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1 Introduction
From the first appearance of network attacks, the internet worm, to the most recent
one in which the servers of several famous e-business companies were paralyzed
for several hours, causing huge financial losses, network-based attacks have been
increasing in frequency and severity. As a powerful weapon to protect networks,
intrusion detection has been gaining a lot of attention.

Traditionally, intrusion detection techniques are classified into two broad cat-
egories: misuse detection and anomaly detection. Misuse detection aims to detect
well-known attacks as well as slight variations of them, by characterizing the rules
that govern these attacks. Due to its nature, misuse detection has low false alarms
but it is unable to detect any attacks that lie beyond its knowledge. Anomaly de-
tection is designed to capture any deviations from the established profiles of users
and systems normal behavior pattern. Although in principle, anomaly detection
has the ability to detect new attacks, in practice this is far from easy. Anomaly
detection has the potential to generate too many false alarms, and it is very time
consuming and labor expensive to sift true intrusions from the false alarms.

As new network attacks emerge, the need for intrusion detection systems to
detect novel attacks becomes pressing. As we stated before, this is one of the
hardest tasks to accomplish, since no knowledge about the novel attacks is available.
However, if we view the problem from another angle, we can find a solution. Attacks
do something that is different from normal activities: if we have comprehensive
knowledge about normal activities and their normal deviations, then all activities
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that are not normal should be suspicious. So the problem becomes one of how
to derive the knowledge about unknown attacks from the existing information of
normal activities as well as known attacks.

In this paper, we propose a method based on a technique called pseudo-Bayes
estimators to enhance an anomaly detection system’s ability to detect new attacks
while reducing the false alarm rate as much as possible. Our work is based on
an anomaly detection system called Audit Data Analysis and Mining (ADAM)[3]
that we developed at the Center for Secure Information Systems of George Ma-
son University. ADAM applies mining association rules techniques to look for the
abnormal events in network traffic data, then it uses a classification algorithm to
classify the abnormal events into normal instances and abnormal instances. The ab-
normal instances can be further categorized into attack names if ADAM has gained
knowledge about the attacks. With the help of the classifier, the number of false
alarms is greatly reduced because the abnormal associations that belong to normal
instances will be filtered out. However, the normal instances and attacks that the
classifier is able to recognize are limited to those that appear in the training data
(due to the innate limitation of all supervised classification methods).

To overcome this limitation, we apply the pseudo-Bayes estimators method as
a means to estimate the prior and posterior probabilities of new attacks. Then we
construct a Naive Bayes classifier to classify the instances into normal instances,
known attacks and new attacks. One advantage of pseudo-Bayes estimators is that
no knowledge about new attacks is needed since the estimated prior and posterior
probabilities of new attacks are derived from the information of normal instances
and known attacks.

The rest of the paper is organized as follows. Section 2 gives an overview of
ADAM system. Section 3 presents the pseudo-Bayes estimator technique. Section 4
shows the results of evaluating pseudo-Bayes technique with DARPA data. Section
5 reviews the related work and Section 6 offers the summary and conclusions of the
research.

2 Overview of ADAM
ADAM is an anomaly detection system. It is composed of three modules: a pre-
processing engine, a mining engine and a classification engine. The preprocessing
engine sniffs TCP/IP traffic data, and extracts information from the header of each
connection according to a predefined schema. The mining engine applies mining
association rules to the connection records. It works on two modes: training mode
and detecting mode. In training mode, the mining engine builds a profile of the
users and systems normal behaviors, and generates labeled association rules, which
will be used to train the classification engine. In detecting mode, the mining en-
gine mines unexpected association rules that are different from the profile. The
classification engine will classify the unexpected association rules into normal and
abnormal events. Some abnormal events can be further classified as attack names.
Although mining of association rules has previously been used to detect intrusions
in audit trail data [13, 12], the ADAM is unique in two ways:
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Figure 2. The detecting phase of ADAM

• It is real-time: it uses an incremental mining (on-line mining) which does not
look at a batch of TCP/IP connections, but rather employs a sliding window
of time to find the suspicious rules within that window.

• It is an anomaly detection system (instead of a misuse detection system like
previous systems that use data mining for intrusion detection, such as those
described in [13, 12], which aim to characterize the rules that govern misuse of
the system), since it aims to detect anomalous behavior relative to a profile.
For this, the technique builds, a-priori, a profile of “normal” rules, obtained
by mining past periods of time in which there were no attacks. Any rule
discovered during the on-line mining that also belongs to this profile is ignored,
assuming it corresponds to a normal behavior. In this sense, our technique
looks for unexpected rules. This helps in reducing the number of false positives
flagged by the technique.
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Figures 1 and 2 show the basic architecture of ADAM. ADAM performs its
task in two phases. In the training phase, depicted in Figure 1, we use a data
stream for which we know where the attacks are located (we also know the types of
attacks). The attack-free parts of the stream are fed into a module that combines
a static algorithm for mining association rules and an algorithm for mining domain
level association rules 1 (both techniques will be discussed later in the paper). The
output of this module is a profile of rules that we call “normal,” i.e., that depict
the behaviors during periods where there are no attacks. The profile along with the
training data set are also fed into a module that uses a combination of a dynamic
algorithm for association rules (discussed later) plus the domain level algorithm,
whose output consists of rules that characterize attacks to the system. These rules,
along with a set of features extracted from the data stream by a features selection
module are used as the training set for a classifier. This whole phase takes place
once (off-line), before we use the system to detect intrusions.

The actual detection of intrusions is implemented as depicted in Figure 2. Here
the dynamic algorithm is used to produce rules that are considered as suspicious
which, along with the features extracted by the features selection module are fed to
the (already trained) classifier. The classifier labels the events as attacks (including
its presumed type), normal events, or unknown. When the classifier labels connec-
tions as normal events, it is filtering them out of the attack set, avoiding passing
them to the security officer. The last class, i.e., unknown, is reserved for events
whose exact nature cannot be pinpointed by the classifier (they cannot be classified
as known attacks). Conservatively, we consider those as attacks and include them
in the set of alarms passed to the security officer. In the rest of the section, we
further clarify the concepts and techniques involved in our system.

2.1 Preprocessing

Preprocessing module looks at TCP/IP traffic, and generates a record for each
connection from the header information of its packets based on the following schema:

R(Ts, Src.IP, Src.Port,Dst.IP,Dst.Port, FLAG).

In this schema, Ts represents the beginning time of a connection, Src.IP and
Src.Port refer to source IP and port number respectively, while Dst.IP and Dst.Port
represent the destination IP and port number. The attribute FLAG describes the
status of a TCP/IP connection. The relation R contains the dataset that is subject
of the association mining. Notice that in this context, the association rules we can
come up with are more restrictive than in the general market-basket data case. For
instance, there can be no rules with two different Src.IP values in the antecedent.
(No connection comes from two sources.) Nevertheless, the number of potential
rules is large: connections may come from a large base of source IP addresses and
ports.

1this is called multi-level mining in data mining terminology; to avoid confusion with the multi-
level security concept, we use the term domain level instead in this paper
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2.2 Mining engine

The basic idea behind the mining engine is the concept of association rules from
the connection records. The task of mining association rules, first presented in
[2] consists in deriving a set of rules in the form of X −→ Y where X and Y
are sets of attribute-values, with X

⋂
Y = ∅ and ‖Y ‖ = 1. The set X

is called the antecedent of the rule while the item Y is called consequent. For
example, in a market-basket data of supermarket transactions, one may find that
customers who buy milk also buy honey in the same transaction, generating the
rule milk −→ honey. There are two parameters associated with a rule: support
and confidence. The rule X −→ Y has support s in the transaction set T if s%
of transactions in T contain X ∪ Y . The rule X −→ Y has confidence c if c% of
transactions in T that contain X also contain Y . The most difficult and dominating
part of an association rules discovery algorithm is to find the itemsets X

⋃
Y , that

have strong support. (Once an itemset is deemed to have strong support, it is
an easy task to decide which item in the itemset can be the consequent by using
the confidence threshold.) For this reason, we actually aim to find high-support
itemsets in our technique, rather than their rules. We use the terms rules and
itemsets interchangeable throughout the paper.

Our procedure can be described as follows. We first create a database of
association rules (itemsets) that have strong support (above a certain threshold) for
datasets for which we are absolutely sure there were no attacks. This constitutes our
training data for the system. The rules in the database can be cataloged according
to the time of the day and day of the week, to further refine the specificity of these
rules to variations of workload during the different time periods. Next, we use
an incremental, on-line algorithm to detect rules that are currently receiving strong
support. In order to do this, we use a sliding window of predetermined size δ, and an
algorithm that outputs rules that have received strong support during this window.
We compare any rule that starts receiving support with rules in the database for an
analogous time and day of the week situation. If the rule is present in the database,
we do not pay attention to it (i.e., we do not devote storage resources to keep track
of its support). On the other hand, if the rule is not in the database, we keep
a counter that will track the support that the rule receives. If the rule’s support
exceeds a threshold, that rule is reported as suspicious. For a set of suspicious rules,
we provide two services. First the ability to drill down and find the raw data in
the audit trail that gives rise to these rules. Secondly, we characterize the set of
rules with a vector of parameters (based on the raw audit trail data that gave rise
to the rules) and use this vector as an input to a classifier. The classifier sorts each
suspicious activity as a normal event, known attack class or an unknown type.

There are three components in the mining engine:

Single level mining

Single level mining has two working modes: static mining and dynamic mining.
Static mining, also called off-line mining, is used to generate the profile by finding
the “ordinary” itemsets that occur during non-intrusion times. Dynamic mining
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uses a sliding window method that implements incremental, on-line association rule
mining. It only needs to look at each connection once, which makes it appropriate
for on-line detection.

Domain level mining

Sometimes an attack will take place as a coordinated effort from several hosts or/and
to multiple hosts. In that case, it is likely that itemsets of the form Src.IP, Dst.IP
will not have enough support to be flagged as suspicious. However, if we aggregate
the support of all the itemsets of that form where all the source IPs or destination
IPs belong to the same subnet, the support may be enough to recognize this as a
suspicious event.

Indeed, we have realized that, in practice such situations arise and cannot be
captured by just mining associations on the schema level. So we complemented our
technique by using domain level mining, which roughly speaking, can be thought
of clustering itemsets that have some commonality and aggregating the support
that the individual (flat) itemsets exhibit. The mining of multi-level association
rules were first proposed by J. Han, et al. [9]. They use a top-down progressive
deepening method for mining multiple-level association rules. Although we borrow
the concept, we instead use a bottom-up method to produce the domain level rules.

Given the schema R(Ts, Src.IP, Src.Port,Dst.IP,Dst.Port, FLAG), we can
produce higher abstractions of the IP related attributes. For instance, the first byte
in the host ID portion of the IP address usually identifies the subnet to which the
host belongs, while the first two bytes of the IP address identify the net ID. In the
domain level mining, we define 4 layered subnets from the lowest level to highest
level: Sub1 which is identified by the first 3 bytes of the IP address, Sub2 by the
first 2 bytes of the IP address, Sub3 by the first 1 byte of the IP address, Sub4
is the highest level subnet that contains all possible IPs. Clearly Sub1 is the first
level abstraction on IP address, Sub2 is the first level abstraction on Sub1, and
so on. The itemsets of interest of domain level are similar to those of single level
mining, except that the every IP will be replaced with every possible item of the
set {IP, sub1, sub2, sub3, sub4}.

Feature selection

Feature selection by nature is a multi-window mining process. Both Dynamic Min-
ing and Domain Level Mining algorithms use single size time window, and it is
very hard to choose an optimum window size that can capture all kinds of rules
that appear at different frequencies. For instance, if the time window is too big,
the algorithms may miss some rules that are hot only in a short period of time.
On the other hand, if the time window is too small, they may miss the rules that
span a long time period in a slow manner. Our motivation to do feature selection
is to overcome the limitations of single window size mining algorithms. Two time
windows are used here. One is 3 seconds wide, and it is used to capture the rules
that are only hot in a very short period of time and can easily be missed in a wide
window. The other is 24 hours long, and it is used to capture the rules that appear
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at very low frequency but last for long time. Both time windows are applied on
Dynamic Mining and Domain Level Mining algorithms. Some features like average
connection rate per second, contiguity index of a source IP to a set of destination IP,
etc., are extracted from the mining results and will be used for the further analysis.

2.3 Classification Engine

The abnormal rules generated by mining association rules algorithm are intended to
guide the further detection work. To filter out as many false positives as possible, we
complement the technique by adding a classification step. Using a set of parameters
for each rule in the training data, we build a classifier (usually a modified decision
tree, however, we have test the system with a variety of classifiers).

By studying the attacks of training data, we choose a number of attributes, or
parameters to characterize each itemset, which reflect the properties of single level
mining, domain level mining and feature selection. Then, a classifier is trained by
the itemsets derived from training data. The classifier will be used to classify the
itemsets derived from the test data.

3 Our technique: pseudo-Bayes estimators

3.1 Introduction

Pseudo-Bayes estimators is a well used technique in the area of discrete multivariate
analysis [4]. It is used to provide the estimated cell values of contingency tables
which may contain a large number of sampling zeros. All too often, the observed
table of counts provides an unsatisfactory table of estimated values since there are
many cells and few observations per cell, and some zeros are “smaller” than others,
especially when we are computing rates. For instance, it may be misleading to
report both 0/5 and 0/500 as being equal to zero, since as rates they carry quite
different information. In order to distinguish such zero properties from one another
, the observed counts need to be smoothed since the observed table of counts seems
too abrupt. The basic problem here is one of simultaneously estimating a large
number of parameters ( the expected cell frequencies). One way to provide such
estimates is to assume an underlying parametric model for the expected frequencies,
where the number of parameters in the model is typically much smaller than the
total number of cells. pseudo-Bayes is another approach to solve the problem which
does not involve the problem of model selection. The idea behind pseudo-Bayes is
as follows [4]:

Let X = (X1, . . . , Xt) have the multinomial distribution with parameters N =∑t
i=1 Xi and p = (p1, . . . , pt). We observe a vector of values x = (x1, . . . , xt), where

xi is the observed count in the ith category and
∑t

i=1 xi = N . The vector p takes
values in the parameter space

Lt = p = (p1, . . . , pt) : pt ≥ 0 and

t∑

i=1

pt = 1 (1)
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and we denote the center of Lt by c = (t−1, . . . , t−1).

The kernel of the likelihood function for this multinomial distribution is

l(p | x) = l(p1, . . . , pt | x1, . . . , xt) =

t∏

i=1

pxi
i . (2)

The natural conjugate family of prior distribution for this likelihood is the
Dirichlet, whose densities have the form

f(p | β) = Γ(
t∑

i=1

βi)

t∏

i=1

pβ
−1

i

Γ(βi)
(3)

where βi > 0 for all i and Γ(y) is the gamma function given by Γ(y) =
∫∞
0

e−zzy−1dz.
When the prior distribution is Dirichlet with parameters β = (β1, . . . , βt), the pos-
terior distribution is also Dirichlet with parameters β + x = (β1 + x1, . . . , βt + xt).

If we let

D(β1, β2, . . . , βt) =
Γ(

∑t
i=1 βi)∏t

i=1 Γ(βi)
(4)

then the moments of the Dirichlet distribution are given by

E(

t∏

i=1

pai
i | β) =

D(β1, . . . , βt)

D(β1 + a1, . . . , βt + at)
(5)

If we set

K =
t∑

i=1

βi, λi =
βi

K
(6)

we see that the prior and posterior means of pi are given by

E(pi | K,λ) = λi (prior mean) (7)

E(pi | K,λ,x) =
xi + Kλi

N + K
(posterior mean) (8)

We can rewrite (8) in vector notation as

E(p | K,λ,x) =
N

N + K
(x/N) +

K

N + K
λ (9)

The posterior mean is the Bayesian point estimate of p. When the prior
distribution is Dirichlet with parameters K and λ, this Bayesian point estimate is
given by (9).
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We define the risk function as the expected value of the squared distance from
an estimator T to p as follows:

R(T,p) = NE‖T − p‖2 = N

t∑

i=1

E(Ti − pi)
2 (10)

We denote the random variable version of the Bayes estimator given in (9) by

q̂ = q̂(K,λ) =
N

N + K
(X/N) +

K

N + K
λ (11)

Since K and λ are constants, we can easily compute the risk function of q̂:

R(q̂,p) = (
N

N + K
)2(1 − ‖p‖)2 + (

K

N + K
)2N‖p − λ‖2 (12)

In order to use q̂(K,λ), we need to know the values of K and λ. K can be
chosen in a way such that it depends on the data and the choice of λ. If λ is regarded
as fixed, then we can find the value of K that minimizes the risk R(q̂(K,λ),p) by
differentiating (10) in K and solving the resulting equation. This yields

K = K(p, λ) =
1 − ‖p‖2
‖p − λ‖2 (13)

This optimal value of K depends on the unknown value of p. We may obtain
an estimate of this unknown optimal value of K by replacing p by p̂ = X/N ,
yielding

K̂ = K(p̂, λ) =
1 − ‖p̂‖2

‖p̂ − λ‖2
(14)

or, in terms of x, the observed value of the random variable X,

K̂ =
N2 −∑t

i=1 x
2
i∑t

i=1 x
2
i − 2N

∑t
i=1 xiλi + N2

∑t
i=1 λ

2
i

(15)

A pseudo-Bayes estimator of p is then

p∗ = q̂(K̂, λ) = (
N

N + K̂
)p̂ +

K̂

N + K̂
λ (16)

where K̂ is given in (15). Other pseudo-Bayes estimators of p are possible, and
they correspond to alternative ways of estimating the optimal value of K.

3.2 Building Naive Bayes classifier using Pseudo-Bayes
estimators

Given a training data that is composed of both normal and known attack instances,
we can construct a contingency table, in which each column refers to an attribute
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X0 . . . Xj . . .
A0 t000 . . . t00g0

. . . t0j0 . . . t0jgj . . .
...

Ai tj00 . . . ti0g0
. . . tij0 . . . tijgj . . .

...
AI−1 t(I−1)00 . . . t(I−1)0g0

. . . t(I−1)j0 . . . t(I−1)jgj
. . .

AI tI00 . . . tI0g0
. . . tIj0 . . . tIjgj . . .

Figure 3. Contingency table of the training data

characterizing an aspect of the instances and each row refers to a class of the
training data that is either normal or an attack name. The attributes can be
discrete variables or categorical variables. For simplicity, we will transform discrete
variables into categorical variables. Besides all the classes in training data, an extra
class will be added to represent new attacks. The table is built in such way that the
cell value of ith row and jth column denotes the number of instances in training
data that class i and attribute j both are present. The cell values of new attacks will
be initialized with zeros. By pseudo-Bayes, the contingency table will be smoothed
and each cell will be given an estimated value. The estimated cell values of unknown
attacks will be Kλi/(N + K) by (8).

Let A0, . . . , AI−1 denote I class types in the training data and ni be the
number of instances of the class Ai in the training data. Let x = x0, . . . , xJ−1 be
an instance with J attributes whose domains are denoted as D = (D0, . . . , DJ−1),
and gj be the number of categories in Dj . The training data can be represented by

a (I + 1) ∗M table T shown in Figure 3, where M =
∑J−1

j=0 gj . Here tijk denotes
the number of instances that both class Ai and xjk are present. xjk refers to the
kth categorical value of Xj . AI represents unknown attacks, and tijk = 0 if i = I.∑I−1

i=0

∑gj
k=0 tijk = N , for j = 0, . . . , J − 1. N is the number of instances in training

data. If we assume all attributes are conditionally independent given a class Ai,
then we can partition the table into J parts. Each part represents an attribute and
will be smoothed by pseudo-Bayes individually.

The pseudo-Bayes estimator method is shown as an algorithm in Figure 4.
Before applying pseudo-Bayes estimator, a small constant is added to each cell of
the table to ensure λijk = 0. The symbol xj denotes the jth column value of a
part table. If t̂ijk , is the pseudo-Bayes estimated cell value of Tj , then the posterior
probability P (xj | Ai) can be easily computed as shown in Equation 17
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For a Tj , select λijk as following:

λijk = 1
g0

tijk
Sjk

, Sjk =
∑I

i=0 tijk

compute the weighted factor K̂ = (N2 −∑
t2ijk)/

∑
i,j(tijk −Nλijk)2

compute the cell estimates ˆtijk = Np∗ijk = N(tijk + K̂λijk)/(N + K̂)

Figure 4. Algorithm Pseudo-Bayes estimator algorithm

P (xj | Ai) =
t̂ijk∑gj
k=0 t̂ijk

(17)

Using Naive Bayes,

P (C = Ai | X = x) =
P (X = x,C = Ai)

P (X = x)

=
P (X = x | C = Ai)P (C = Ai)

P (X = x)

=
P (X0 = x0m0 | C = Ai) . . . P (XJ−1 = xJ−1mJ−1

| C = Ai)P (C = Ai)

P (X = x)

=
(
∏J−1

j=0 P (xmj )P (C = Ai))

P (X = x)
(18)

Here, xmj refers to the mjth column of the table Tj , P (xmj | C=Ai) is computed

by (17), and P (C = Ai) = (1/J)(
∑J−1

j=0 (
∑gj

k=0 t̂ijk/N)).

4 Experimental Results
We applied the pseudo-Bayes estimator method on two years of DARPA Intrusion
Detection Evaluation Data[5] (1998, and 1999). Each year’s data contains two types
of data: training data and test data. The 1998 training data consists of 7 weeks of
network-based attacks in the midst of normal background data. Attacks are labeled
in training data. The test data consists of 2 week network-based attacks and normal
background data. Both Tcpdump and BSM data are provided for each day. The
1999 data consists of 3 weeks training data and 2 weeks test data. Besides Tcpdump
and BSM data, NT audit data are added into 1999 evaluation. Currently, ADAM
only works only on Tcpdump data.

To evaluate our approach, we configure the experiments in two ways:

• Configuration1 Given a training data, we build a Naive Bayes classifier by
removing one attack type at a time, then test against the removed attack,
using the test data.
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Attack #instances #classified detection #classified detection false
as un-
known

rate by as other rate by alarm

unknown attacks misclassificationrate

smurf 156 156 100% 0 0% 0.1%
mscan 6 6 100% 0 0% 0.1%
ipsweep 3 3 100% 0 0 1.7%
portsweep 5 5 100% 0 0% 1.7%
pod 73 73 100% 0 0% 1.7%
mailbomb 2 2 100% 0 0% 4.3%
teardrop 12 12 100% 0 0% 1.2%
snmpgetattack 13 0 0% 0 0% 0.2%
back 8 0 0% 0 0% 0.1%
neptune 23 6 26% 0 0% 2.9%

Figure 5. Experiment of Configuration1 on DARPA 1998 test data

• Configuration2 Given a set of training data and test data, we build a Naive
Bayes classifier based on training data, then test against the test data. To
evaluate the classifier’s ability to detect new attacks, we choose the test data
in such way that it consists of at least one attack that are not appeared in
the training data.

Figure 5 shows the experimental results of Configuration1 on DARPA 1998
test data.2 To better evaluate the performance of pseudo-Bayes estimator, we pick
a set of attacks that behave very differently, while for the attacks that share some
similarities, we only select one candidate to represent the rest. The reason we do so
is to try to avoid the influences of the existence of similar attacks in the training data
when testing an attack. The first column refers to the attack that is in the test data
but not in training data. The column #instance gives the occurrence of the attack
in test data. The column #classified as unknown gives the number of instances
that are classified as unknown. The column detection rate by unknown is defined
as the ratio of #classified as unknown to #instances. The column #classified as
other names gives the number of instances in which an attack is misclassified as
some other attack. The column detection rate by misclassification is defined as
the ratio of #classified as other names to #instances. The experiment shows that
the pseudo-Bayes estimators technique works very well in detecting new attacks: 7
out 10 attacks can be fully detected. One attack is partially detected, i.e., some
instances of the attack are detected, but some are not. 2 attacks are totally missed.
As we studied the partially detected and totally missed attacks, we found that
they share some similarities with normal instances so that they cannot be easily
distinguished from the normal ones. The missed attacks are more similar to the
normal instances than the partial detected attacks, while the full detected attacks
are very different from the normal instances. 3 The experiment also hints that
pseudo-Bayes method works well when a new attack is substantially different from
normal instances.

Figures 6–8 show an experiment of Configuration2.4 In the experiment, the

2Please note that each row shows the result of a different experiment, and thus it is has its own
false alarm rate.

3Here the selection of attributes and their values are derived from the mining engine, so the
degree of similarity between instances is scaled in terms of their attribute values.

4The Figure 7 shows the result of a single experiment, and thus only the overal false alarm rate
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Name dict pod satan nmap guest smurf

#instances 2 23 10 1 2 348

Name teardrop ipsweep neptune portsweep back normal

#instances 31 47 50 39 4 1294

Figure 6. Attack distribution of DARPA 1998 training data

Attack #instances #classified detection #classified detection false
as un-
known

rate by as other rate by alarm

unknown attacks misclassificationrate

mailbomb 4 2 50% 2 50% 6.8%
apache2 9 1 11% 0 0%
udpstorm 12 8 75% 4 25%
telnet 1 1 100% 0 0%
guessftp 1 1 100% 0 0%
guesspop 1 1 100% 0 0%
process 3 3 100% 0 0%
pod 6 6 100% 0 0%
dict 2 1 50% 0 0%
teardrop 2 2 100% 0 0%
neptune 130 13 10% 0 0%
back 3 0 0% 0 0%
smurf 62 60 99% 0 0%
satan 6 1 16% 6 100%
portsweep 3 3 100% 0 0%

Figure 7. Experiment of Configuration 2 on DARPA 1999 inside data
when trained by 1998 training data

classifier is trained with DARPA 1998 training data and tested by DARPA 1999
test data. Figure 6 shows the attack distribution of the training data. Figures 7
and 8 are experiment results of two datasets obtained from an insider sniffer and
an outside sniffer respectively. The attacks in bold refer to the new attacks in test
data. For inside data, 4 of 7 new attacks are fully detected, while the other 3 attacks
are partially detected, For outside data, 4 of 7 new attacks are fully detected, but
2 attacks are totally missed, and 1 attack is partially detected.

Figures 9-11 show another experiment of Configuration2. Here the test data is
kept unchanged, but the training data uses DARPA 1999. Figure 9 shows the attack
distribution of 1999 training data which contains fewer attacks than 1998 training
data. The names in bold refers to the new attacks in test data. Once again, the
experiment shows very good performance of the pseudo-Bayes technique. For inside
data, 6 of 10 new attacks are fully detected, 2 attacks are partial detected, while 2
are totally missed. For the outside data, 4 out of 8 attacks are fully detected, and
2 attacks are partially detected, and 2 are totally missed.

Comparing the two experiments showed in figures 7-8 and figures 10-11, we
can see that the first experiment has lower false alarm rates than the second one
because it is trained with more training classes. The misclassification rate of attack
teardrop in the first experiment is smaller than the second one since teardrop is a
known attack to the first one, and the misclassification rate of the attack mailbomb
in the second experiment is smaller than the first one for the same reason. If an
attack cannot be distinguished from the normal instances, like back, then whether
the training data contains the attack nor not does not affect the results much.

is shown. So on for the other figures of Configuration2.
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Attack #instances #classified detection #classified detection false
as un-
known

rate by as other rate by alarm

unknown attacks misclassificationrate

mailbomb 8 3 37.5% 3 37.5% 5.7%
crashiis 1 0 0% 0 0%
telnet 3 3 100% 0 0%
guessftp 1 1 100% 0 0%
guesspop 1 1 100% 0 0%
process 2 2 100% 0 0%
apache2 8 0 0% 0 0%
pod 11 11 100% 0 0%
teardrop 3 3 100% 0 0%
neptune 134 19 14% 0 0%
back 6 0 0% 0 0%
smurf 24 24 100% 0 0%
ipsweep 1 1 100% 0 0%
portsweep 3 3 100% 0 0%
satan 7 1 14% 6 86%

Figure 8. Experiment of Configuration 2 on DARPA 1999 outside data
when trained by 1998 training data

Name pod mailbomb satan ipsweep neptune portsweep normal

#instance 11 1 3 22 13 5 1053

Figure 9. Attack distribution of DARPA 1999 training data

Attack #instances #classified detection #classified detection false
as un-
known

rate by as other rate by alarm

unknown attacks misclassificationrate

apache2 9 0 0% 0 0% 7.1%
udpstorm 12 12 100% 0 0%
telnet 1 1 100% 0 0%
guessftp 1 1 100% 0 0%
guesspop 1 1 100% 0 0%
process 3 3 100% 0 0%
dict 2 1 50% 0 0%
teardrop 2 1 50% 1 50%
back 3 0 0% 0 0%
smurf 62 60 99% 0 0%
mailbomb 4 4 100% 0 0%
pod 6 6 100% 0 0%
neptune 130 13 10% 0 0%
satan 6 1 16% 1 16%
portsweep 3 3 100% 0 0%

Figure 10. Experiment of Configuration 2 on DARPA 1999 inside data
when trained by 1999 training data

Attack #instances #classified detection #classified detection false
as un-
known

rate by as other rate by alarm

unknown attacks misclassificationrate

crashiis 1 0 0% 0 0% 5.6%
telnet 3 3 100% 0 0%
guessftp 1 1 100% 0 0%
guesspop 1 1 100% 0 0%
process 2 1 50% 0 0%
apache2 8 0 0% 0 0%
teardrop 3 2 67% 1 33%
smurf 24 24 100% 0 0%
back 6 0 0% 0 0%
pod 11 11 100% 0 0%
neptune 134 19 14% 0 0%
ipsweep 1 1 100% 0 0%
mailbomb 8 3 37.5% 3 37.5%
portsweep 3 3 100% 0 0%
satan 7 1 14% 2 30%

Figure 11. Experiment of Configuration 2 on DARPA 1999 outside data
when trained by 1999 training data
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5 Related work
The statistical anomaly detector of SRI’s IDES[6, 15] uses a deductive process based
on statistics to determine if current activity is atypical. Audited activity is de-
scribed by a vector of intrusion detection variables that correspond to the measures
recorded in the profiles. Forrest et al.[7] record frequent subsequences of system
call that are invoked in the execution of a program. Absence of subsequences in the
current execution of the same program from the stored sequences constitutes a po-
tential anomaly. Lee[14] using a rule learning program, generated rules that predict
the current system call based on a window of previous system calls. Abnormality
is suspected when the predicted system call deviates from the actual system call.
Lane and Brodley[11] used a similar approach but they focused on an incremental
algorithm that updates the stored sequences and used data from UNIX shell com-
mands. Ghosh and Schwartzbard [8] proposed using a neural network to learn a
profile of normality. Teng et al. [16] proposed an approach of anomaly detection
by using inductively generated sequential patterns which are used to characterize
users’ behavior over time. A rulebase is used to store patterns of user activities
and anomalies are reported when a user’s activity deviates significantly from those
specified in the rules.

This work reveals a method of detecting new attacks by estimating the prior
and posterior probabilities of the new attacks from the knowledge of normal activ-
ities. We are not aware of any closely related work.

6 Conclusions
We have shown that the pseudo-Bayes estimator method can enhance ADAM’s
ability to detect new attacks. The experimental results show that the method helps
in detecting new attacks whose properties are different and distinguishable from the
normal instances of training data. For new attacks that do not differ much from
the normal instances, the method does not work well and will misclassify them as
normal instances. (Misclassification is not unique in pseudo-Bayes, and it exists in
every supervised classifier when some classes are not distinguishable.) However, the
ability to capture new classes is rarely present in classifiers, and that is precisely
what we have achieved in this work. We will continue our research on exploring
more information from training data to: 1) optimally select the parameters λ. There
are 2 ways to choose λ: data independent and data dependent. In this work, we
use data dependent method since we believe training data carries the information
about the distribution of known and unknown attacks as well as their probabilities.
As the selection of the parameter λ is very important and affect the performance of
pseudo-Bayes, the selection should take into account of the information of training
data. 2) guide the initialization of cell values of new attacks instead of blindly
assigning them to zeros, which may characterize new attacks more efficiently and
accurately.
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