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Abstract

With the proliferation of wireless devices, mobile ad-hoc
networking (MANET) has become a very exciting and im-
portant technology. However, MANET is more vulnerable
than wired networking. Existing security mechanisms de-
signed for wired networks have to be redesigned in this new
environment. In this paper, we discuss the problem of intru-
sion detection in MANET. The focus of our research is on
techniques for automatically constructing anomaly detec-
tion models that are capable of detecting new (or unseen)
attacks. We introduce a new data mining method that per-
forms ““cross-feature analysis™ to capture the inter-feature
correlation patterns in normal traffic. These patterns can be
used as normal profiles to detect deviation (or anomalies)
caused by attacks. We have implemented our method on a
few well known ad-hoc routing protocols, namely, Dynamic
Source Routing (DSR) and Ad-hoc On-Demand Distance
Vector (AODV), and have conducted extensive experiments
on the ns-2 simulator. The results show that the anomaly
detection models automatically computed using our data
mining method can effectively detect anomalies caused by
typical routing intrusions.

1. Introduction

In recent years, with the rapid proliferation of wireless
devices, the potentials and importance of mobile ad-hoc net-
working have become apparent. A mobile ad-hoc network
is formed by a group of mobile wireless nodes often with-
out the assistance of fixed or existing network infrastruc-
ture. The nodes must cooperate by forwarding packets so
that nodes beyond radio ranges can communicate with each
other.

With a striking similarity of the early days of Internet
research, security issues in ad-hoc networking have not yet
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been adequately investigated in the current stage. MANET
is much more vulnerable than wired (traditional) network-
ing due to its limited physical security, volatile network
topologies, power-constrained operations, intrinsic require-
ment of mutual trust among all nodes in underlying proto-
col design and lack of centralized monitoring and manage-
ment point. There are recent research efforts, e.g., [8, 12],
in providing various prevention schemes to secure the ad-
hoc routing protocols, i.e., authentication and encryption
schemes. However, the history of security research on the
wired environments has taught us that we still need to de-
ploy defense-in-depth or layered security mechanisms be-
cause security is a process (or a chain) that is as secure as
its weakest link. For example, confidential data transmitted
via an encrypted link can still be stolen from the end sys-
tems simply because of break-ins that exploit “weak pass-
words” or system software bugs, which are unlikely to be
completely eliminated. Consequently, a second layer of se-
curity, i.e., intrusion detection and response is needed.

There are two major analytical techniques in intrusion
detection, namely misuse detection and anomaly detection.
Misuse detection uses the “signatures” of known attacks,
and anomaly detection uses established normal profiles only
to identify any unreasonable deviation from them as the re-
sult of some attack. Since MANET is still under heavy
development and not many MANET-specific attacks have
emerged, we believe that anomaly detection is the preferred
technique in the current stage.

Our anomaly detection approach is based on data min-
ing technologies because we are interested in automatically
constructing detection models using logs (or trails) of sys-
tem and network activity data. Some intrusion detection
techniques suggested in literature use probabilistic analy-
sis where the resulting models are not straightforward to be
re-evaluated by human experts [6]. Some data mining mod-
els require temporal sequence from data stream [11], which
is domain specific and highly inefficient when a large fea-
ture set is involved. The problem of anomaly detection in
MANET involves a large feature set. It requires us to de-



velop new data mining approaches.

We have developed a new approach based on cross-
feature analysis that we believe is suitable for MANET
anomaly detection. We observe that strong feature corre-
lation exists in normal behavior patterns. And such corre-
lation can be used to detect deviations caused by abnormal
(or intrusive) activities. For instance, consider a home net-
work which is mainly composed of wirelessly connected
home appliances and possibly a few human held wireless
devices (such as PDAs). Networking controllers reside in
all such nodes so that they can form an ad-hoc network.
Naturally, we would expect that major portion of the estab-
lished routing fabric remains stable for a long time since
home appliances rarely change locations. We also require
that some sensor device be installed on each node which
can record useful statistics information. Let’s imagine that
one sensor finds out that the packet dropping rate increases
dramatically without any noticeable change in the change
rate of routing entries, it is highly likely something unusual
has happened. The controller in the node may have been
compromised to refuse forwarding incoming traffic while
no route change actually takes place (which, if happens,
may result in temporary packet dropping due to invalid stale
routes). The relationship between the features packet drop-
ping rate and change rate of routing entries can be captured
by analyzing the normal patterns of historical data and be
used later to detect (unseen) anomalies.

More formally, in the cross-feature analysis approach,
we explore correlations between each feature and all other
features. Thus, the anomaly detection problem can be trans-
formed into a set of classification sub-problems, where each
sub-problem chooses a different feature as a new class label
and all other features from the original problem are used
as the new set of features. The outputs of each classifier
are then combined to provide an anomaly detector. In our
study, we use two routing protocols, namely, DSR [10] and
AODV [14], and collect trace logs of hormal and abnormal
data in the ns-2 simulator [5]. Our experiment results show
that the anomaly detection models, trained on the normal
traces using our data mining approaches, can identify dif-
ferent routing anomalies very effectively.

The rest of the paper is organized as follows. We briefly
introduce a few MANET routing protocols used in our ex-
periments and analyze different threats against these proto-
cols. We then present a cross-feature analysis framework
for anomaly detection. After that, we present case studies
on MANET routing attack detection problem together with
discussion and findings from these experiments. The paper
concludes with a summary and an outline of future work.

2. Routingin MANET

We study two popular MANET routing protocols im-
plemented in ns-2 in our case study. These protocols are
Ad-hoc On-Demand Distance Vector Routing (AODV) and
Dynamic Source Routing (DSR). There are some other
MANET routing protocols such as ZRP [7]. We consider
the selected protocols because first of all, they are already
implemented in ns-2 and, secondly, they have been inten-
sively studied in recent ad-hoc networking research due to
their simplicity and competitive performance under high
load and mobility. Both of them are on-demand (or reac-
tive) protocols which only request for new routes if neces-
sary (demanded by data traffic when no route is available or
established yet).

2.1. DSR

DSR uses source routing to deliver packets through
MANET. That is, the sender of a data packet finds a source
route (i.e., a full path from the sender to the receiver) and
includes it in the packet header. The intermediate nodes use
this information to determine whether they should accept a
packet and where to forward it. The protocol operates on
two mechanisms: route discovery and route maintenance.
Route discovery is used when the packet sender has not yet
known the correct path to the packet destination. It works
by broadcasting a ROUTE REQUEST message throughout
the network in a controlled manner until it is answered by a
ROUTE REPLY message from either the destination itself
or an intermediate node that knows a valid path to it. For
better performance, the source and intermediate routes save
the route information in cache for future use. Furthermore,
intermediate nodes can also learn new routes by eavesdrop-
ping to other route discovery messages taken place in the
neighborhood. Finally, route maintenance mechanism is
used to notify source and potentially trigger new route dis-
covery events when changes in the network topology inval-
idate a cached route.

2.2. AODV

AODV, or Ad hoc On-demand Distance Vector, is an-
other on-demand protocol, whose route discovery process
is also reactive on an as needed basis. It differs from DSR
in that it does not utilize source routes and instead refer to
a route table stored in each node. A route table records all
reachable nodes in the network with the following informa-
tion: next hop, distance and a sequence number to maintain
freshness. The protocol borrows ideas from distance vec-
tor based algorithms in wired networks. The route table
is used to respond to ROUTE REQUESTSs and later decide



the next hop for incoming data packets needed to be for-
warded. Readers interested in the performance evaluation
between these protocols can refer to [13] which presents an
extensive study of measuring and comparing routing perfor-
mance and requirements between AODV and DSR.

2.3. Attacks

We classify attacks on MANET routing protocols into
the following two categories, based on the underlying rout-
ing functionality.

e Route logic compromise: This type of attacks in-
volves those where incorrect routing control messages
are injected into the network to subvert or damage
route fabrics. They can be further divided into exter-
nal attacks and internal attacks. External attacks are
launched from the outside of the network, while inter-
nal attacks are initiated by one or more compromised
node(s). For instance, Black hole is a classic routing at-
tack where a malicious node advertises itself as having
the shortest path to all nodes. It can be used as a denial-
of-service attack where it can drop the packets later.
Or it can be followed by traffic monitoring and anal-
ysis to find activity patterns of each node. Sometimes
it becomes the first step of a man-in-the-middle attack.
Another interesting attack is called Update storm. The
malicious node deliberately floods the whole network
with meaningless route discovery messages or ROUTE
REPLY messages. The purpose is to exhaust the net-
work bandwidth and effectively paralyze the network.
The first attack is internal, while the second can be ei-
ther external or internal.

e Traffic distortion: This type of attacks can snoop net-
work traffic, manipulate or corrupt packet header or
contents, block certain types of traffic or replay trans-
missions for some malicious purposes. One such ex-
ample is Packet dropping. It does not actively change
routing behavior as Black hole does. Instead it sim-
ply drops data or route packets when it feels neces-
sary. Based on the frequency and selectiveness, it has
the following variations. A random dropping attack
drops packets randomly. A constant dropping attack
drops packets all the time. A periodic dropping drops
packets periodically to escape from being suspected.
A selective dropping attack drops packets based on
its destination or some other characteristics. It can be
introduced to specifically create a partitioning of the
entire network [17]. Another example is Identity im-
personation. Attackers can impersonate another user
to achieve various malicious goals. In a networked en-
vironment, it is important to correctly attribute user be-
havior with proper user identity. Pointing to an inno-

cent individual as the culprit can be even worse than
not finding any identity responsible at all. In particu-
lar, IP and MAC (Medium Access Control) addresses
can be used as identification purposes. Unfortunately,
these identities are easy to be forged during the trans-
mission of data packets on network or link layers if the
underlying communication channel is not secured.

The advantage of the above attack classification system
is that since the functionalities of a router in any routing
protocols generally involve both (a) establishing route path
for future packet delivery, and (b) forwarding data pack-
ets based on established routes. Eventually, all attacks on
routing protocols accomplish their goals by compromising
at least one of the routing functionalities. Therefore, by
collecting and analyzing proper routing and traffic related
measures, we expect to detect possible attacks to the rout-
ing protocols. Note that the two types of attacks are not
exclusive. It is not difficult to fabricate intrusions with com-
bined attacks from both categories. However, most of these
combined attacks can be partitioned into a few smaller sub-
attacks, and each of them can be either route or traffic spe-
cific.

3. Cross-Feature Analysis

The basic idea of a cross-feature analysis framework
is to explore the correlation between one feature and
all the other features, i.e., try to solve the classifica-
tion problem { f1, fo, ..., fi—1, fi+1,---, fL} — fi where
{f1, fa,. .., fr} is the feature vector. Note that in the ma-
chine learning area, the terminology class in a classification
system represents the task to be learned based on a set of
features, and the class labels are all possible values a class
can take. In the domain of intrusion detection, we would
most likely to learn the system healthy status (the class)
from known system information (the features), and normal
or abnormal are both possible class labels.

A basic assumption for anomaly detection is that normal
and abnormal events should be able to separate from each
other based on their corresponding feature vectors. In other
words, given a feature vector, we can tell whether the related
event is normal or not without ambiguity. This assumption
is reasonable since otherwise the feature set is not sufficient
and must be redefined. Under this assumption, we can name
a feature vector related to a normal event a normal vector,
for short. Similarly, we call a feature vector not related to
any normal events an abnormal vector. Here, we assume
that all feature values are discrete. A generalized exten-
sion will be discussed later in the paper. We re-formulate
the problem as follows. For all normal vectors, we choose
one feature as the target to classify (which is called the la-
beled feature), and then compute a model using all normal



vectors to predict the chosen target feature value based on
remaining features. In other words, we train a classifica-
tion model Ci: {fl, ceey fifl, fi+1, ey fL} — {fl} For
normal events, the prediction by C; is very likely to be the
same as the true value of the feature; however, for anoma-
lies, this prediction is likely to be different. The reason is
that C; is trained from normal data, and their feature dis-
tribution and pattern are assumed to be different from those
of anomalies. This implies that when normal vectors are
tested against C;, it has a higher probability for the true and
predicted values of f; to match. Such probability is signifi-
cantly lower for abnormal vectors. Therefore, by evaluating
the degree of result matching, we are more likely to find dif-
ference between normal and abnormal patterns. We name
the model defined above a sub-model with respect to f;.
Obviously, relying on one sub-model with respect to one
labeled feature is insufficient as we haven’t considered the
correlation among other features yet. Therefore the model
building process is repeated for every feature and up to L
sub-models are trained. Once done, we have accomplished
the first step of our cross-feature analysis approach, i.e. the
training procedure, which is summarized in Algorithm 1.

for a general anomaly detection problem directly. and in
practice, a small value of false alarm rate is often allowed,
we can determine the threshold as follows: compute the av-
erage match count values on all normal events, and use a
lower bound of output values with certain confidence level
(which is one minus false alarm rate). As a summary, Algo-
rithm 2 lists the strawman version of the test procedure. For
convenience, f;(x) denotes the value of feature f; belong-
ing to event z. [x] returns 1 if the predicate = is true.

Data: classifiers G, . .
sion threshold 6;
Result: either normal or anomaly;
begin
AvgMatchCount — >~.[Ci(x) = fi(x)]/L;
if AvgMatchCount > 6 then return “normal”;
else return “anomaly”;

end

.,Cr,eventz = (f1,..., fr), deci-

Data: feature vectors of training data f1,. .., fr;
Result: classifiersG,...,Cr;
begin
V4, train C; : {fl7 ey fi717 fi+17 e, fL} — f“
return Cy,...,Cr;
end

Algorithm 1: Cross-Feature Analysis: Training Proce-
dure

To generalize the framework to continuous features or
discrete features with an infinite value space (e.g., the inte-
ger set), we should keep in mind that they cannot be used
directly as class labels since only discrete (nominal) val-
ues are accepted. We can either discretize them based on
frequency or use multiple linear regression. With multiple
linear regression, we use the log distance, \log(?;((j))ﬂ, to
measure the difference between the prediction and the true
value, where C;(x) is the predicted value from sub-model
with respect to f;.

Once all sub-models have been trained, we analyze trace
logs as follows. When an event is analyzed, we apply the
feature vector to all sub-models, and count the number of
models whose predictions match the true values of the la-
beled features. The count is then divided by L, so that the
output, which is called the average match count through-
out the paper, is normalized. We do not need all sub-models
to match. In fact, what we need is a decision threshold.
An event is classified as anomaly if and only if the average
match count is below the threshold. Since it is hard to de-
velop a perfect solution to determine the decision threshold

Algorithm 2: Cross-Feature Analysis: Testing Proce-
dure Using Average Match Count

One straightforward improvement to the strawman algo-
rithm is to use probability instead of the 0-1 count, the prob-
ability values for every possible class are available from
most inductive learners (e.g., decision trees, induction rules,
naive Bayes, etc.) This approach can improve detection ac-
curacy since a sub-model should be preferred where the la-
beled feature has stronger confidence to appear in normal
data. Algorithm 2 can actually be regarded as a special case
under the assumption that the predicted class is the only
valid class and hence has a probability of 1.0, so the proba-
bility for the true class is either 1 (when the rule matches) or
0 (otherwise). More strictly, assume that p(f;(x)|z) is the
estimated probability for the true class of the labeled fea-
ture, we define average probability as the average output
value of probabilities associated with true classes over all
classifiers. The optimized version is shown in Algorithm 3.

Data: classifiers G, . .
sion threshold 6;
Result: either normal or anomaly;
begin
AvgProbability — >~ p(fi(x)|x)/L;
if AvgProbability > 6 then return “normal”;
else return “anomaly”;

end

.,Cr,eventz = (f1,..., fr), deci-

Algorithm 3: Cross-Feature Analysis: Testing Proce-
dure Using Average Probability

We now discuss in detail how the probability func-
tion can be calculated in some popular classification al-
gorithms. Decision tree learners (such as C4.5 [16]) uses




a divide-and-conquer strategy to group examples with the
same feature values until it reaches the leaves of the tree
where it cannot distinguish the examples any further. Sup-
pose that n is the total number of examples in a leaf
node and n; is the number of examples with class la-
bel ¢; in the same leaf. p(¢;|x) = 2 is the probabil-
ity that = is an instance of class ¢;. We calculate prob-
ability in a similar way for decision rule classifiers, e.g.
RIPPER [4]. For naive Bayes classifiers (one such imple-
mentation (NBC) is publicly available at http://fuzzy.cs.uni-
magdeburg.de/~borgelt/software.html), we assume that
a;’s are the feature values of x, p(¢;) is the prior probabil-
ity or frequency of class ¢; in the training data, and p(a;|¢;)
is the prior probability to observe feature attribute value a;
given class label ¢;, then the score n(¢;|x) for class label ¢;
ist n(¢i|z) = p(¢:) 1, p(a;|¢;) and the probability is cal-
culated on the basis of n(¢;|x) as p(¢;|z) = Z"(M””)

k n(lk\z) ’

An lllustrative Example We use a simplified example to
demonstrate our framework. Consider an ad-hoc network
organized by two nodes. Packets can only be delivered from
one end to the other if they are within each other’s transmis-
sion range. We define the following three features. 1) Is the
other node reachable? 2) Is there any packet delivered dur-
ing last 5 seconds, and 3) is there any packet cached for
delivery during last 5 seconds? For simplicity, we assume
all features are binary valued, i.e., either True or False. All
normal events are enumerated in Table 1. We then construct
three sub-models with respect to each feature, shown in Ta-
ble 2. The “Probability” columns here denote the probabil-
ity associated with predicted classes. We use an illustrative
classifier in this example that works as follows. If only one
class is seen in all normal events where other non-labeled
features have been assigned with a particular set of values,
the single class is selected as the predicted class with the
associated probability of 1.0. If both classes are seen, label
True is always selected with the associated probability of
0.5. If none are seen (which means the combination of the
other two feature values never appears in normal data), we
select the label which appears more in other rules, with the
associated probability of 0.5. To compute the probability for
the true class, we use the probability associated with the pre-
dicted class if it matches, or one minus the associated prob-
ability if it does not. For example, the situation when a route
is viable, no data is cached and no data is therefore delivered
is a normal case. We apply the corresponding feature vec-
tor, {True, False, False}, into all three sub-models and
all match the predicted classes. But the first sub-model with
respect to the feature “Reachable?” has a probability of 0.5
only, which is obvious since when no data is delivered, it
does not matter whether the route is up or not. The average
match count is then calculated as (1 + 1 +1)/3 = 1, and
the average probability is (1 + 1 + 0.5)/3 = 0.83. Sup-

pose we use a threshold of 0.5, then both values tell that the
event is normal, which is right. A complete list of the av-
erage match counts and average probabilities for all possi-
ble events (both normal and abnormal) is shown in Table 3.
Note that we use abbreviations here where AMC stands for
the Average match count, and AP is the Average probability.
The results clearly show that given a threshold of 0.5, both
Algorithm 2 and 3 work well to separate normal and abnor-
mal events, while Algorithm 3 works better as it achieves
perfect accuracy (Algorithm 2 has one false alarm with the
input { False, False, False}).

Table 1. Normal events in the 2-node network
example

| Reachable? | Delivered? | Cached? |

True True True
True False False
False False True
False False False

Table 2. Cross-Feature models

| Delivered? | Cached? || Reachable? | Probability |

True True True 1.0
False False True 0.5
False True False 1.0
True False True 0.5

(a) Sub-model with respect to ‘ Reachable?

Reachable? | Cached? || Delivered? | Probability |

True True True 1.0
True False False 1.0
False True False 1.0
False False False 1.0

(b) Sub-model with respect to ‘Delivered?

Reachable? | Delivered? || Cached? | Probability |

True True True 1.0
True False False 1.0
False False True 0.5
False True True 0.5

(c) Sub-model with respect to ‘ Cached?




Table 3. Outcome from both normal and abnor-
mal events

[ Reachable? | Delivered? | Cached? | Class [[AMCTAP |
True True True Normal 1 1
True False Fase Normal 1 0.83
False Fase True Normal 1 0.83
False False False Normal 0.33 | 0.67
True True False Abnormal || 0.33 | 0.17
True False True Abnormal || 0 0
False True True Abnormal || 0.33 | 0.17
Fase True Fase Abnormal || O 0.33

4. Experimental Studies

In order to study how our data mining framework can
be used to construct anomaly detection models for MANET
routing, we have conducted the following simulation exper-
iments.

4.1. Experiment Set-up

We use the Network Simulator ns-2 to run MANET sim-
ulations. As a simulation project developed in ISI/USC, ns-
2 is one of the most widely used wired and wireless network
simulators nowadays.

Parameter Selection We apply the random way-point
model in ns-2 to emulate node mobility patterns with a
topology of 1000m by 1000m. We use both TCP and
UDP/CBR (Constant Bit Rate) as underlying transport pro-
tocols, and different protocols are used separately in differ-
ent experiments. The maximum number of connections is
set to be 100, traffic rate is 0.25 packets per second, the
pause time between movements is 10s and the maximum
movement speed is 20.0m/s. These settings are typical ad-
hoc settings with adequate mobility and data load overhead,
and are used throughout our experiments. We use one run-
ning trace of normal data as training set. For evaluation
purposes, we use several other traces with normal data only,
and a few traces composed with black hole and packet drop-
ping attacks, started at 2500s and 5000s respectively. All
traces have a run time of 10000 seconds with route statis-
tics logged every 5 seconds (see Table 4).

Feature Construction The features (used in classifica-
tion) constructed in our experiments belong to two cate-
gories, non-traffic related and traffic related. All non-traffic
related features are detailed in Table 4 and the meaning of
each feature is further explained in the “Notes” column.
These features capture the basic view of network topol-
ogy and route fabric update frequency. They are calculated
based on the scenario and mobility scripts and the trace log
file.

All traffic related features are collected under the follow-
ing considerations. Packets come from different layers and
different sources. For example, it can be a TCP data packet
delivered from the originator where the feature is collected.
It can also be a route control message packet (for instance,
a ROUTE REQUEST message, used in AODV and DSR),
which is being forwarded at the observed node. We can
then define the first two aspects of a traffic feature as, packet
type, which can be data specific and route specific (includ-
ing different route messages used in AODV and DSR), and
flow direction, which can take one of the following values,
recei ved (observed at destinations), sent (observed at
sources), f or war ded (observed at intermediate routers)
or dr opped (observed at routers where no route is avail-
able for the packet). We do, however, exclude the combina-
tion that data packets can be forwarded or dropped since
it would never appear in a real ns-2 trace log. Routing
protocols in MANET usually encapsulate data packets by
adding particular headers with routing information at the
source node and unpack them at the destination. There-
fore all activities (including forwarding and dropping) dur-
ing the transmission process only involve “route” packets.
Also, we need to evaluate both short-term and long-term
traffic patterns. In our experiments, we sample data in three
predetermined sampling periods, 5 seconds, 1 minute and
15 minutes. Finally, for each traffic pattern, we choose two
typical statistics measures widely used in literature, namely,
the packet count and the standard deviation of inter-packet
intervals. Overall, a traffic feature can be defined as a vec-
tor < packet type, flow direction, sampling periods, statis-
tics measures >. All dimensions and allowed values for
each dimension are defined in Table 5. For instance, the
feature to compute the standard deviation of inter-packet in-
tervals of received ROUTE REQUEST packets every 5 sec-
onds can be encoded as < 2,0,0,1 >. Overall, we have
(6 x 4 —2) x 3 x 2= 132 traffic features, where 6, 4, 3,
2 are the number of packet types, flow directions, sampling
periods and statistics measures, respectively.

For all continuous features or discrete features with in-
finite value space, we discretize them using a frequency-
bucket scheme. We divide the value space of a continu-
ous feature into a fixed number of continuous ranges (buck-
ets), so that the frequencies of occurrences of feature values
dropped in all buckets are equal. Then a continuous feature
can be replaced by the index of its corresponding bucket.
This approach guarantees that the chances of appearance of
all possible labels (after discretization) in a feature are ap-
proximately the same. A pre-filtering process using a small
random subset of normal vectors is necessary to retrieve the
frequency distribution of all continuous features. In our ex-
periments, we choose the bucket number to be 5.



Table 4. Topology and route related features
Features | Notes |

time ignored in classifi cation. Only for reference
velocity node movement velocity (scalar)

route add count routes newly added viaroute discovery
route removal count | stale routes being removed

route fi nd count routes in cache with no need to re-discovery
route notice count routes added via overhearing

route repair count broken routes currently under repair

total route change route change rate within the period

average route length | average length of active routes

Table 5. Traffic related features
| Dimension | Vaues |
Packet type data, route (all), ROUTE REQUEST, ROUTE
REPLY, ROUTE ERROR and HELLOmessages
received, sent, forwarded and dropped
5, 60 and 900 seconds
count and standard deviation of inter-packet
intervals

Flow direction
Sampling periods
Statistics measures

Intrusion Simulation We choose to implement the fol-
lowing intrusion scripts to study the problem of anomaly
detection in MANET.

e Black hole attack

It is a routing specific attack which is implemented
by the following means. For DSR, a compromised
host H. broadcasts bogus ROUTE REQUEST mes-
sages with selected source and destination and a fake
sequence number with maximum allowed value. The
source route field in the fabricated ROUTE REQUEST
specifies a one-hop route from the source to H. as if
the host were the immediate neighbor who forwarded
the source’s first REQUEST. Those messages are not
harmful themselves except for the overhead due to
flooding. The attack is really accomplished by the side
effect that a neighbor overhearing a bogus REQUEST
message would take the source route recorded in the
message, reverse it, mistakenly assume the reversed
source route could be a better route to the source, and
override existing valid route(s) to the source by the
faked route. If the attacker generates multiple bogus
REQUEST messages where each message specifies a
different source and all sources (except for the attacker
itself) are covered, then all traffic flows, no matter
where their destinations could be, will be forwarded
to the compromised node. This is very similar in con-
cept to an astronomical object, i.e., a region in space
in which the pull of gravity is so strong that nothing
can escape, as a corollary to Einstein’s general theory
of relativity.

For AODV, we choose same destination as well as the
source in each bogus message, which is allowed in this
protocol. Similarly, the attack script fabricates a source
sequence number to be the maximal allowed value, and

claims that the compromised host is the next hop from
the source node.

One comment is that these attacks should be tempo-
rary as bogus route updates with maximum sequence
number will be expired eventually. An attacker has
to inject these bogus update messages periodically to
defeat this. However, we observe that the current im-
plementation doesn’t recover completely even after the
attack has completely stopped. The system still reports
abnormal sometime even new updates with sequence
numbers within normal ranges have already been ac-
cepted. The exact reason is still under our investiga-
tion.

e Selective packet dropping attack

Under this traffic specific attack, packets are dropped
based on its destination on the compromised host. The
destination address can be specified as a parameter to
the attack script.

For each type of intrusion, we don’t actually turn on the
intrusion behavior all the time as otherwise it could become
an obvious target to be detected. Instead, we introduce a
simple on-off model where intrusion sessions are inserted
periodically. For the sake of simplicity, we assume the du-
ration of each intrusion session and the gap between two
adjacent intrusion sessions are the same. The value of dura-
tion is specified as a script parameter. We haven’t yet fully
investigated the detection performance when a different set
of period values is used. For instance, some attacks such
as Denial-of-Service, the attacker may not need to hide its
identity at all, therefore the period can take a value as long
as the whole running time (so that no off period actually
takes place). The study on parameter selection remains our
future work. We summarize the details of implemented in-
trusions and parameters in Table 6.

Table 6. Details of simulated MANET intrusions

[ Script | Description | Parameters
Black hole Broadcast bogus routes to all nodes | duration
Selective Packet | Drop al packets to some specifi ¢ duration
Dropping node destination

4.2. Experimental Results

With a combination of AODV vs. DSR and TCP vs.
UDP/CBR, we have conducted all four scenarios in our
experiments. In this paper, we only discuss in details the
results on AODV with TCP. The results on other scenar-
ios, i.e., are similar. In a longer version of this paper
(which is available from the first author’s homepage at
http://www.cc.gatech.edu/~yian), results on other scenarios



are also presented. Also, we choose several classifiers using
different classification algorithms for evaluation purposes.
These classifiers are C4.5, RIPPER, and NBC. Note that all
results discussed in the paper are collected on one node only
for brevity. Similar results and performance have been veri-
fied on other nodes of the simulated network throughout our
experiments.
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As we suggested earlier, a decision threshold can be
computed by calculating the lower bound of output values
from normal events. We here show detection results when
different values of threshold are used by using a recall-
precision curve and explain how an optimal threshold val-
ues can be achieved empirically in this way.

Recall is a measure of the fraction of known positive ex-
amples that are correctly classified. Precision is a measure
of the fraction of the classified positive examples that are

truly positive. If I denotes intrusions and A denotes alarms
(i.e., classified as positive), then recall rate is p(A|I) and
the precision rate is p(I|A). The better (higher) a recall
rate is, the more abnormal instances are captured. The bet-
ter (higher) a precision rate is, the more chance that alarms
are really intrusions. It is hard to achieve perfect results for
both measures at the same time in practice. Some trade-
off has to be made based on other criteria. In a recall-
precision curve, the x-axis is the recall rate and the y-axis
is the precision rate. Conventionally, we draw the x-axis
from 1 to 0 so that the theoretically optimal point ( i.e.,
both values of recall and precision are 1.0) appears in the
top left corner. In our experiments, we obtain various op-
eration points in the recall-precision space by varying deci-
sion thresholds. A larger (smaller) threshold implies more
(less) examples are classified as positive, then the recall
rate may go up (down) since more (less) anomalies have
chance to be classified correctly. On the other hand, the
precision rate may go down (up) since more (less) normal
events are also classified as alarms. The 45-degree diagonal
of the recall-precision curve is the result of “random guess”,
where anomalies and normal connections have equal prob-
ability to be classified as anomalies. The closer the curve
follows the left border and then the top border, the more
accurate a proposed method is. In practice, recall and preci-
sion carry different costs. The choice of decision threshold
is to minimize the total loss.

The recall-precision curves with three classifiers (C4.5,
RIPPER and NBC) are shown in Figure 1 based on aver-
age probability measures. We find out that results from the
three classifiers are quite different. Quantitatively, we can
use the area between a curve and the “random guess” di-
agonal line, or AUC (Area Under the Curve), to evaluate
the accuracy degree of the corresponding classifier. Using
the measure, C4.5 shows almost perfect performance as its
curve is very close to the left and top borders, which is far
much better than those of the other two classifiers. Experi-
ments using average match counts are conducted which are
not shown here due to space limit. We do, however, observe
that RIPPER improves performance dramatically when we
use the average probability instead of the average match
count. The improvement is demonstrated in Figure 2. Sim-
ilar effects do not seem to appear in the other two cases.
In Figure 1, RIPPER can be seen as the second best classi-
fier. The best performance point, which appears in the C4.5
curve, is (0.99, 0.97). Here a simplified criterion is used,
i.e., best performance point occurs with the closest distance
to the optimal point (1, 1).

We show the curves of average probability values from
both normal and abnormal traces in Figure 3. Here only
C4.5 results are shown. Since we use multiple traces in
all test categories (normal and abnormal), the averaged out-
come from each category is used. In the figure, we observe



that almost identical curves for both normal and abnormal
traces are shown during the initial 2500 seconds because no
intrusions start before 2500s in our set-up. After that, it can
be easily identified that normal traces have an nearly flat
curve, which implies that our work has successfully mod-
elled most of the normal events. On the other hand, ab-
normal traces show an oscillating curve which ranges from
0.75 to 0.95, indicating that abnormal activities have been
detected by significant difference from normal activities in
our approach. At 5000s, the curve drops even further. It
is an obvious sign that the amount of abnormal activities
has become larger (which is true since a second intrusion is
introduced at that time).
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Figure 3. Average probability: normal vs. ab-
normal traces

We then plot the output average probability values using
density distribution curves in Figure 4, which can help us
to find out the optimal decision threshold. In the figure, de-
cision threshold is represented by a vertical line. The right
of the threshold line is considered normal. The other side is
abnormal. Here we see the decision threshold is about 0.97
(based on the best performance point we have obtained from
the recall-precision curve).

The results so far come from set-up with mixed intru-
sions from different categories (routing and traffic) in the
same trace. Readers may wonder what would happen if
a different set of intrusion combination is used. Figure 5
shows the detection results of two other intrusion sessions.
One is composed of black hole attacks only, and the other is
composed of selective packet dropping attacks only. Each
trace consists of three intrusions (of same type) which start
on 2500s, 5000s and 7500s respectively. Each individual
intrusion lasts for 100 seconds. The result from the mixed
intrusion scenario is also provided here. Different intrusion
types show slightly different patterns but each of them can
still be easily separated from normal traces by the threshold
line. Areas under the normal curve while to the left of the
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Figure 4. Average probability density distribu-
tion: normal vs. abnormal traces

threshold line (false alarms) and under the intrusive curves
while to the right of the threshold line (anomalies mistak-
enly accepted) are all very small.
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Figure 5. Average probability density distribu-
tion: different intrusion scenarios

5. Related Work

For intrusion prevention in MANET, general approaches
such as key generation and management have been used in
a distributed manner to ensure the authenticity and integrity
of routing information. Binkley [2] reported experiments
on authentication of MAC and IP layers. Hubaux et al. [9]
proposed to use a PGP-like scheme to bootstrap trust re-
lationships. Perrig et al. [15] studied the problem of au-
thenticating broadcast in sensor networks. Their approach
is to achieve asymmetry (which is required for authentica-
tion) through a delayed disclosure of symmetry keys. It re-



quires that the sensor nodes and the base station be time-
synchronized. These prevention or proactive schemes are
in general difficult to defend against internal attacks or pas-
sive attacks.

Researchers are also starting to study intrusion detec-
tion and response technique for MANET. For example, the
CONFIDANT [3] system has a monitor on each mobile
node for observations, reputation records for first-hand and
trusted second-hand observations, trust records to control
trust given to received warnings, and a path manager for
nodes to adapt their behavior according to reputation. How-
ever, the protocol targets specifically at the unfairness prob-
lem and the major concern is that individual node may deny
forwarding packets, which restricts the protocol from being
used against more general attacks.

Early approaches [1] of anomaly detection used statisti-
cal measures of system features, e.g., CPU usage, to build
normal profiles. Ghosh and Schwartzbard [6] proposed us-
ing a neural network to learn a profile of normality. To the
best of our knowledge, we are the first to investigate how
inter-feature correlations can help to build anomaly detec-
tion models.

6. Conclusion and Future Work

We present in this paper a new data mining approach
based on cross-feature analysis for anomaly detection in
MANET routing. The results show that this approach is
very useful when strong inter-feature correlation can be ex-
tracted automatically in the normal system data. We find
that our resulting model is fairly comprehensible by human
experts who can further improve it.

Future Work Although the framework is studied in the
background of MANET routing, we believe that it is a
general anomaly detection approach for network intrusion
problem as well as a few financial fraud detection problems
where only normal data could be trusted. We are currently
applying the framework to some other data sets. Initial ex-
periments using credit card fraud detection have revealed
promising results.

We are developing technologies to reduce computational
cost, where a less number of models would be involved in
the combination process and each of them could be sim-
plified with a reduced feature set. We are currently study-
ing approaches based on both correlation analysis and factor
analysis.
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