods,” methods which
create the object for you.

It is (regretably) necessary to have a clear picture of boxed and
unboxed values in your mind, in order to program correctly in Java.
Let me try to illustrate what I think is in my head.
Then we see why this mental picture is important.

int i = 123;
BigDecimal b = new BigDecimal (212.99);
long[] a = new long[] {1,2,3};
float g = 1000.25f;
String s = "Hello";
float f = -1.5f;

String s

BigDecimal b

BF C0 00 00float f

long[] a

...

00 00 00 7Bint i

44 7A 10 00float g

"Hello"

212.99

[1,2,3]

int i;
BigDecimal b;
long[] a;
float g;
String s;
float f;

String s null

BigDecimal b null

00 00 00 00float f

nulllong[] a

...

00 00 00 00int i

00 00 00 00float g

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

...

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

...

00 00 00 00int i

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

...

00 00 00 7Bint i

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

nullBigDecimal b

...

00 00 00 7Bint i

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

BigDecimal b

...

00 00 00 7Bint i

212.99

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

BigDecimal b

nulllong[] a

...

00 00 00 7Bint i

212.99

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a

...

00 00 00 7Bint i

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a

...

00 00 00 7Bint i

00 00 00 00float g

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

nullString s

BigDecimal b

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

00 00 00 00float f

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

i = 123;
b = new BigDecimal (212.99);
a = new long[] {1,2,3};
g = 1000.25f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

BF C0 00 00float f

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

Null

Non-primitive variable are initialized to the special value null.
Null is a legal value for all non-primitive types.
Unintentionally accessing a null object is a very common problem.
NullPointerException.

String s;
long [] a;
char c = s.charAt (17);
long l = a[39];

Java catches some (but not all) initialization errors.

public class Main {
public static void main (String [] args) {

String s;
long [] a;
char c = s.charAt (17);
long l = a[39];

}
}

> javac Main.java

Main.java:5: variable s might not have been initialized

char c = s.charAt(17);

^

Main.java:6: variable a might not have been initialized

long l = a[39];

^

2 errors

public class Fields {
static String s;
static long [] a;
public static void main (String [] args) {

char c = s.charAt (17);
long l = a[39];

}
}

> java Fields

Exception in thread "main" java.lang.NullPointerException

at Fields.main(Fields.java:5)

I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. At that time, I was
designing the first comprehensive type system for
references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.

Tony Hoare

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

String s

BigDecimal b

BF C0 00 00float f

long[] a

...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

String s

BigDecimal b

BF C0 00 00float f

long[] a

...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

long[] a

...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a

...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a

...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

nullString s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a

...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

nullString s

nullBigDecimal b

00 00 00 00float f

nulllong[] a

...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

Garbage

i = 0;
b = null;
a = null;
g = 0.0f;
s = null;
f = 0.0f;

nullString s

nullBigDecimal b

00 00 00 00float f

nulllong[] a

...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

inaccessible

Java and Garbage Collection

Java does garbage collection.

One of Java’s most significant features is its ability to
automatically manage memory. The idea is to free the
programmers from the responsibility of managing
memory by keeping track of orphaned objects and
returning the memory they use to a pool of free memory.

page 357

Mutable Objects

Objects in Java, like all data, can be divided into two types:
mutable and immutable.
An immutable object is one that no operation can change. For
example, an object of type String. A good example of a mutable
object is an array (of any type). Changing an element of an array,
changes the state of the array. Thus an array is a mutable object,
an object that “has a state which may be modified by certain
operations without changing the identity of the object.”
Do not confuse immutable with the term constant. An identifier is
said to be constant if it always refers to the same object
(immutable or not). An object is said to be immutable if no
operations can change it.
All primitive types are immutable. Not all objects are mutable.

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

...

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

00 00 00 00int i

...

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

00 00 00 7Bint i

...

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

nullStringBuilder b

00 00 00 7Bint i

...

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

...

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

nullStringBuilder f

...

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

00 00 00 00int j

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

00 00 00 7Bint j

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

nullString s

00 00 00 7Bint j

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

String s

00 00 00 7Bint j

"Hello"

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

nullString t

...

String s

00 00 00 7Bint j

"Hello"

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

String t

...

String s

00 00 00 7Bint j

"Hello"

w,o,r,l,d

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f.deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

String t

...

String s

00 00 00 7Bint j

"Hello"

w,o,r,l,dw,o,r,d

Where does sharing come from? Obviously it comes from
assignment. But what causes some of the biggest problems, is we
often overlook that that sharing comes from method calls.
Parameter passing in Java (call by value) is like an assignment to a
local variable and it causes sharing for all non-primitive types.
The programmer has no choice in parameter passing and so must
always be on the defensive when using mutable objects.

What if array list sort invoked the clear method?

ArrayList <Integer > list =

return Collections.unmodifiableList (list);

Sharing is cheap, but buggy; copying (large objects) is expensive,
but safe. Immutable objects can be shared without problems,
Always design for immutability; optimize later.

The Stansifer sayings:

It is easier to make a correct program more efficient than to make
a buggy program more correct.

A program that does what you think it does is much better than a
program that might do what you want it do.

class name { members }

Members may be static or instance.
Members may be methods (subprocedures) or fields (data values).

static instance

methods
fields

Static member are accessed: ClassName.member. Instance
members are accessed:
expressionDenotingAnInstance.member. Very important to
observe the capitalization convention and never to access static
members like this:

expressionDenotingInstanceOfClass.member

(which is legal but bewilders the reader).

Instance members can access both static and instance members.
(But don’t take advantage of this.) Static members can only
access static members.

public class Main {
static int field = 123; // static member
public static void main (String []) {

System.out.println (new Main (). field);
}

}

public class Main {
int field = 123; // instance field
public static void main (String []) {

System.out.println (Main.field);
}

}

Parameter Passing

I pass/PassByValue.java – Java uses “call by value”

I If you want to return something, there are no “out”
paramters; use a function

I pass/PassByWrapper.java – Using wrapper class does
provide means of creating “out” parameters.

http://www.cs.fit.edu/~ryan/java/programs/pass/PassByValue-java.html
http://www.cs.fit.edu/~ryan/java/programs/pass/PassByWrapper-java.html

