A Closer Look at Computing: The Million-Dollar Algorithms

PHILIP CHAN RYAN STANSIFER

MAR 24, 2017

PHILIP CHAN

Basic Problem

• Input:

- × Search query (keywords)
- × Web pages

Output

× Ranking of web pages relevant to the search query

Basic Problem

• Input:

- × Search query (keywords)
- × Web pages

Output

- × Ranking of web pages relevant to the search query
- If given 10 web pages and a search query (e.g. internet)
 - How would your rank the web pages?

Search Engines in the 1990s

- Altavista
- Excite
- Infoseek
- Webcrawler

Internet Archive: archive.org/web

Search Engines in the Early 2000s

Many search engines faded away

Google began to dominate

Secret Sauce of Google

• Google did not advertise itself

- Mostly by word of mouth
- o "free advertisement" from the press

• Why did Google start to dominate?

• What is the secret sauce of Google?

Brief History of Google

- 1996 -- 2 graduate students at Stanford U.
- 1997 google.com was registered
- 1998 [to be filled in later]
- 1998 \$100K investment, company incorporated
- 2004 initial public offering (NASDAQ)

Secret Sauce of Google

- A different way to rank web pages
- In addition to words on a page
 They use links between pages
- How would you use links to rank pages?

Brief History of Google

- 1996 -- 2 graduate students at Stanford U.
- 1997 google.com was registered
- 1998 -- publication of their algorithm in WWW Conf.
- 1998 \$100K investment, company incorporated
- 2004 initial public offering (NASDAQ)

Algorithm: Page Rank

Input

• Links between web pages

Output
Score for each web page

<u>https://www.youtube.com/watch?v=Q9HjeFD62Uk</u>
 o 8:27-13:43

Mystery Million-Dollar Problem

PHILIP CHAN

What is common among these tasks?

- With a grocery shopping list
 you try to gather all the items and leave quickly
- Given a truck load of packages
 a UPS/FedEx driver tries to deliver them quickly
- Given locations of holes on a circuit board
 Drill all the holes quickly

Common Problem

- Given an initial location and other locations
 Find the shortest route:
 - × Start from an initial location
 - × Visit each of the other locations exactly once
 - × Go back to the initial location
- Traveling Salesman Problem (TSP)

Consider the initial location is Home

	1 st visit	2 nd visit	3 rd visit	
Home	А			
	В			
	C			

• Consider the initial location is Home

	1 st visit	2 nd visit	3 rd visit	
Home	А	В		
		C		
	В	Α		
		С		
	C	А		
		В		

• Consider the initial location is Home

	1 st visit	2 nd visit	3 rd visit	
Home	А	В	С	
		С	В	
	В	А	С	
		С	А	
	С	А	В	
		В	А	

• Consider the initial location is Home

	1 st visit	2 nd visit	3 rd visit	Last visit
Home	А	В	С	Home
		С	В	
	В	Α	С	
		С	А	
	С	А	В	
		В	А	

• Consider the initial location is Home

	1 st visit	2 nd visit	3 rd visit	Last visit
Home	А	В	С	Home
		С	В	
	В	А	С	
		C	А	
	С	А	В	
		В	А	
)	3 *	2 *	1 = 6 poss	ible routes

4 locations

- 1st visit
 - 4 choices
- 2nd visit
 - o 3 choices
- 3rd visit
 - 2 choices
- 4th visit
 - o 1 choice
- 4*3*2*1 = 24 possible routes

n locations

- 1st visit
 - o n choices
- 2nd visit
 - n-1 choices
- ••••
- nth visit
 - o 1 choice
- *#* of possible routes?

n locations

- 1st visit
 - o n choices
- 2nd visit
 - o n-1 choices
- nth visit
 - o 1 choice
- # of possible routes?
 n*(n-1)*(n-2) *2*1 = n!

# of locations	# of possible routes	Completion time
10	3.6M	0.003 s

# of locations	# of possible routes	Completion time
10	3.6M	0.003 s
15		?

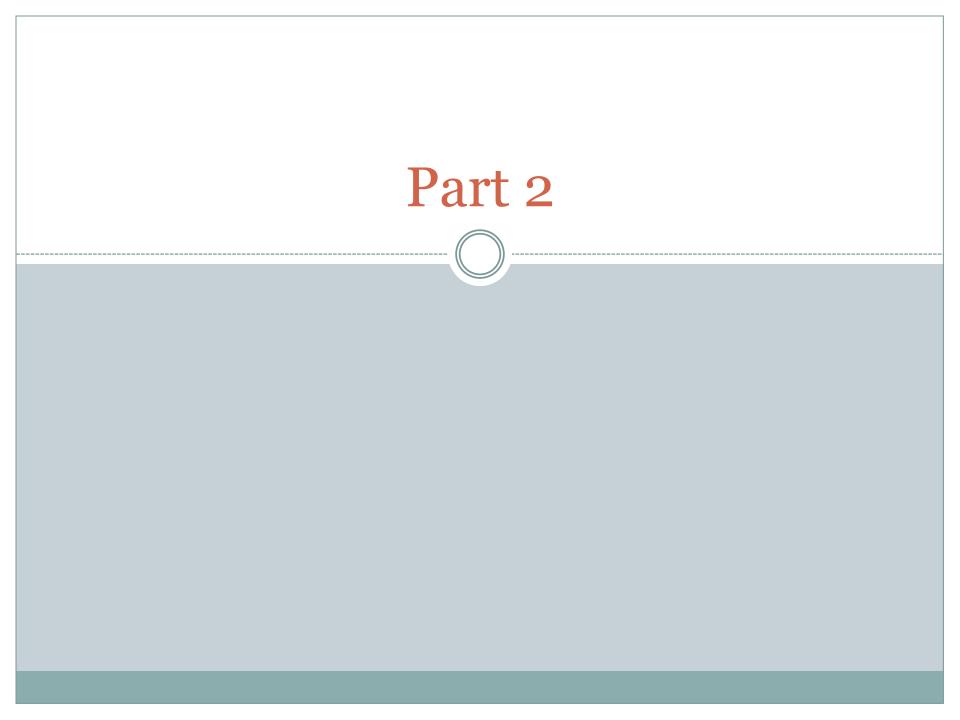
# of locations	# of possible routes	Completion time
10	3.6M	0.003 s
15	1.3 X 10 ¹²	22 minutes
20		?

# of locations	# of possible routes	Completion time
10	3.6M	0.003 s
15	1.3 x 10 ¹ 2	22 minutes
20	2.4 x 10 ¹⁸	77 years
100		?

# of locations	# of possible routes	Completion time
10	3.6M	0.003 s
15	1.3 x 10 ¹ 2	22 minutes
20	2.4 x 10 ¹⁸	77 years
100	9.3 x 10 ¹⁵⁷	3 x 10^141 years

• 38:50-42:30

\$1M prize


Clay Mathematical Institute claymath.org

Millennium Prize Problems (7) \$1M each

• P=NP?

• Does an efficient algorithm for TSP exist?

- × A yes or no answer will win the prize
- If yes, (a large number of) problems in the same class can be solved efficiently.

Thank You

- cs.fit.edu/~pkc/cs4hs
 Summer Camps

 July
- 8pm, astronomy lecture, Olin Engineering, Rm 118
 Across the courtyard
 Between this building and the parking lot
- 9pm, 32-inch telescope
- Questions?