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Abstract

Anomaly detection is an essential component of the pro-
tection mechanisms against novel attacks. In this pa-
per, we propose to use several information-theoretic mea-
sures, namely, entropy, conditional entropy, relative condi-
tional entropy, information gain, and information cost for
anomaly detection. These measures can be used to describe
the characteristics of an audit data set, suggest the appro-
priate anomaly detection model(s) to be built, and explain
the performance of the model(s). We use case studies on
Unix system call data, BSM data, and network tcpdump
data to illustrate the utilities of these measures.

1 Introduction

Intrusion detection (ID) is an important component of
the defense-in-depth or layered network security mecha-
nisms. An intrusion detection system (IDS) collects system
and network activity data, e.g., BSM [28] and tcpdump[9]
data, and analyzes the information to determine whether
there is an attack occurring. Two main techniques for intru-
sion detection are misuse detection and anomaly detection.
Misuse detection (sub)systems, for example, IDIOT [10]
and STAT [8], use the “signatures” of known attacks, i.e.,
the patterns of attack behavior or effects, to identify a
matched activity as an attack instance. Misuse detection
are not effective against new attacks, i.e., those that don’t
have known signatures. Anomaly detection (sub)systems,
for example, the anomaly detector of IDES [21], use estab-
lished normal profiles, i.e., the expected behavior, to iden-
tify any unacceptable deviation as possibly the result of an
attack. Anomaly detection can be effective against new at-
tacks. However, new legitimate behavior can also be falsely
identified as an attack, resulting a false alarm. In practice,
reports of attacks are often sent to security staff for investi-
gation and appropriate actions.

In 1998, DARPA conducted an evaluation to assess the

state-of-the-art of ID research. The results showed that
the best research systems had detection rates (i.e., the
percentages of attack incidents correctly identified) below
�����

[18]. Most of the missed intrusions were new at-
tacks that can lead to unauthorized user or root access to
the mocked military network used in the evaluation. The
results of the 1999 DARPA evaluation are even more trou-
bling. With improved capabilities, e.g., the added modules
for detecting the attacks missed in the previous evaluation,
the research IDSs still had detection rates below

�����
be-

cause many new attacks (that is, new in the 1999 evaluation)
were missed [19]. These evaluations showed that even the
cutting-edge ID technology is not very effective against new
attacks, and the improvement is often too slow and too little
to keep up with the “innovation” by sophisticated attackers.

Most of the research systems in the DARPA evaluations,
like the leading commercial products, employ mainly mis-
use detection techniques. The main reason against deploy-
ing anomaly detection (sub)systems is the belief that they
tend to generate many false alarms and hence compromise
the effectiveness of intrusion detection (although some re-
search anomaly detection systems in DARPA evaluations
showed false alarm rates comparable to the research misuse
detection systems). Given that our adversaries will always
develop and launch new types of attacks in an attempt to
defeat our deployed intrusion prevention and detection sys-
tems, and that anomaly detection is the key to the defense
against novel attacks, we must develop significantly better
anomaly detection techniques.

In most computing environments, the behavior of a sub-
ject (e.g., a user, a program, or a network element, etc.)
is observed via the available audit data logs. The basic
premise for anomaly detection is that there is intrinsic char-
acteristic or regularity in audit data that is consistent with
the normal behavior and thus distinct from the abnormal
behavior. The process of building an anomaly detection
model should therefore involve first studying the character-
istic of the data and then selecting a model that best uti-
lizes the characteristic. However, due to the lack of the-



oretical understandings and useful tools for characterizing
audit data, most anomaly detection models are built based
solely on “expert” knowledge or intuition [20], which is of-
ten imprecise and incomplete given the complexities of to-
day’s network environments. As a result, the effectiveness
of the models is limited. More seriously, a lot of research
in anomaly detection (and intrusion detection in general)
has been focusing on a specific (and ad hoc) method for
a specific environment. The research results often do not
contribute to the fundamental understanding of the field nor
lend themselves to the broader problem domain.

Our research aims to provide theoretical foundations as
well as useful tools that can facilitate the IDS develop-
ment process and improve the effectiveness of ID technolo-
gies. In this paper, we propose to use several information-
theoretic measures, namely, entropy, conditional entropy,
relative conditional entropy, information gain, and infor-
mation cost for anomaly detection. These measures can be
used to describe the characteristics of an audit data set, sug-
gest the appropriate anomaly detection model(s) to be built,
and explain the performance of the model(s). We use case
studies on sendmail system call data, sendmail BSM data,
and network tcpdump data to illustrate the utilities of these
measures.

The rest of the paper is organized as follows. Sec-
tion 2 describes the information-theoretic measures. Sec-
tion 3 presents several case studies in using these measures
to build anomaly detection models. Section 4 discusses the
limitations and possible extensions of our current approach.
Section 5 compares our research with related efforts. Sec-
tion 6 outlines our future work.

2 Information-Theoretic Measures

In this section, we discuss several information-theoretic
measures (these concepts are covered in many texts on in-
formation theory, e.g. [4]). We explain how these measures
characterize the regularity embedded in audit data and in-
fluence the performance of anomaly detection models. We
also outline the procedure of using these measures to build
anomaly detection models.

2.1 Entropy

Entropy, or Shannon-Wiener Index [26], is an important
concept in information theory and communication theory.
It measures the uncertainty (or impurity) of a collection of
data items.

Definition 1 For a dataset � where each data item belongs
to a class ������� , the entropy of � relative to this � ���	� -

wise classification is defined as


�� �
��������������
� ���������  

�
� ���

where �
� ��� is the probability of � in � .

The typical interpretation of entropy is that it specifies
the number of bits required to encode (and transmit) the
classification of a data item. The entropy value is smaller
when the class distribution is skewer, i.e., when the data
is “purer”. For example, if all data items belong to one
class, then entropy is 0, and 0 bit needs to be transmitted
because the receiver knows that there is only one outcome.
The entropy value is larger when the class distribution is
more even, i.e., when the data is more “impure”. For exam-
ple, if the data items are evenly distributed in � � � � classes,
then !#"%$&� � � � bits are required to encode a classification.

For anomaly detection, we can use entropy as a mea-
sure of the regularity of audit data. Each unique record
in an audit dataset represents a class. The smaller the en-
tropy, the fewer the number of different records (i.e., the
higher the redundancies), and we say that the more regu-
lar the audit dataset. High-regularity data contains redun-
dancies that help predicting future events because the fact
that many events are repeated (or redundant) in the current
dataset suggests that they will likely to appear in the fu-
ture. Therefore, anomaly detection model constructed us-
ing dataset with smaller entropy will likely be simpler and
have better detection performance. For example, if the au-
dit data contains a single event class, e.g., a user command
dataset where all commands are mail, then the entropy is 0
and a single rule can identify any other event, e.g., ftp, as an
anomaly. If the audit data contains many event types, then
the entropy is greater than 0 and a more complex model is
needed.

2.2 Conditional Entropy

Definition 2 The conditional entropy of X given Y is the
entropy of the probability distribution �

� �'� ()� , that is,


�� �*� +��,� ���- ./��� � - ��01�
� �324()���5�6�  

�
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where �
� �92:()� is the joint probability of � and ( and �

� �'� ()�
is the conditional probability of � given ( .

Because of the temporal nature of user, program, and
network activities, we need to measure the temporal or se-
quential characteristic of audit data. Using the definition
above, let � be a collection of sequences where each is
denoted as

�#;�< 2 ;/= 2?>@>?>A2 ;/B�C&< 2 ;/B � , and each
;ED

is an audit
event; and let + be the collection of subsequences where



each is
�#;�< 2 ;/= 2?>@>?>A2 ;�� � , and

�����
, then the conditional

entropy

 � �*� +�� tells us how much uncertainty remains

for the rest of audit events in a sequence � after we have
seen ( , i.e., the first

�
events of � (note that since ( is al-

ways a subsequence of � here, we have �
� �324()�1� �

� ��� ).
For anomaly detection, we can use conditional entropy as
a measure of regularity of sequential dependencies. And as
in the case of entropy, the smaller the conditional entropy,
the better. For example, if each audit trail is a sequence
of events of the same type, e.g., � ���
	�	�	�	�	�2�
�
�
�
�
/2?>@>?>�� ,
then the conditional entropy is 0 and the event sequences are
deterministic. Conversely, a large conditional entropy indi-
cates that the sequences are not as deterministic and hence
much harder to model.

2.3 Relative Conditional Entropy

Definition 3 The relative entropy between two probability
distributions � � ��� and � � ��� that are defined over the same� � � � is

relEntropy
� �'� ���,� ������ � � � ���8�5�6� � � ���

� � ���
For anomaly detection, we often build a model using

a training dataset and apply the model to the test dataset.
These two datasets must have the same (or very similar)
regularity for the anomaly detection model to attain high
performance. Relative entropy measures the distance of
the regularities between two datasets. It is obvious that
the smaller the relative entropy, the better. For example,
if �*��� , then the relative entropy is 0, indicating that the
two datasets have the same regularity.

When we use conditional entropy to measure the regu-
larity of sequential dependencies, we can use relative con-
ditional entropy to measure the distance between two audit
datasets.

Definition 4 The relative conditional entropy between two
probability distributions � � �7� ()� and � � �7� (8� that are defined
over the same � � � � and ( � ��� is

relCondEntropy
� �7� ���,� ���- .E��� ��- � 0 � � �32:()������� � � �'� ()�

� � �'� ()�
Again, for anomaly detection, the smaller the relative

conditional entropy, the better.

2.4 Information Gain and Classification

Intrusion detection can be cast as a classification prob-
lem: we wish to classify an audit event as belonging to the
normal class, the abnormal class (in the case of anomaly
detection) or a particular class of intrusion (in the case of

misuse detection). Here assuming that classifiers are used
as anomaly detection models, we discuss how regularity of
audit data influences the performance of anomaly detection
models.

Given a training dataset where the records are defined
by a set of features and each record belongs to a class, the
goal of constructing a classifier is that after (selectively) ap-
plying a sequence of feature value tests, the dataset can be
partitioned into “pure” subsets, i.e., each in a target class,
so that the sequence of feature value tests can be used as the
conditions in the classifier to determine the class of a new
record (when its class is not yet known). In this process,
all records in each final subset are considered as belonging
to the majority class of the subset because for each record
there can be only one classification outcome. It is obvious
that the purer the final subsets, the more accurate the clas-
sifier. Therefore when constructing a classifier, a classifica-
tion algorithm needs to search for features with high infor-
mation gain [23], which is the reduction of entropy when
the dataset is partitioned according to the feature values.

Definition 5 The information gain of attribute (i.e., fea-
ture) A on dataset X is

� 	�� � � � 2��1��� 
�� �
��� �
�%� V � �"!�#%$'&)(+*

� � � �� �*� 
 � � � �
where V 	�!-, ;
.�� �1� is the set of possible values of � and � �
is the subset of � where � has value / .

If all features have low information gain, then the clas-
sifier will have poor performance because after the original
dataset is partitioned, the subsets still have large entropy,
i.e., they are still “impure”. Therefore, for anomaly detec-
tion (and intrusion detection in general), the higher the in-
formation gain of the features, the better.

When the regularity of sequential dependencies is used
directly in the anomaly detection model, there is a direct
connection between conditional entropy and information
gain. For example, suppose we have a classifier that uses
the first

�
-1 audit events to classify (i.e., predict) what nor-

mally the
�

th event should be. In this case, the first
�

-1
events are used as the features and the

�
th event as the class.

Since all
�

-1 features can be used in the classifier, for sim-
plicity in our discussion, we can “collapse” all of them into
a single feature � . Then for

� 	�� � � � 2�� � , the second term
in the formula is essentially the conditional entropy of the
length

�
sequence given the length

�
-1 subsequence (pre-

fix). Therefore, when we model a sequence, the smaller the
conditional entropy, the higher the information gain, and
hence the better detection performance of the model.

When we model a complex subject, e.g., network traf-
fics, we often need not only information pertaining to the
current event but also sequential (or temporal) information



on previous events. Conditional entropy can be used in the
feature construction process to suggest what features can be
added so that the feature set contains information on both
current and previous events. For example, suppose that in a
timestamped audit dataset, each record inintially is defined
as

��� 2�� < 2�� = 2@>?>?>&2�� B 2���� where
�

is the timestamp, each
� D is a feature, e.g., the duration of the current connection,
number of bytes sent, etc., and � is the class label. Suppose
that we use the service of a connection as its class, that is,
we want to model how each service normally behaves. If
there is strong regularity, i.e., low conditional entropy, on
the sequence of services (or the combination of service and
other features), we can add features that express this reg-
ularity. One way is to add features that act as place hold-
ers for the services of previous connections (that fall within
a time window), i.e., each connection record includes the
names of some previous services,

. D CA< 2 . D C�= , etc. Alterna-
tively, to reduce the total number of features (and hence the
complexities of the model), we can use some statistical fea-
ture(s), e.g., within the past

�
seconds, the percentage of

the services that are the same as the current one, to approx-
imate the regularity information. In [13], we showed that
these temporal and statistical features usually have high in-
formation gain, and hence a better model can be built when
these features are added to the audit data.

2.5 Information Cost

Intuitively, the more information we have, the better the
detection performance. However, there is always a cost for
any gain. For intrusion detection, one important goal is to
detect intrusions as early as possible so that appropriate re-
sponses can be carried out effectively. We can define in-
formation cost as the average time for processing an au-
dit record and checking against the detection model. When
we include more information, we not only increase the data
processing time, we often increase the model complexities
as well. Therefore, there needs to be a trade-off between
detection performance and cost. For example, the simple
measure Accuracy/Cost may be used to determine the “op-
timal” amount of information to be used in the model.

2.6 Application in Anomaly Detection

The information-theoretic measures we define here can
be used for anomaly detection in the following general ap-
proach:

	 Measure regularity of audit data and perform appropri-
ate data transformation. Iterate this step if necessary so
that the dataset used for modeling has high regularity.

	 Determine how the model should be built, i.e., how
to achieve the best performance or the optimal perfor-

mance/cost trade-off, according to the regularity mea-
sure.

	 Use relative entropy to determine whether a model is
suitable for a new dataset (e.g., from a new environ-
ment).

In Section 3, we present several case studies to illustrate
this approach in details.

3 Case Studies

In this section, we describe our experiments on the Uni-
versity of New Mexico (UNM) sendmail system call data,
MIT Lincoln Lab (DARPA Evaluation) sendmail BSM data,
and MIT Lincoln Lab tcpdump data to show how to use
the information-theoretic measures defined earlier to build
anomaly detection models. These case studies are presented
in the order of simpler to more complex in terms of the au-
dit data used. With UNM system call data, we demonstrate
how to use conditional entropy to determine the appropri-
ate length used for sequencing the system calls to construct
anomaly detection models. With Lincoln Lab BSM data, we
show how to use conditional entropy to determine whether
including additional information, e.g., obname, will likely
to improve detection performance. With Lincoln Lab tcp-
dump data, we show how to use entropy to partition network
data into more regular subsets, and how to use conditional
entropy to determine the time window size by which tem-
poral and statistical features can be computed and included
in anomaly detection models.

3.1 UNM sendmail System Call Data

In a ground-breaking study, Forrest et al. [6] discovered
that the short sequences of (consecutive) system calls made
by a program during its normal executions are very consis-
tent. More importantly, the sequences are different from the
sequences of its abnormal (exploited) executions as well as
the executions of other programs. Therefore, a very concise
database containing these normal sequences can be used as
the “self” definition of the normal behavior of a program
and as the basis to detect anomalies. A number of follow-
on studies, for example, [5, 7, 16, 29, 30], attempted alter-
native models, e.g., variable-length patterns, classification
rules, Neural Nets, Hidden Markov Model, etc., instead of
the original simplistic model of database look-up of fixed-
length sequences. These alternative and more sophisticated
models do not have significant performance improvement
over the original model. It is thus believed that the sendmail
system call data is highly regular and hence a simple model
would suffice. However, we have seen no attempt to study
how to measure the regularity and exploit it in the model
building process. Most noticeably, the original study by
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(a) Conditional entropy of training data.
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(b) Misclassification rate of training data.
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(c) Conditional entropy versus misclassification rate.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

sequence length

m
is

cl
as

si
fic

at
io

n 
ra

te

bounce−1.int      
bounce.int        
queue.int         
plus.int          
sendmail.int      
total             
sm−10763.int      
syslog−local−1.int
fwd−loops−1.int   
fwd−loops−2.int   
fwd−loops−3.int   
fwd−loops−4.int   
fwd−loops−5.int   

(d) Misclassification rate of testing data.

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

sequence length

re
la

tiv
e 

co
nd

iti
on

al
 e

nt
ro

py

bounce−1.int
bounce.int  
queue.int   
plus.int    
sendmail.int
total       
mean        

(e) Relative conditional entropy between training and testing
normal data.
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Figure 1. Results on UNM sendmail data.



Forrest et al. did not suggest a means to determine the ap-
propriate sequence length, rather, an ad hoc trial-and-error
approach was used. The follow-on studies simply used the
sequence length given by Forrest et al.

In this case study, we did not attempt to suggest yet an-
other model. Rather, we studied how to measure the data
regularity and use it to determine the sequence length, i.e.,
how should the model be built, and explain the performance
of the anomaly detection model, i.e., why it works. We ob-
tained a set of sendmail system call traces from UNM. The
details of the data gathering process, experiments on the
data, and results are in [6]. Each trace contains the (entire
sequence(s) of) consecutive system calls made by the run-
time process(es). Using a sliding window of size

�
, we can

process a system call trace into a set of length-
�

sequences.
This set is used as our dataset, i.e., each sequence is a data
point. We can then compute the conditional entropy, a mea-
sure of regulatory, of the dataset. Let � represent the set
of length-

�
sequences, and + be the set of (prefix) subse-

quences of the length
�

-1, the conditional entropy

 � � � +��

then measures the regularity of how the first
�

-1 system
calls determines the

�
th system call. In more details, for

each unique �*� � , � �7� is the number of occurrences of �
in � , and ( � ��� is the length

�
-1 subsequence of � (i.e., if� � � . < . = >?>@> . B�CA< . B � , then ( � ����� � . < . = >@>?> . B�C = . B�CA< � ),

then

 � � � +�� ��� ��� ��� � �� � � ����� �

. & � * �� � � .

Figure 1(a) shows the conditional entropy for each nor-
mal trace type when sequence length varies from 3 to 19
with an increment of 1. Each type here (e.g., “plus.int”,
“queue.int”, etc.) represents a particular kind (or configu-
ration) of normal sendmail runs [6], hence we model each
type separately. For each normal trace type, we used the first� � �

traces as the training data and the last � � � as part of
the testing data. We also put all traces of all types together
to form the “total” dataset and compute a model. “mean” is
simply the average of the results from all traces. We can see
that conditional entropy drops as sequence length increases,
intuitively, because the more information is included, the
more deterministic (i.g., regular) the dataset becomes. We
can also see that conditional entropy drops to very small
values after sequence length reaches 6 or 7 (Forrest et al.
used length 6 in their original study).

The small conditional entropy values suggest that for
sendmail system call data, the

�
th system call is highly

deterministic given the first
�

-1 system calls. According
to the discussion in Section 2.4, we can build a classifier
where the first

�
-1 system calls are the features and the�

th system call is the class. We can expect this anomaly
detection model to have good detection performance. We
applied RIPPER [3], a (typical) classification rule induc-
tion program, to the training data to compute a classifier
and then tested it on the testing data and intrusion traces.
To verify the direct connection between conditional entropy

and detection performance (see Section 2.4), we built the
classifiers using

�
from 3 to 19.

Figure 1(b) shows the misclassification rate on training
data. Figure 1(c) shows the comparison of misclassifica-
tion rate on the training data and conditional entropy when
the values are all scaled into 1 to 2 range. A misclassifica-
tion is the situation where the classifier predicts an item to
be in class � while the actual class is � . Misclassification
rate is computed as the percentage of misclassification in
the whole dataset. Since the classifier here specifies what
is normally the

�
th system call (given the first

�
-1 system

calls), when it is tested on normal data the misclassification
rate should be as low as possible, and when it is tested on
intrusion data the misclassification rate should be as high as
possible. That is, we can use misclassification rate to mea-
sure anomaly detection performance. We see in Figure 1(c)
that, for normal data, the trend of misclassification rate co-
incides with the trend of conditional entropy. This is what
we expected according to the discussion in Section 2.4. Be-
cause of this phenomenon, we can use the conditional en-
tropy plot, which can be considered as the estimated trend
of misclassification rate, to select a sequence length for the
detection model. For example, if detection performance is
all we care about, then we know that length 6 is better than
4, and 14 is better than 6.

Figure 1(d) shows the misclassification rate on testing
data, which includes � ��� of the normal traces of each type
and all the intrusion traces (i.e., “sm-10763.int”, “syslog-
local-1.int”, and the “fwd-loops” traces). We can see that
the misclassification rates for the intrusion traces are much
higher. In fact, beyond sequence length 6, they are in dif-
ferent ranges. This suggests that we can use the range of
the misclassification rate as the indicator of whether a given
trace is normal or abnormal (intrusion). That is, in practice,
the IDS reports an anomaly only when the misclassification
rate (for the whole trace) is high, not when a system call
is misclassified. Figure 1(e) shows the relative conditional
entropy between training and testing normal data. We can
see that when the relative entropy is larger, i.e., when the
training and testing normal datasets differs more (see dis-
cussion in Section 2.3), then the misclassification rate on
testing normal data is also higher. This phenomenon sug-
gests that we should use relative conditional entropy (or rel-
ative entropy) between the training and the testing sets to
either understand why the detection performance is satisfac-
tory or discover that the testing set has different regularity
and hence the model is not suitable.

From Figures 1(b) and 1(d), we can see that the longer
the sequence length, the better the detection performance.
However, as discussed in Section 2.5, we need to consider
information cost. We define information cost as the average
time required for processing an audit record and checking
against the detection model. The results from our time mea-



surement experiments verified the paper-and-pencil analy-
sis that the cost is a linear function of the sequence length.
That is, we can estimate the cost, without building and run-
ning a model, if we know the data and the algorithm used
in the model. Suppose we wish to select a sequence length
to build a model that has the optimal accuracy per cost unit.
We can first estimate accuracy as one minus conditional en-
tropy because we have established that conditional entropy
agrees with misclassification rate, and accuracy is simply
one minus misclassification rate. We can then study the
ratio between estimated accuracy and cost for a given se-
quence length. Figure 1(f) shows the ratios between real
and estimated accuracy and cost. The plots on estimated
accuracy/cost versus sequence length match the trend of the
real accuracy/cost, and can thus be used to select the best
sequence length if we want to optimize accuracy per cost
unit.

3.2 MIT Lincoln Lab sendmail BSM Data

The UNM sendmail data only contains system call
names. An interesting question in building anomaly de-
tection for sendmail (or other programs) is whether there
can be detection performance gain by including additional
information, i.e., arguments, object names, etc. Here we
studied whether we can use the regularity of data to find the
answer instead of the expensive trial-and-error process of
building and testing many models.

We used the BSM data developed and distributed by MIT
Lincoln Lab for the 1999 DARPA evaluation in our exper-
iments. We processed a week’s BSM data and extracted
audit records of all sendmail sessions. Each audit record
corresponds to a system call made by sendmail. In addition
to system call name, each audit record contains additional
information such as the (real and effective) user and group
IDs, the obname (i.e., the name of the object accessed by the
system call), and arguments, etc. That is, a sendmail BSM
trace from a session is (

� .�< 2 " < 2�	 < 2?>@>?> � ,
� .%= 24" = 2�	 = 2@>?>@> � ,>?>?>&2 � . � 2 " � 2�	 � 2@>?>?> � ), instead of (

.�< 2 .%= 2@>?>?>32 . � ). Here,
./D

," D , and 	 D represent a system call name, obname, and argu-
ment, respectively.

From the experiments on UNM data, we know that for
sendmail, conditional entropy directly influences the de-
tection performance. Thus, to find out whether includ-
ing additional information will help improve the detec-
tion performance, we just need to test whether it results
in smaller conditional entropy. We tested two alternative
methods of including obname. In the first, denoted as
so, the trace now becomes (

. < " < 2 . = " = 2?>@>?>&2 . � " � ). That
is, obnames are simply appended to system call names.
In the second, denoted as s-o, the trace now becomes
(
.E< 2 " < 2 .@= 24" = 2?>?>@>A2 . � 2 " � ). That is, obnames are treated as

equally important as system call names in the sequence. We

also changed the value of an obname to either “system” (in-
dicating that the object is in a system directory), “user” (in-
dicating that the object is in a user’s directory) , or “other”.
This transformation is necessary because if we use the full
obname, which is often the name of a temporary file in a
system or user directory, the data will be very irregular.

In our experiments, we used the first
� � �

of all the send-
mail traces for computing conditional entropy and training
classifiers, and the remaining � ��� for testing. Since there
are two directions in sendmail runs, i.e., in-bound and out-
bound, we used the data from the two directions in separate
experiments. There is no exploit against sendmail in the
data, thus, we only compare the detection models on normal
testing data. In Figure 2, the legends “s-in/out” denote sys-
tem call only data, “so-in/out” refer to datasets with system
call combined with obname in so mode, and “s-o-in/out”
denote data sets with system call followed by obname in s-
o mode. A “80” appendix refers to training datasets and a
“20” refers to testing datasets.

From Figure 2(a), we can see that conditional entropy
decreases as the sequence length increases, as in the case of
UNM data. In addition, datasets with system call only have
slightly larger conditional entropy than those with added ob-
name, and that s-o datasets have slightly smaller conditional
entropy than so datasets. Figures 2(b) and 2(c) show that
detection models computed using datasets with added ob-
name have slightly lower misclassification rate (hence bet-
ter detection performance) and that detection models from
s-o datasets slightly outperform models from so datasets.
This again confirms that there is direct connection between
conditional entropy and detection performance. Comparing
Figures 2(b) and 2(c), we can see that for in-bound mails the
testing data have clearly higher misclassification rates than
the training data, whereas out-bound mails do not have such
phenomenon. Figure 2(d) shows the relative conditional en-
tropy between training and testing datasets. We can see that
out-bound mails have much smaller relative conditional en-
tropy than in-bound mails. This again confirms that relative
conditional entropy is indicative of detection performance
on test data sets.

We computed information cost in the same way as in the
experiments on UNM data (that is, the cost here is also a
linear function of sequence length

�
where the sequence

contains both system call names and obnames). The esti-
mated accuracy/cost plots in Figure 2(f) match the trend of
the real accuracy/cost plots in Figure 2(e), and can thus be
used to select not only the best sequence length for a par-
ticular kind of model but also the best model overall. The
plots suggest that although including the additional obname
has shown to improve the detection performance, when the
trade-off of accuracy/cost is considered, it is actually better
to use system call name only.



2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sequence length

co
nd

iti
on

al
 e

nt
ro

py

s−o−in80 
s−in80 
so−in80 
s−o−out80 
s−out80 
so−out80 

(a) Conditional entropy of in-bound and out-bound email.
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(b) Misclassification rate of in-bound email.
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(c) Misclassification rate of out-bound email.
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(d) Relative conditional entropy.
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(e) Accuracy/cost trade-off.
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(f) Estimated accuracy/cost trade-off.

Figure 2. Results on MIT Lincoln Lab sendmail BSM data.



3.3 MIT Lincoln Lab Network Data

A major challenge in anomaly detection is to determine
the granularity of the subject. For example in modeling user
behavior, we need to decide whether to build separate pro-
files for weekdays and weekends, and for the weekdays,
whether finer time segments, e.g., mornings, afternoons,
and evenings, are necessary [17]. Likewise for a network,
we need to decide whether we should build models for each
host, service, or some combinations of the two. Without
proper guidelines and tools, this remains an ad hoc process.
Here we studied whether we can measure the regularity of
network data and use it to guide data partitioning, which is
equivalent to subject refinement, and to help feature con-
struction (and hence model building).

We used the tcpdump data developed and distributed by
MIT Lincoln Lab for the 1998 DARPA evaluation in our
experiments. The data contains traffics in a simulated mil-
itary network that consists of hundreds of hosts. We pro-
cessed four days’ tcpdump data using a modified version of
Bro [24], a programmable IDS with a robust packet filter-
ing and re-assembly engine. Each record describes a con-
nection using the following features: timestamp, duration,
source port, source host, service (i.e., destination port plus
protocol type), destination host, source bytes (i.e., number
of bytes from source to destination), destination bytes, and
flag (summarizing the hand-shake behavior). We used the
connection data of each day as a separate set for experi-
ments. We also separated out the intrusions to create the
pure normal datasets.

We computed entropy, i.e., irregularity, for each (normal)
dataset. Here, each data point is simply a connection record
with the timestamp removed. In order to achieve high de-
tection performance with low false alarm rate, the dataset
needs to be as regular as possible, i.e., its entropy as small
as possible (see discussion in Section 2.1). If the entropy
is large, then we should try to further partition the data set
into more regular subsets. Table 1 shows the entropy of the
original (unpartitioned) datasets and the subsets. Here the
entropy after partitioning is the average of the entropy val-
ues of all the subsets. We can see the entropy values of the
original datasets are very large. This implies that if we build
a model using dataset that contains all hosts and all services,
the data may be too irregular for the model to work well.
We tried all features to select the one that results in sub-
sets with the smallest entropy values. Destination host was
then used for partitioning the data into per-host subsets. We
see that the entropy is significantly decreased, which means
that each subset is much more regular. If we further parti-
tion the data into per-service subsets, the entropy continues
to decrease but not as dramatically. Note that this data par-
titioning process is equivalent to classification process (see
Section 2.4) since both use reduction in entropy, i.e., infor-

Table 1. Entropy of network connection data.
Date Original per-Host (further) per-Service
Mon. 5.78633 3.12795 2.60068
Tue. 6.02534 3.1319 2.69049
Wed. 6.83504 3.63338 3.31312
Thu. 7.38497 2.97228 2.69542

mation gain, as the guiding principle.
In previous work, we showed that introducing some per-

host and per-service temporal and statistical features, e.g.,
“the count of connections to the same host as the current one
in the past 2 seconds”, to the connection data can signifi-
cantly improve the detection performance of network mod-
els [17]. However, we did not develop a means to deter-
mine the proper time window, e.g., 2 seconds, for comput-
ing the features. In the case study here, we explored if we
can use conditional entropy to determine the time window.
We created sequences of service, destination host, flag, and
the combination of the three, from the connection data as
follows: using a sliding time window of

�
seconds and a

step of one connection, scan the connection records that fall
within the past

�
seconds with regard to the current con-

nection and put all the services (or destination hosts, flags,
etc.) into a short sequence. Given a set of such sequences,
we then compute the conditional entropy of sequence � of
length

�
given its subsequence (prefix) ( of length

�
-1, i.e.,

the uncertainty of determining the next service (or host, flag,
etc.) given the past services (or hosts, flags, etc.) Since the
sequences can have different lengths (i.e., for each

�
there

can be different
�

s) due to the fact that the traffic volume
per time window is not constant, we first computed the en-
tropy for each subset of

�
-length sequences, then used the

weighted sum of these entropy values as the entropy of en-
tire set. We used different time windows, with an incre-
ment of 2 seconds, e.g., 2, 4, 6, 8, 10, etc. to create the
sequences and compute the conditional entropy. From Fig-
ures 3(a), 3(b), 3(c), and 3(d), we can see that, in general,
conditional entropy decrease as window size grows. Intu-
itively, this is because the more information is included, the
smaller the uncertainty. We can also see that the conditional
entropy on flag sequences is very low, indicating that, in the
normal dataset, connections within a time window are likely
to have similar behavior with regard to network protocols,
i.e., they all have the normal flags or error flags (e.g., con-
nection failures due to network congestion).

As in previous work [17], for each time window, we con-
structed a set of temporal and statistical features to (approx-
imately) capture the per-host and per-service sequential de-
pendencies, e.g., “for the connections in the past 2 seconds,
the percentage that have the same destination host as the
current one”, “the percentage of different hosts”, and “the
percentage of error flags”, etc. We added these features to
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(a) Conditional entropy: destination only.
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(b) Conditional entropy: service only.
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(c) Conditional entropy: flag only.
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(d) Conditional entropy: service, destination, and flag.
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(e) Misclassification rate: normal and intrusion data.

Figure 3. Results on MIT Lincoln Lab tcpdump data.



the connection records and applied RIPPER to build classi-
fiers as anomaly detection models. Our goals were to study
how the data partitioning scheme based on entropy and the
feature construction process based on conditional entropy
affect the performance of detection models. We used

� ���
of normal data for training and the remaining � � � of nor-
mal data as well as the intrusion data for testing. Two fac-
tors determine how a dataset used in the experiments was
derived from the original dataset: partitioning - none, by
host, or (by host first and further) by service; and tempo-
ral and statistical features - none, or using a particular time
window to compute and add the features. For the datasets
without partitioning, we used the destination host of a con-
nection as its class label, for the per-host datasets, we used
service, and for the per-service datasets, we used flag.

Figure 3(e) shows the misclassification rates of anomaly
detection models constructed from these datasets. A win-
dow size 0 means that no temporal and statistical features
are added. The misclassification rates of all per-host models
(and likewise all per-service models) of the same time win-
dow are averaged. To simplify our presentation, we plot-
ted only the 4-day averages here. We can see from the fig-
ure that intrusion datasets have much higher misclassifica-
tion rates, in ranges clearly separated from the correspond-
ing normal datasets. For normal data, models from the
(more) partitioned datasets have much better performance,
and models from the datasets with added temporal and sta-
tistical features also have better performance on normal test
data.

Note that compared with the results from experiments
on sendmail data, here the relationship between conditional
entropy and misclassification rate is not as clear because
the features we added can only approximate the sequen-
tial dependencies. We are experimenting the “place holder”
method (see Section 2.4) to construct features that directly
represent sequential dependencies.

4 Discussion

In this section, we discuss the advantages as well as lim-
itations of our work.

As illustrated in the case studies, we can use
information-theoretic measures to characterize regularity in
audit data and to guide the model building and evaluation
process. In our experiments, we exhaustively computed the
models, for example, using different sequence lengths, only
for the purpose of showing the relationship between reg-
ularity and detection performance. Once we understand
this relationship, in practice, we can simply compute the
regularity of a given dataset and determine how to build a
model. Computing regularity, in general, is much more ef-
ficient than computing a model. Therefore our approach is
much superior than the current ad-hoc and expensive trial-

and-error practice where there is no guideline for building a
model and explaining its performance.

False alarm rate is a very important performance mea-
sure for intrusion detection in general and anomaly detec-
tion in particular. We believe that because of the proba-
bilistic nature of anomaly detection, alarms should be post-
processed so that sporadic false alarms due to the inherent
uncertainty in data can be filtered out. For example, for
sendmail data, we use misclassification rate on the whole
trace, instead of individual misclassification, for detecting
anomalies. Likewise for network connection data, we can
use misclassification rate on a (time) segment for anomaly
detection. We believe that anomalies within a single con-
nection, e.g., a “buffer overflow” attack to a program on
the destination within a telnet connection, can be best de-
tected using models on lower level data, e.g., system call
data of the target program. Regardless how alarms are post-
processed, the model needs to have high accuracy (e.g., for
normal data, a low misclassification rate). Therefore, we
can say that regularity in audit data (indirectly) influences
false alarm rate.

We have not attempted to explain or reason why certain
regularity exists in a particular dataset. The motivation is
to make our approach independent of the assumptions of
the underlying computing environments because after all,
we aim to develop general theories and tools for anomaly
detection. In practice, our approach can always be compli-
mented by using expert domain knowledge to validate the
computed regularity.

We have shown that there is a relationship between reg-
ularity and detection performance when the model is a clas-
sifier. There are other probabilistic algorithms, e.g., cluster-
ing, Bayesian modeling, Hidden Markov Model, etc. that
can be used for anomaly detection. Can we use similar
information-theoretic measures for these algorithms? And
more fundamentally, can we select the best algorithm to
build model based on the regularity of data? These ques-
tions are for our future work.

Our experiments with regularity measure on sequential
dependencies, i.e., conditional entropy, are all on fixed se-
quence length or time window models. Debar et al. showed
that although a variable-length pattern matching model for
sendmail data is more difficult to build, it can be more ef-
fective [5]. Likewise, using variable time window based
on network traffic load may also improve detection perfor-
mance. Naively, from a conditional entropy plot, we can es-
timate the performance of various sequence lengths (or time
windows), build multiple models with different sequence
lengths, and select an appropriate models to use in run-time
based on the relative conditional entropy between the se-
quences in run-time and in training. A better approach is to
build an adaptive model that can dynamically adjust to dif-
ferent length based on run-time information. We will extend



our approach to facilitate the construction of such models.

5 Related Work

Anomaly detection is an important research area in intru-
sion detection. In earlier systems, a normal profile for a user
or program is usually based on statistical measures of the
system features, e.g., the CPU usage, the number of shell
commands used, etc [1, 11, 27]. In several recent studies,
learning-based approaches were applied to build anomaly
detection models using system call data of privileged pro-
grams [6, 7, 15, 29]. Lane et al. [12] proposed a learning
algorithm for analyzing user shell command history to de-
tect anomalies. The algorithm attempts to address the “con-
cept drift” problem, i.e., when the normal user behavior
changes. EMERALD [25] uses statistical anomaly detec-
tion modules to monitor network traffics and a “resolver” to
correlate alarms from misuse and anomaly detectors across
an enterprise. While these systems all have some degree of
success, they were developed for a particular kind of envi-
ronment. The fundamental question of “how to build and
evaluate anomaly detection model in general” has not been
adequately addressed. As a result, the approaches devel-
oped in these studies may not be applicable to other envi-
ronments.

Researchers have begun to develop principles and the-
ories for intrusion detection. Axelsson [2] pointed out
that the established field of detection and estimation theory
bears similarities with the IDS domain. For example, the
subject of an anomaly detection model corresponds to the
“signal source” in detection and estimation theory, audit-
ing mechanism corresponds to “signal transmission”, audit
data corresponds to “observation space”, and in both cases,
the task is to derive detection rules. Therefore, results from
detection and estimation theory, which have been found ap-
plicable to a wide range of problems, may be used in the
IDS domain. One of the key findings by Axelsson is that
when building a detection model, both anomaly and intru-
sion data is needed to ensure detection performance. In
previous work [17], we showed that using labeled training
dataset with normal and intrusion connections, we can build
highly effective classifier for intrusion detection. However,
in practice, it is difficult to obtain intrusion data. In this
work, we therefore focus on the problem of how to build
anomaly detection models when only normal data is avail-
able for training. Another key finding by Axelsson is that a
detection model should be optimized for some utility func-
tion, not necessarily statistical accuracy, and instead could
be some definition of cost. We are studying how to build
cost-sensitive IDS, i.e., an IDS that provides the best-valued
protection [14].

The most related work is by Maxion et al. [22], where
the relationship between data regularity and anomaly de-

tection performance was studied. The study focused on
sequence data, and hence regularity is defined as condi-
tional entropy. The key result from experiments on syn-
thetic data is that when an anomaly detection model is tested
on datasets with varying regularity values, the detection per-
formance also varies. This suggests that the current practice
of deploying a particular anomaly detection system across
different environments is perhaps flawed and should be re-
considered. Our study here confirmed this finding in that
we showed that the expected detection performance can be
attained only when the relative conditional entropy between
the training and testing datasets is small. Our study is more
extensive because we used real system and network audit
data in our case studies, and more importantly, we defined
more information-theoretic measures and showed how to
use them to build anomaly detection models.

6 Conclusion and Future Work

In this paper, we proposed to use some information-
theoretic measures for anomaly detection. Entropy can be
used to measure the regularity of an audit dataset of un-
ordered records. Conditional entropy can be used to mea-
sure the regularity on sequential dependencies of an audit
dataset of ordered records. Relative (conditional) entropy
can be used to measure the similarity between the regularity
measures of two datasets. Information gain of a feature de-
scribes its power in classifying data items. Information cost
measures the computational cost of processing audit data by
an anomaly detection model. We discussed that these mea-
sures can be used to guide the model building process and
to explain the performance of the model.

In the case studies on sendmail system call data, we
showed that we can use conditional entropy to determine
the appropriate sequence length for accuracy only or for
the trade-off between accuracy and cost, a problem that has
been posed but not solved by the community. We showed
that when relative conditional entropy is low, the detection
performance on the testing dataset is comparable to that on
the training dataset. In the case study on network data, we
showed that entropy can be used to direct the partitioning
of a dataset (i.e., refining the subject) and build better mod-
els. We also showed evidence that conditional entropy can
be used to guide the construction of temporal and statistical
features.

Although our work is still preliminary, we are very en-
couraged by the results thus far. We have intended to show
that despite the need for expert domain knowledge when
building an IDS, theoretical understandings and tools are
not only necessary, but also possible. Although one may
argue that our results are obvious (or not surprising), we
feel that it is very important to develop a formal framework,
even just for stating and validating the obvious, so that the



field of intrusion detection can progress more rapidly and
rigorously.

As for future work, besides conducting more compre-
hensive experiments and evaluations, we will study how to
extend our information-theoretic measures to accommodate
algorithms other than classification for building anomaly
detection models. We will study how to determine the best
algorithm to use based on regularity of the data. We will
also study how to build model with variable sequence length
or time window.
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