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Abstract

Many host-based anomaly detection systems moni-
tor a process ostensibly running a known program
by observing the system calls the process makes.
Numerous improvements to the precision of this ap-
proach have been proposed, such as tracking sys-
tem call sequences, and various “gray-box” exten-
sions such as examining the program counter or re-
turn addresses on the stack when system calls are
made. In this paper, we perform the first system-
atic study of a wide spectrum of such methods. We
show that prior approaches can be organized along
three axes, revealing new possibilities for system-
call-based program tracking. Through an empiri-
cal analysis of this design space, we shed light on
the benefits and costs of various points in the space
and identify new regions that appear to outperform
prior approaches. In separate contributions, we
demonstrate novel mimicry attacks on a recent pro-
posal using return addresses for system-call-based
program tracking, and then suggest randomization
techniques to make such attacks more difficult.

1 Introduction

A server program with buffer overflow or format
string vulnerabilities might permit an attacker to
commandeer a process running that program, effec-
tively causing it to run the attacker’s program, in-
stead. In order to detect when this occurs, anomaly
detectors have been proposed to monitor the sys-
tem calls made by a process, in an effort to detect
deviation from a known profile of system calls for
the program it is ostensibly running. Such anomaly
detectors have been proposed and used in many set-
tings, including host-based intrusion detection sys-
tems (e.g., [4, 11, 19, 20]) and related sandboxing
and confinement systems (e.g., [12, 22]).

Given the importance of system-call-based anomaly
detection, numerous approaches have been proposed
to improve their precision. Many of these ap-
proaches are seemingly orthogonal to one another,
and while each has been demonstrated to improve
precision (and often, increase cost) in isolation, how
best to use these enhancements in combination is
unclear. This is the primary question we address in
this paper. In our analysis, we identify axes that
are motivated by proposed enhancements and then
empirically analyze the design space these axes de-
fine. Our analysis covers many regions not previ-
ously explored in prior work, including some that
outperform previous approaches in our analysis. To
our knowledge, this study is the first such system-
atic study of the design space for system-call-based
anomaly detection.

As an initial study of this design space, we limit our
attention to “gray-box” program monitoring tech-
niques. In order to characterize whether a system
call is anomalous, an anomaly detector builds a
model of the normal system-call behavior of the pro-
gram. We use “black box”, “gray box” and “white
box” to refer to the type of information the anomaly
detector uses to build this model and to monitor the
running process. Black-box detectors do not acquire
any additional information other than the system
call number and arguments that pass through the
system call interface when system calls are made
(e.g., [4, 17]). In contrast, white-box detectors ex-
amine all available information including the pro-
gram being monitored, by statically analyzing (and
potentially modifying) the source code or binary
(e.g., [2, 5, 6, 20]). Gray-box approaches lie in be-
tween: the anomaly detector does not utilize static
analysis of the program, but does extract additional
runtime information from the process being moni-
tored when a system call is made, e.g., by looking
into the program’s memory (e.g., [3, 16]). Here we
focus on gray-box approaches (and a few black-box
approaches as degenerate cases), again as an initial
study, but also because white-box approaches are



platform dependent and less universally applicable;
see Section 2.

A consequence of limiting our attention to gray-box
approaches is that any gray-box model of normal
behavior depends on being trained with execution
traces that contain all normal behaviors of the pro-
gram. It is not our goal here to determine how to ac-
quire adequate training data for a program. Rather,
we simply assume we have adequate training data in
our study; if this is not true, our techniques might
yield false detections, i.e., they may detect anoma-
lies that are not, in fact, intrusions.

In this context, this paper makes the following con-
tributions:

1. We organize the design space of gray-box pro-
gram tracking along three axes, that informally
capture (i) the information extracted from the
process on each system call; (ii) the granularity
of the atomic units utilized in anomaly detec-
tion (single system calls or variable-length sys-
tem call sequences); and (iii) the history of such
atomic units remembered by the anomaly de-
tector during monitoring. This framework en-
ables us to categorize most previous approaches
and to pinpoint new approaches that were not
explored before.

2. We systematically study this design space and
examine the cost and benefits of the various
(including new) gray-box program tracking ap-
proaches. Exploiting richer information along
each axis improves the detector accuracy but
also induces additional costs, by increasing
both the size of the model and the cost of glean-
ing additional information from the running
process. Through systematic study, we com-
pare the benefits (resilience against mimicry at-
tacks) and costs (performance and storage over-
head) of growing these parameters, and develop
recommendations for setting them in practice.
In a nutshell, our analysis suggests that by
examining return addresses, grouping system
calls into variable-length subsequences, and re-
membering a “window” of the two most recent
program states permits an anomaly detector to
track the program with good accuracy at rea-
sonable runtime and storage overhead, and to
prevent certain mimicry attacks that cannot be
stopped in previous approaches.

3. We generalize prior work on mimicry at-
tacks [18, 21] to demonstrate a previously un-

reported mimicry attack on systems that em-
ploy return address information as an input to
anomaly detection. Specifically, prior work in-
troducing the use of return address informa-
tion largely disregarded the possibility that this
information could be forged by the attacker.1

While doing so is indeed nontrivial, we demon-
strate how the attacker can forge this informa-
tion. Despite this observation, we demonstrate
that utilizing this information continues to have
benefits in substantially increasing the attack
code size. This, in turn, can render some vul-
nerabilities impossible to exploit, e.g., due to
the limited buffer space within which an at-
tacker can insert attack code.

4. Finally, we suggest how to use (white-box) ran-
domization techniques to render the mimicry
attacks mentioned above more challenging.

The rest of the paper is organized as follows. Sec-
tion 2 introduces our proposed framework for gray-
box program tracking, which covers most of the
previous works in this area and our new propos-
als. Section 3 provides a detailed quantitative study
of the space of gray-box program tracking. Sec-
tion 4 presents our attack on a previously proposed
anomaly detector to forge information and evade de-
tection. In Section 5 we describe the randomization
technique to make such attacks more difficult. Fi-
nally, we present our conclusion and future work in
Section 6.

2 Framework for gray-box program

tracking and new spaces

In system-call-based anomaly detection, the
anomaly detector maintains state per process mon-
itored, and upon receiving a system call from that
process (and possibly deriving other information),
updates this state or detects an anomaly. Similar
to previous works (e.g., [16, 20]), we abstract
this process as implementing a nondeterministic
finite automaton (Q, Σ, δ, q0, q⊥), where Q is a
set of states including the initial state q0 and a
distinguished state q⊥ indicating that an anomaly
has been discovered; Σ is the space of inputs that
can be received (or derived) from the running
process; and δ ⊆ Q×Σ×Q is a transition relation.
We reiterate that we define δ as a relation, with
the meaning that if state q ∈ Q is active and the



monitor receives input σ ∈ Σ, then subsequently
all states q′ such that (q, σ, q′) ∈ δ are active. If
the set of active states is empty, we treat this as a
transition to the distinguished state q⊥.

Below we describe how to instantiate Q and Σ along
the three axes, thereby deriving a space of different
approaches for gray-box program tracking. We fur-
ther show that this space with three axes provides
a unified framework for gray-box program tracking,
which not only covers most of the previous relevant
gray-box proposals, but also enables us to identify
new ones.

1. The first axis is the runtime information the
anomaly detector uses to check for anomalies.
In black-box approaches, the runtime informa-
tion that an anomaly detector uses is restricted
to whatever information is passed through the
system call interface, such as the system call
number and arguments (though we do not con-
sider arguments here). In a gray-box approach,
the anomaly detector can look into the pro-
cess’s address space and collect runtime infor-
mation, such as the program counter and the
set of return addresses on the function call
stack. Let S represent the set of system call
numbers, P represent the set of possible pro-
gram counter values, R represent the set of pos-
sible return addresses on the call stack. The
runtime information an anomaly detector could
use upon a system call could be S, P × S, or
R+ × P × S where R+ =

⋃

d≥1
Rd.

The second and third axes are about how an
anomaly detector remembers execution history in
the time domain.

2. The second axis represents whether the atomic
unit that the detector monitors is a single sys-
tem call (and whatever information is extracted
during that system call) or a variable-length se-
quence of system calls [23, 24] that, intuitively,
should conform to a basic block of the moni-
tored program. That is, in the latter case, sys-
tem calls in an atomic unit always occur to-
gether in a fixed sequence.

3. The third axis represents the number of atomic
units the anomaly detector remembers, in order
to determine the next permissible atomic units.

The decomposition of execution history in the time
domain into axes 2 and 3 matches program behavior
well: an atomic unit ideally corresponds to a basic
block in the program in which there is no branching;
the sequence of atomic units an anomaly detector
remembers captures the control flow and transitions
among these basic blocks.

According to the three axes, we parameterize our
automaton to represent different points in the space
of gray-box program tracking. In particular, the
set of states Q is defined as Q = {q0, q⊥} ∪
(

⋃

1≤m≤n
Σm

)

,2 and Σ ∈ {S,P,R,S+,P+,R+}
where

S = S S+ = S+

P = P × S P+ = (P × S)+

R = R+ × P × S R+ = (R+ × P × S)+

By this definition, the value of Σ captures two axes,
including the runtime information acquired by the
anomaly detector (axis 1) and the grouping of sys-
tem call subsequences in forming an atomic unit
(axis 2), while the value of n captures axis 3, i.e.,
the number of atomic units the anomaly detector
remembers. Intuitively, growing each of these axes
will make the automaton more sensitive to input
sequences. (In fact, it can be proven that the lan-
guage accepted by an automaton A1 is a subset of
the language accepted by automaton A2, if A1 has
a “larger” value on axis 1 or axis 3 than A2 and the
same value as A2 on the other two axes.)

Below we first describe how a variety of prior works
fit into our unified framework:

• In one of the original works in monitoring
system calls, Forrest et al. [4] implement (an
anomaly detection system equivalent to) an au-
tomaton where Σ = S and n ≥ 1 is a fixed pa-
rameter that was empirically chosen as n = 5.
(For clarification on this choice, see [17].3) The
transition function δ is trained by observing the
sequence of system calls emitted by the pro-
gram in a protected environment and on a va-
riety of inputs. Specifically, if during training,
the automaton is in state q = (s1, . . . , sm) and
input s is received, then (q, s, (s1, . . . , sm, s)) is
added to δ if m < n and (q, s, (s2, . . . , sm, s)) is
added otherwise.

• Sekar et al. [16] propose coupling the system
call number with the program counter of the



process when the system call is made. (Sekar et
al. modify the usual definition of the program
counter, however, as described in Section 4.1.)
That is, Σ = P. This effort considered only n =
1. As in [4], the transition function is trained
as follows: if during training, the automaton is
in state q and input σ ∈ Σ is received, then
(q, σ, q′) is added to δ where q′ = (σ).

• Feng et al. [3] propose additionally considering
the call stack of the process when a system call
is made. When a system call is made, all return
addresses from the call stack are extracted; i.e.,
Σ = R. Again, this work considered only n =
1. If during training, the automaton is in state
q and input σ ∈ Σ is received, then (q, σ, q′) is
added to δ where q′ = (σ).

• Wespi et al. [23, 24] suggest an anomaly de-
tection approach in which training is used to
identify a set of system call subsequences using
a pattern discovery algorithm [13]. The result
of the training is a set of variable-length sys-
tem call sequences Σ = S+. They then define
an anomaly detection system in which n = 0 (in
our parlance); i.e., for each σ ∈ Σ, (q0, σ, q0) is
added to δ.

Of the approaches above, only that of Wespi et
al. [23, 24] utilizes nondeterminism (i.e., permits
multiple active states simultaneously). All others
above could be expressed using a (deterministic)
transition function, instead.

Table 1 summarizes the prior work described above
and identifies the new approaches we explore in this
paper. We emphasize that this is not necessarily a
complete list of prior work, and that we have not
captured all aspects of these prior works but rather
only those of interest here. To our knowledge, how-
ever, our analysis is the first that covers many of the
regions in Table 1. Moreover, in certain regions that
have received attention in prior work, the analysis
has been incomplete. Notably, the analysis of Wespi
et al. [23, 24] was performed on audit log records,
not system calls, though they conjectured the tech-
nique could be applied to system call monitoring,
as well. In such cases, our analysis here provides
new insight into the effectiveness of these techniques
when applied to system call monitoring.

Finally, we remind the reader that by restricting our
analysis to approaches captured in the above model,
we do not address various “white-box” approaches

to system-call-based anomaly detection. Though we
intend to incorporate these white-box approaches
into our future analysis, our reason for precluding
them from this initial study is that they are gen-
erally more platform sensitive or require stronger
assumptions, and thus are generally less applica-
ble than gray-box approaches. For example, some
require source code (e.g., [20]) and those that do
not are platform specific. Most notably, the com-
plexity of performing static analysis on x86 binaries
is well documented. This complexity stems from
difficulties in code discovery and module discov-
ery [14], with numerous contributing factors, includ-
ing: variable instruction size;4 hand-coded assem-
bly routines, e.g., due to statically linked libraries,
that may not follow familiar source-level conven-
tions (e.g., that a function has a single entry point)
or use recognizable compiler idioms [15]; and indi-
rect branch instructions such as call/jmp reg32

that make it difficult or impossible to identify the
target location [10, 14]. Due to these issues and oth-
ers, binary analysis/rewrite tools for the x86 plat-
form have strict restrictions on their applicable tar-
gets [9, 10, 14, 15]. As such, we have deferred con-
sideration of these techniques in our framework for
the time being.

Other omissions from our present study are system
call arguments (a topic of ongoing work) and other
paradigms that have been proposed for detecting
when a process has been commandeered via the in-
sertion of foreign code into the process address space
(e.g., program shepherding [8]).

3 Empirical study of gray-box pro-

gram tracking

The parameters Σ and n are central to the effec-
tiveness of an anomaly detection system. Together
these parameters determine the states of the au-
tomaton, and thus the history information on which
the automaton “decides” that a new input σ ∈ Σ is
anomalous. Intuitively, increasing the information
in each element of Σ or n increases the number of
states of the automaton, and thus the granularity
and accuracy of anomaly detection. In this paper
we view this greater sensitivity as a benefit, even
though it comes with the risk of detecting more
anomalies that are not, in fact, intrusions. How-
ever, since we restrict our attention to techniques
that ensure that any transition (triggered by sys-



n Σ
S P R S+ P+ R+

0 [23, 24]
√ √ √

1 [4]
√

[16]
√

[3]
√ √ √ √

≥ 2 [4]
√ √ √ √ √ √

Table 1: Scope of this paper (
√

) and prior work

tem call sequences) in the training data will never
result in a transition to q⊥, we simply assume that
our detectors are adequately trained and consider
this risk no further. As such, the primary costs we
consider for increasing each of these parameters are
the additional overhead for collecting information
and the size of the transition relation δ.

Our goal in this section is to provide a system-
atic analysis of the costs and benefits of enhancing
these parameters. Specifically, we study the follow-
ing question: For given costs, what combination of
Σ and n is most beneficial for anomaly detection?
We reiterate that as shown in Table 1, this study
introduces several new possibilities for anomaly de-
tection that, to our knowledge, have not yet been
studied.

3.1 Mimicry attacks

To understand the benefits of growing Σ or n, it is
necessary to first understand the principles behind
mimicry attacks [18, 21]. An attack that injects
code into the address space of a running process,
and then causes the process to jump to the injected
code, results in a sequence of system calls issued by
the injected code. In a mimicry attack, the injected
code is crafted so that the “attack” system calls are
embedded within a longer sequence that is consis-
tent with the program that should be running in
the process. In our model of Section 2, this simply
means that the attack issues system calls that avoid
sending the automaton to state q⊥.

There are many challenges to achieving mimicry at-
tacks. First, it is necessary for the injected code
to forge all information that is inspected by the
anomaly detector. This seems particularly diffi-
cult when the anomaly detector inspects the pro-
gram counter and all return addresses in the process
call stack, since the mechanics of program execu-
tion would seem to force even the injected code to
conform to the program counter and stack it forges

in order to make a system call (which must be the
same as those in the correct process to avoid de-
tection). Nevertheless, we demonstrate in Section 4
that mimicry remains possible. While we are not
concerned with the mechanics of doing so for the
present section, we do wish to analyze the impact
of monitoring program counter and return address
information on these attacks. Specifically, in order
to forge this information, the injected attack code
must incorporate the address information to forge
(possibly compressed), and so this necessarily in-
creases the size of the attack code. As such, a goal
of our analysis is to quantify the increase in size of
the attack code that results from the burden of car-
rying this extra information. We comment that this
size increase can impose upon the viability of the
attack, since the area in which the injected code is
written is typically bounded and relatively small.

A second challenge to achieving a mimicry attack is
that a step of the attack may drive the automaton
to a state that requires a long sequence of interven-
ing system calls to reach the next system call in the
attack, or that even makes reaching the next system
call (undetected) impossible. In general, enhancing
Σ or growing n increases this challenge for the at-
tacker, as it increases the granularity of the state
space. This must be weighed against the increased
size of the automaton, however, as well as the ad-
ditional run-time costs to extract the information
dictated by Σ. A second aspect of our analysis in
this section is to explore these tradeoffs, particularly
with an eye toward |δ| as the measure of automaton
size.

3.2 Analysis

In order to analyze the costs and benefits of enhanc-
ing the axes of the state space, we set up a testbed
anomaly detection system. The system is imple-
mented as a kernel patch on a Red Hat Linux plat-
form, with configuration options for different val-
ues of Σ and n. We implement the variable-length



pattern approach as described in [13, 24] for each
Σ ∈ {S+,P+,R+}. We have chosen four com-
mon FTP and HTTP server programs, wu-ftpd,
proftpd, Apache httpd, and Apache httpd with
a chroot patch, for evaluation purposes. Automata
for these four programs (and different configurations
of the axes) are obtained by training the anomaly
detection system with between four and nine million
of system calls generated from test runs. After ob-
taining the automata, we perform analysis to evalu-
ate the costs and benefits of different configurations
of Σ and n. Figures 1 and 2 show the results when
Σ ∈ {S,P,R} and Σ ∈ {S+,P+,R+}, respectively.
That is, Figures 1 and 2 correspond to the two pos-
sible instantiations of axis 2 in Section 2.

3.2.1 Resilience against mimicry attacks

The first three columns of Figures 1 and 2 are about
resilience against mimicry attacks. The attack we
test is the addition of a backdoor root account into
the password file. This common attack needs to
perform a series of six system calls (chroot, chdir,
chroot, open, write, close), which is similar to
the attack sequence discussed in [21]. However, in
the case of Apache httpd only three system calls
are needed (open, write, close). We choose to
analyze this attack sequence because it is one of the
most commonly used system call sequences in an
attack. Many attacks need to make system calls
that constitute a superset of this sequence.

We perform an exhaustive search to find the shortest
sequence containing the above series of system calls,
not necessarily contiguously, that avoids detection.5

The exhaustive search reveals the best an attacker
can do to evade detection when making the attack
system calls. Graphs on the first column show the
minimum number of system calls a mimicry attack
must make in order to evade detection. (Missing
data points on the graphs indicate that the mimicry
attack is not possible.) For example in the case of
Apache httpd with chroot patch, the mimicry at-
tack makes 28 system calls when Σ = R and n = 1,
while it becomes impossible for n ≥ 2 with the same
setting of Σ. It is clear from the graphs that growing
Σ or n makes mimicry attacks more difficult.

It might not be obvious why the mimicry attack be-
comes impossible when Σ = R while it is possible
for Σ = P with the same setting of n. (For ex-
ample, the graph of Apache httpd (chroot) in the

first column of Figure 1 shows that the mimicry at-
tack is impossible when Σ = R and n ≥ 2.) Here
we explain with a simple example. In Figure 3, a
solid rectangle represents a state in the automaton,
and r, p and s represent a set of return addresses, a
program counter and a system call number respec-
tively. If the anomaly detector does not check return
addresses, the two states (r1, p, s) and (r2, p, s) will
collapse into one and the impossible path denoted
by the dashed line will be accepted, which makes a
mimicry attack possible. Thus, checking return ad-
dresses makes the automaton model more accurate.

Although the minimum number of system calls an
attack makes is a good measure of the difficulty of
a mimicry attack, in many cases attackers are free
to make any number of system calls, as long as they
do not set off any alarms in the anomaly detector.
However, in the case where Σ ∈ {P,R,P+,R+},
the attack has to forge all information that is in-
spected by the anomaly detection system (program
counters and return addresses). We thus provide a
second measure on the difficulty of the mimicry at-
tack, namely the size of the attack data, which is
shown by the graphs on the second column of Fig-
ures 1 and 2. In this measure we only take into
account the attack data, which is the forged pro-
gram counter and the return addresses (and noth-
ing in the case of S and S+), with the assumption
of perfect compression. Again the graphs show that
growing Σ or n makes mimicry attacks consume sig-
nificantly more space. Note that the size increase in
attack data could make mimicry attacks less effi-
cient (due to the need to send more data), easier
to detect, or even make some mimicry attacks im-
possible due to limited space in the program buffer
where the attack code is inserted. For example, the
size of the attack data becomes a few kilobytes on
the proftpd program in some configurations.

The analysis so far has been focused on one
mimicry attack. In an effort to quantify the dif-
ficulty of mimicry attacks in general, we define a
property of an automaton state, called its fanout,
as follows: fanout(q) = |δ(q)|, where δ(q) :=
{(q, σ, q′)|(q, σ, q′) ∈ δ}. fanout(q) measures the
number of possible states that can follow an active
state q. If an attack compromises the program and,
in the course of performing its attack, activates q,
then only fanout(q) states can follow from q. As
such, fanout(q) is a coarse measure of the extent to
which a mimicry attack is constrained upon activat-
ing q. Graphs in the third column of Figures 1 and 2
show the percentage of states with fanout(q) = 1 in
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Figure 1: Evaluation results on Σ = S, P and R with varying window size n
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Figure 2: Evaluation results on Σ = S+, P+ and R+ with varying window size n
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Figure 3: Two states collapse if return addresses are
not checked

each automata. As seen from the graphs, the per-
centage of states with fanout(q) = 1 increases as n

increases, especially when n is small.

We note that average branching factor as introduced
in [20] is a conceptually similar measure. Here we
prefer to use fanout because fanout measures the
property of an automaton, whereas average branch-
ing factor is a property of executions of the program,
as well. Another difference is that fanout considers
all possible transitions regardless of whether the sys-
tem call that triggers it is “harmful” as determined
in [20] or not. Thus for any particular automaton,
fanout should have a much higher value than aver-
age branching factor, which is used in [5, 6, 20].

3.2.2 Overhead

The previous three measures give evidence that
growing Σ or n makes mimicry attacks more dif-
ficult. However, doing so also increases the cost of
the anomaly detector. We would thus like to mea-
sure the performance overhead in order to find the
best configuration of Σ and n.

The first measure we evaluate is the cost of extract-
ing program counters and return addresses. We
run two sets of tests, one with and one without
the Linux kernel configured to extract return ad-
dresses from the process when a system call is made,
and measure the time it takes to do a Linux kernel
compilation. Results (Table 2) show that the per-
formance hit is especially noticeable in the system

time, which measures the time spent in the kernel.
However, this translates to less than 6% increase
in the overall execution time. Therefore, utilizing
Σ ∈ {P,R,P+,R+} introduces only moderate over-
head.

We next consider the amount of processing the
anomaly detector has to do when a system call is
made. At any point in time, the anomaly detec-
tor must track the active states q ∈ Q, as well
as the transitions that the next input symbol from
Σ may trigger (“active transitions”). When a sys-
tem call is made, active transitions are examined
to determine the next active states and next active
transitions.6 We simulate executions of the FTP
and HTTP server programs and measure the num-
ber of active transitions whenever a system call is
made. Finally we calculate the average of these fig-
ures and present them in the fourth column of Fig-
ures 1 and 2. As shown in these graphs, growing Σ
or n reduces the number of active transitions and
thus the processing time of the anomaly detection
system. Another observation is that when n ≥ 3,
increasing n seems to have less effect and the active
number of transitions becomes very close to one.

Memory usage and storage overhead is another im-
portant measure of performance. As a coarse mea-
sure of the storage overhead, here we calculate |δ|
for each of the automata; the results are pictured
in the last column of Figures 1 and 2. Intuitively,
growing Σ or n should increase the size of δ, due to
the increase in granularity and accuracy of the au-
tomaton. This is confirmed by graphs in Figure 1.
However, graphs in the last column of Figure 2 sug-
gest opposite results, as the size of transition func-
tion of Σ = R+ is less than those of Σ = P+ and
Σ = S+ for some values of n. A closer look at the
automata reveals that the average length of σ ∈ Σ
(number of system calls in an atomic unit) is larger
in the case Σ = R+ than it is when Σ ∈ {S+,P+},
leading to a reduced number of states and a smaller
transition relation for some values of n. This is true
for all four FTP and HTTP programs in our im-
plementation of the pattern extraction algorithm.
However, whether this holds for other pattern ex-
traction algorithms remains future work.

3.3 Discussion and recommendations

Looking at the first axis (runtime information cap-
tured by the anomaly detector), we observe that



no checking (seconds) checking (seconds)

average of 3 tests overall 80.205 84.934
user 66.397 66.917

system 13.103 16.633
average overhead overall 5.896 %

user 0.783 %
system 26.940 %

Table 2: Performance overhead for checking return addresses

checking return addresses (Σ ∈ {R,R+}) greatly in-
creases the difficulty of mimicry attacks. Although
these addresses could possibly be forged by attack-
ers (see Section 4), it requires not only detailed
understanding of the vulnerable program and its
automaton, but also careful crafting of the attack
code and sufficient buffer size for it. Since the per-
formance overhead for checking return addresses is
moderate (Table 2), an anomaly detection system
should always check return addresses.

As for the second axis, the evidence suggests that
forming atomic units from variable-length subse-
quences makes mimicry attacks difficult even with
a small value of n. This is an interesting result, as
a small value of n indicates smaller memory usage
and storage overhead (last column of Figure 2). Al-
though Σ ∈ {S+,P+,R+} introduces nondetermin-
ism into the automaton (supposing that the tech-
nique of [13, 24] is used), with n ≥ 2 there are fewer
than two active transitions on average, and thus the
system processing time should be sufficiently small.

The third axis (value of n) shows some tradeoff
between accuracy and performance. Since increas-
ing n has little effect on improving accuracy when
Σ = R+ and n ≥ 2 (refer to the first 4 columns in
Figure 2), we consider the setting of Σ = R+ and
n = 2 as a general recommendation, which makes
mimicry attacks difficult with reasonably low costs
in performance. (Some complicated programs might
require n to take a slightly bigger value, with an in-
crease in performance overhead.)

However, choosing Σ ∈ {S+,P+,R+} requires an
extra step in constructing the automaton, which is
to extract the variable-length patterns. Different
parameter settings in the pattern extraction algo-
rithm could yield very different results. It remains
future work to analyze the best pattern extraction
algorithm and its parameter settings. Nevertheless,
our relatively simple implementation of the pattern

extraction algorithm produces very promising re-
sults for monitoring accuracy and performance.

4 Program counter and return ad-

dress forgery

A presumption for the analysis of Section 3 was that
an attacker is able to forge the program counter and
return addresses of the process execution stack. In
a gray-box monitoring approach, these values are
extracted by the monitor automatically per system
call, by directly examining the relevant portions of
the process address space. As such, these values
constitute state that controls the subsequent execu-
tion of the process upon return of the system call
from the kernel, due to the mechanics of process
execution. It is therefore not obvious that an at-
tack could effectively forge these values: For exam-
ple, the first system call of the attack would seem-
ingly return control to the program that the pro-
cess should be running. Indeed, prior work that
proposed monitoring return addresses [3] largely dis-
carded the possibility that these values could be un-
detectably forged.

In this section we describe how these values can, in
fact, be undetectably forged. We describe this at-
tack for the Linux execution environment, though
our approach can be generalized to other environ-
ments, as well. The principle behind our attack is
to modify the stack frame, so that the detector does
not observe an anomaly, even for system calls made
by the attack code. (Please refer to Appendix A for
a brief review on the structure of a stack frame.)

We demonstrate our attack using a very simple vic-
tim program; see Figure 4. We emphasize that we
have implemented successful attacks for the pro-
gram in Figure 4 against (our own implementations



of) the anomaly detection techniques of [3, 16], as
well as against an independent implementation of
return address monitoring by the authors of that
technique [3]. The victim program takes a com-
mand line argument and passes it to f1(). f1()

calls another function f2() twice, which calls a li-
brary function lib(). The function lib() in the
victim program makes a system call, with 17 as the
system call number. Function f2() is called twice
just to make the victim program have multiple sys-
tem calls. The victim program is designed in this
way to demonstrate how most software programs
make system calls. Note that f1() has a local buffer
that can be overflowed.

void lib() { syscall(17); }

void f2() { lib(); }

void f1(char* str) { char buffer[512];

f2(); f2();

strcpy(buffer,str); }

int main(int argc, char *argv[]) {

f1(argv[1]); }

Figure 4: C source code of victim program

4.1 Forging the program counter

Upon receiving a system call from the monitored
process, the program counter indicates the address
of the instruction initiating the system call. Since
most system call invocations are made from within
a library function in libc (lib() in our sample vic-
tim program in Figure 4), the value of the program
counter is often not useful, particularly for dynam-
ically linked libraries. Therefore, in the work that
introduced monitoring the program counter, Sekar
et al. [16] instead trace back each system call to the
most recent function invocation from the statically
linked code section, and use this location as the pro-
gram counter. By doing this, the program counter
value will be an address in the program that results
in the system call, rather than an address in the
library. We take a similar approach in our work.
Before the program is run, the anomaly detection
system examines the section header table of the bi-
nary executable to find out address range of the code
(text) section.7 At runtime, it determines the pro-
gram counter by tracing the return addresses from
the innermost stack frame until a return address
falls within that address range.

In order to evade detection by such a monitor, an
attack should ensure that:

1. The address of the attack code does not appear
as a return address when the anomaly detector
is tracing the program counter.

2. The program counter found by the anomaly de-
tection system is a valid address for the system
call made.

Because of the first requirement, our attack code
cannot call a library function to make system calls.
If the attack code uses a call instruction, the ad-
dress of the attack code will be pushed onto the
stack and the anomaly detection system will ob-
serve the anomaly. So, instead of using a call in-
struction, our attack code uses a ret instruction.
(A jump instruction could serve the same purpose.)
The difference between a call and a ret instruc-
tion is that the call instruction pushes the return
address onto the stack and then jumps to the target
location, whereas a ret instruction pops the return
address and then jumps to that location. If we can
make sure that the return address is the address of
the instruction in the library function that makes
the corresponding system call, we could use the ret
instruction in place of a call instruction. Figure 5a
shows the stack layout right before the ret instruc-
tion is executed. By forging this stack frame, the
address of an instruction in lib() will be used as
the return address when ret is executed.

In order to satisfy the second requirement, we must
forge another address on the stack, which the mon-
itor will determine to be the location where lib()

is called. Our attack code simply inserts a valid
address (i.e., one that the monitor will accept for
this system call) at the appropriate location as the
forged program counter. Figure 5b shows the stack
layout after the first ret is executed, as seen by the
anomaly detection system.

As described previously, the above suffices to
achieve only one system call of the attack: after it
has been completed, control will return to the code
indicated by the forged program counter. However,
most attacks need to make at least a few system
calls. Thus we have a third requirement.

3. Execution will return to attack code after an
attack system call finishes.



...
addr of instruction in lib()

ebp → old ebp

esp → ...

(a) Before ret is executed

...
argument of lib()
forged program counter

ebp → old ebp

esp → ...
addr of instruction in lib() (popped)
old ebp (popped)

(b) After ret is executed

...
argument of f1()
addr of last instruction in main()

old ebp

buffer

...
addr of strcpy() in f1()

ebp → old ebp
esp → ...

argument of lib() (popped)
forged program counter (popped)
old ebp (popped)
... (popped)
addr of instruction in lib() (popped)
old ebp (popped)

(c) After lib() returns

Figure 5: Stack layouts in program counter forgery (stack grows downwards)

The idea to achieve this is to modify a return ad-
dress remaining on the stack after the system call
finishes. However, a challenge is that the instruction
that does this modification has to be an instruction
in the original program’s code, because at that time
execution has not returned to the attack code yet.
Generally speaking, any instruction that performs
assignment by pointer dereferencing could be used.
For example if a is defined as long*, and b is defined
as long, the instruction *a = b; could be used for
our purpose. We just need to modify the stack, in-
cluding the ebp value, so that a is the address of
the return address that we want to modify, and b

is the value of an address in the attack code. Such
assignment instructions are common in C programs.

In our victim program (Figure 4) there is no instruc-
tion that performs simple assignment by pointer
dereferencing like *a = b;. We implement our at-
tack in a different way. In the victim program, the
call to strcpy() is used to overflow the buffer and
therefore overwrite the return address. We could
execute this instruction again when the first system
call made by the attack code finishes. This overflows
the buffer and overwrites the return address again.
Execution will return to the attack code when f1()

returns.

Figure 5c shows the stack layout our attack has to
forge in order to satisfy all three requirements. Exe-
cution will return to strcpy() in f1() and by doing
that, the return address of f1() will be overwritten
again. This ensures that execution will go back to
the attack code after a system call is made. Since

execution always starts at the same location in the
attack code, we need to keep some state information.
This could be realized by a counter. Each time the
attack code is entered the counter is checked and in-
cremented, so that the attack code knows how many
system calls it has already made.

4.2 Forging return addresses

We have also successfully extended our attack to
anomaly detection systems that monitor the entire
set of return addresses on the stack. The attack
is confirmed to be successful against an implemen-
tation of anomaly detection approach proposed by
Feng et al. [3].

To achieve this, we need to modify our attack only
slightly to forge the entire set of return addresses
on the process execution stack. In the attack de-
scribed in Section 4.1, we forged one return address
so that the monitor will see a valid program counter
value. Here, the attack is simply required to forge
more stack frames, including that for main(). The
forgery is simpler in this case, however, as the stack
frames contain only the return address and the old
ebp value, without any arguments or local variables.
These stack frames are only checked by the anomaly
detection system, and they are not used in program
execution at all.



5 Using randomization to defend

against forgery attacks

In this section we propose a (white-box) randomiza-
tion technique to defend against the forgery attack
presented in Section 4. The attack of Section 4 re-
quires the attacker to have an in-depth understand-
ing of the internal details of the victim program, as
well as the automaton representing the normal be-
havior of the victim program; e.g., the attacker must
know the value of the program counter and return
addresses to forge. Thus, randomization techniques
could be used to render this type of attack more
difficult.

Although there have been previous works on ad-
dress obfuscation, e.g., [1], our goal here is to hide
program counter and return address values and pre-
vent attackers from forging them, which is differ-
ent from previous works. Kc et al. [7] introduce
the idea of randomizing the instruction set to stop
code-injection attacks. However, our randomization
technique does not require special processor support
as required in [7].

An initial attempt is to randomize a base address.
Two types of base addresses could be randomized:
the starting address of dynamically linked libraries
and the starting address of the code segment in the
executable. The former can be implemented by in-
serting a dummy shared library of random size. The
latter can be implemented by simple modifications
to the linker. Changes to these base addresses are
easy to implement. However, this randomization
relies on only a single secret.

A more sophisticated technique is to reorder func-
tions in the shared library and/or the executable.
This can be combined with the first approach to in-
troduce a different random offset for each function,
although implementation becomes a bit more com-
plicated. Both above techniques rely on the avail-
ability of the object code.

Although white-box approaches could be problem-
atic on x86 platform as discussed in Section 2, re-
ordering functions in the dynamically linked library
and/or the executable is not difficult for the follow-
ing reasons. First, we do not need to make any
changes within a function block. Most other white-
box techniques (e.g., [5, 6, 10]) need to analyze in-
dividual instructions in function blocks and insert
additional instructions. Second, since the section

header table is always available for relocatable files
(not true for executables) and the dynamic symbol
table is always available for shared libraries, binary
analysis becomes much easier.

We note, however, that even this defense is not fool-
proof: if the attacker is able to view the memory
image of the running process, the randomized ad-
dresses could be observed. As such, the attacker’s
code running in the address space of the process
could scan the address space to discern the random-
ized addresses and then adjust the return addresses
it forges on the call stack accordingly. However, this
substantially complicates the attack, and possibly
increases the attack code size.

6 Conclusions and future work

In this paper we perform the first systematic study
on a wide spectrum of anomaly detection techniques
using system calls. We show that previous proposed
solutions could be organized into a space of three
axes, and that such an organization reveals new
possibilities for system-call-based program tracking.
We demonstrate through systematic study and em-
pirical evaluation the benefits and costs of enhanc-
ing each of the three axes and show that some of the
new approaches we explore offer better properties
than previous approaches. Moreover, we demon-
strate novel mimicry attacks on a recent proposal
using return addresses for system-call-based pro-
gram tracking. Finally we describe how a simple
white-box randomization technique can make such
mimicry attacks more difficult.

We have analyzed the program counter and return
addresses as the runtime information acquired by
the anomaly detector. Other runtime information
we have not considered is the system call arguments.
It remains future work to include system call ar-
guments in our systematic analysis. The pattern
extraction algorithm used to group related system
calls together as an atomic unit is another area that
requires further attention.
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Notes

1Prior work [3] states only that “. . . the intruder could
possibly craft an overflow string that makes the call stack
look not corrupted while it really is, and thus evade detec-
tion. Using our method, the same attack would probably still
generate a virtual path anomaly because the call stack is al-
tered.” Our attack demonstrates that this trust in detection
is misplaced.

2
m ranges from 1 to n because the number of atomic units

the anomaly detector remembers is less than n in the first n

states of program execution.

3In [17], n is recommended to be 6, which corresponds to
n = 5 in our parlance.

4Prasad and Chiueh claim that this renders the problem
of distinguishing code from data undecidable [10].

5Our exhaustive search guarantees that the resulting
mimicry attack involves the minimum number of system calls
made in the case of wu-ftpd, Apache httpd and Apache httpd
with chroot patch. However due to the complexity of the
proftpd automaton, we could only guarantee minimum num-
ber of intervening system calls between any two attack system
calls.

6If the automaton is, in fact, deterministic, then optimiza-
tions are possible. In this analysis we do not explicitly con-
sider these optimizations, though the reader should view the
fourth column of Figure 1 as potentially pessimistic.

7Strictly speaking, this constitutes white-box processing,
though qualitatively this is distant from and far simpler than
the in-depth static analysis performed by previous white-box
approaches. Were we to insist on sticking literally to gray-box
techniques, however, we could extract the same information
at run time using less convenient methods.
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A Review of stack frame format

The call stack of the system we are using in this pa-
per is divided up into contiguous pieces called stack
frames. Each frame is the data associated with a call
to one function. The frame contains the arguments
given to the function, the function’s local variables,
etc. When the program is started, the stack has
only one frame. Each time a function is called, a
new frame is made. Each time a function returns,
the frame for that function invocation is eliminated.
If a function is recursive, there can be many frames
for the same function. The frame for the function
in which execution is actually occurring is called the
innermost frame.

The layout of a stack frame is shown in Figure 6.
ebp always stores the address of the old ebp value
of the innermost frame. esp points to the current
bottom of the stack. When program calls a function,
a new stack frame is created by pushing the argu-
ments to the called function onto the stack. The
return address and old ebp value are then pushed.
Execution will switch to the called function and the
ebp and esp value will be updated. After that, space
for local variables are reserved by subtracting the
esp value. When a function returns, ebp is used to
locate the old ebp value and return address. The
old ebp value will be restored and execution returns
to the caller function.

ebp →

esp →

function arguments

return address

old ebp

local variables

Figure 6: Stack frame layout (stack grows down-
wards)



B Source code for attack in Section 4

#include <stdlib.h>

#define DEFAULT_OFFSET 0
#define DEFAULT_BUFFER_SIZE 545
#define NOP 0x90

char attackcode[] =

"\x5d" /* pop %ebp */
"\x68\x81\xf9\xff\xbf" /* push bffff987 (arg to f1) */
"\x68\x42\x86\x04\x08" /* push 8048642 (forge ret addr) */

"\x83\xec\x7f" /* sub $0x7f, %esp */
"\x83\xec\x7f"

"\x83\xec\x7f"
"\x83\xec\x7f"

"\x83\xec\x7f"
"\x83\xec\x7f"
"\x68\xe5\x85\x04\x08" /* push 80485e5 (after f2 in f1) */

"\x68\xd8\xf7\xff\xbf" /* push bffff7d8 (correct ebp of f1) */
"\x89\xe5" /* mov %esp,%ebp */

"\x68\x47\x85\x04\x08" /* push 8048547 (end of f2) */
"\x55" /* push %ebp */
"\x89\xe5" /* mov %esp,%ebp */

"\x68\xd3\x84\x04\x08" /* push 80484d3 (start of f3/lib) */
"\x55" /* push %ebp */

"\x89\xe5" /* mov %esp,%ebp */
"\xc9" /* leave */

"\xc3"; /* ret */

int main(int argc, char *argv[]) {
char *buff, *ptr;

long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i;

if (!(buff = malloc(bsize))) {

printf("Can’t allocate memory.\n");
exit(0);

}

addr = 0xbffff5d0;

printf("Using address: 0x%x\n", addr);

ptr = buff;
addr_ptr = (long *) ptr;

/* return address */
for (i = 0; i < bsize; i+=4)

*(addr_ptr++) = addr;

/* no-op */
for (i = 0; i < bsize/2; i++)
buff[i] = NOP;

/* attack code */

ptr = buff + ((bsize/2) - (strlen(attackcode)/2));
for (i = 0; i < strlen(attackcode); i++)
*(ptr++) = attackcode[i];

/* restore ebp */

ptr = buff + bsize - 9;
addr_ptr = (long *)ptr;

*(addr_ptr) = 0xbffff7f8;

/* end of string */

buff[bsize - 1] = ’\0’;

execl("./victim", "victim", buff, 0);
}


