
Mining System Audit Data: Opportunities and Challenges

Wenke Lee

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

Wei Fan

IBM T.J. Watson Research Center

Hawthorne, NY 10532

Abstract

Intrusion detection is an essential component of

computer security mechanisms. It requires accurate

and eÆcient analysis of a large amount of system and

network audit data. It can thus be an application

area of data mining. There are several characteris-

tics of audit data: abundant raw data, rich system

and network semantics, and ever \streaming". Ac-

cordingly, when developing data mining approaches,

we need to focus on: feature extraction and con-

struction, customization of (general) algorithms ac-

cording to semantic information, and optimization

of execution eÆciency of the output models. In this

paper, we describe a data mining framework for min-

ing audit data for intrusion detection models. We

discuss its advantages and limitations, and outline

the open research problems.

1 Introduction

As the Internet plays an increasingly important

role in our society, e.g., the infrastructure for E-

Commerce and Digital Government, criminals and

enemies have begun devising and launching sophis-

ticated attacks motivated by �nancial, political, and

even military objectives. We must ensure the se-

curity, i.e., con�dentiality, integrity, and availabil-

ity, of our network infrastructures. Intrusion detec-

tion is the process of identifying and responding to

malicious activity aimed at compromising computer

and network security [2]. It is a critical component

of the defense-in-depth security mechanisms, which

also include: security policy, vulnerability scanning

and patching, authentication and access control, en-

cryption, program wrappers, �rewalls, and intrusion

tolerance.

Intrusion detection is a very hard problem. There

are always \security holes" due to design aws, im-

plementation errors, and operation oversights in to-

day's complex network systems. Research in soft-

ware engineering has shown that it is hard to pre-

vent, discover, and remove all software \bugs". It

is even harder to prevent and detect intrusions be-

cause intelligent adversaries, with malicious intents,

can exploit the security holes (and their combina-

tions) to devise potentially a very large number of

intrusion methods.

Most intrusion detection approaches rely on anal-

ysis of system and network audit data. Network traf-

�c can be recorded using \packet capturing" utilities

(e.g., libpcap [16]), and operating system activi-

ties can be recorded at the system call level (e.g.,

BSM [19]). A basic premise here is that when audit

mechanisms are enabled, distinct evidence of legiti-

mate activities and intrusions will be manifested in

the audit data. Thus, instead of (statically) analyz-

ing (all source codes of) complex software, intrusion

detection uses a more practical approach of analyz-

ing the audit records of run-time activities of net-

works and systems (and users).

At an abstract level, an intrusion detection system

(IDS) extracts features, i.e., the individual pieces of

evidence, from the system event-level or network

packet-level audit data, and uses some modeling

and analysis algorithms to reason about the avail-

able evidence. Traditionally, IDSs are developed

by knowledge-engineering. Expert knowledge or in-

tuition of networks, operating systems, and attack

methods are used to select the features, and hand-

craft the detection rules. Given the complexities

of today's network environments and the sophisti-

cation of the increasingly hostile attackers, the so-

called expert knowledge is often very limited and

unreliable.

On the other hand, data mining approaches can

be used to extract features and compute detection

models from the vast amount of audit data. The

features computed from data can be more \objec-

tive" than the ones hand-picked by experts. The

inductively learned detection models can be more

\generalizable" than hand-coded rules (that is, they

can have better performance against new variants

of known normal behavior or intrusions). There-



fore, data mining approaches can play an impor-

tant role in the process of developing an IDS. We

need to point out that data mining should comple-

ment rather than exclude the use of expert knowl-

edge. Our objective should be to provide the tools,

grounded on sound statistics and machine learning

principles, for IDS developers to construct better ID

models quickly and easily. For example, experts can

view and edit the patterns and rules produced by

data mining approaches, and translate them into ef-

�cient detection modules.

The rest of the paper is organized as follows.

We �rst give an brief overview of research in intru-

sion detection, particularly data mining-based ap-

proaches. We then describe the characteristics of

audit data. We next present a data mining frame-

work for extracting features and computing detec-

tion models, and describe our experiments and re-

sults. We then discuss the bene�ts of as well as

research challenges in applying data mining ap-

proaches to intrusion detection.

1.1 Related Work

Several inuential research IDSs were developed

from mid-80's to mid-90's. STAT [6] and IDIOT [8]

are misuse detection systems that use the \signa-

tures" of known attacks, i.e., the patterns of attack

behavior or e�ects, to identify a matched activity as

an attack instance. By de�nition, misuse detection

is not e�ective against new attacks, i.e., those that

do not have known signatures. NIDES [3] has an

anomaly detection subsystem that uses established

normal pro�les, i.e., the expected behavior, to iden-

tify any unacceptable deviation as the result of an

attack. Anomaly detection is capable of catching

new attacks. However, new legitimate behavior can

also be falsely identi�ed as an attack, resulting in a

false alarm. These systems and most of the later re-

search and commercial systems are developed using

a pure knowledge-engineering process.

In recent years, there have been several learning-

based or data mining-based research e�orts in in-

trusion detection. Warrender et al. [20] showed that

a number of machine-learning approaches, e.g., rule

induction, can be used to learn the normal execu-

tion pro�le of a program, which is the short se-

quences of its run-time system calls made. These

learned models were shown to be able to accurately

detect anomalies caused by exploits on the pro-

grams. Lane and Brodley developed machine learn-

ing algorithms for analyzing user shell commands

and detecting anomalies of user activities [9]. A

team of researchers at Columbia University have

been working on data mining-based intrusion de-

tection since 1996 (see Stolfo et al. [18] for an

overview). The main capabilities developed in this

research include: pattern mining and feature con-

struction, cost-sensitive modeling for eÆcient run-

time model execution, anomaly detection, learning

over noisy data, and correlation analysis over multi-

ple of data streams. The ADAM project at George

Mason University is developing anomaly detection

algorithms based on automated audit data analysis.

(see http://ise.gmu.edu/~dbarbara/adam.html)

2 Audit Data

The �rst step in applying or developing data min-

ing approaches for an application is to have a basic

understanding of the problem domain. We briey

discuss the main characteristics of audit data.

First, system audit data is \raw", i.e., in binary

format, unstructured, and time dependent. For data

mining, we need to �rst preprocess audit data to

a suitable form, i.e., ASCII tabular data with at-

tributes (or features). For example, data output by

libpcap contains binary records describing network

packets. The records are ordered by the timestamps

(i.e., packet arrival time). In order to analyze a

network connection, we need to �rst \summarize"

all packet data that belong to the same connec-

tion. The connection data, in ASCII format, can

contain for each connection its source and destina-

tion hosts, service (e.g., telnet, ftp, etc.), and the

number of bytes transfered, etc., that describe the

connection activities. The key objective of audit

data preprocessing is to extract and construct ap-

propriate features so that e�ective detection models

can be constructed. The challenge for data mining

is to develop techniques to automate some of the

knowledge-intensive data preprocessing and feature

extraction tasks.

Second, audit data contains rich network and sys-

tem semantics. For example, network connections

that originate from the same host, destine for the

same host, or request the same service may be \re-

lated" to a speci�c user or program activity. Such

semantics or context information is very useful in in-

trusion detection. The challenge for data mining is

to customize the general algorithms to incorporate

domain knowledge so that only the relevant patterns

are computed from audit data.

Third, audit data is high-speed and high-volume

streaming data. Auditing mechanisms are designed

to record all network and system activities in great

details. While this can ensure that no intrusion

2



evidence will be missed, the high-speed and high-

volume data stream requires the run-time execution

of detection models be very eÆcient. Otherwise, the

long delay in data analysis simply presents a time

window for attacks to succeed. The challenge for

data mining is to develop techniques to compute de-

tection models that are not only accurate but also

eÆcient in run-time execution.

2.1 Data Mining Algorithms

Several types of algorithms are particularly useful

for mining audit data.

Classi�cation An ideal application in intrusion

detection will be to gather suÆcient \normal" and

\abnormal" audit data for a user or a program, then

apply a classi�cation algorithm to learn a classi�er

that can label or predict new unseen audit data as

belonging to the normal class or the abnormal class.

Association analysis Associations of system

features in audit data, for example, the correlation

between command and argument in the shell com-

mand history data of a user, can serve as the basis

for constructing normal usage pro�les.

Sequence analysis Frequent patterns of time-

based network and system activities provide guide-

lines for incorporating temporal statistical measures

into intrusion detection models. For example, fre-

quent patterns of network-based denial-of-service

(DoS) attacks suggest that several per-host and per-

service measures should be included.

3 A Framework

We have developed a data mining framework for

constructing features and intrusion detection mod-

els from audit data [10]. Using this framework, raw

(binary) audit data is �rst processed and summa-

rized into network connection records (or host ses-

sion records) containing a number of basic features:

timestamp, duration, source and destination IP ad-

dresses and port numbers, protocol type, and an

error condition ag. Specialized data mining pro-

grams [12, 10] are applied to compute frequent pat-

terns, i.e., the association rules [1] describing the

correlations among the features, and the frequent

episodes [15] describing the frequently co-occurring

events across the records. The consistent patterns of

normal activities and the \unique" patterns associ-

ated with intrusions are then identi�ed and analyzed

to construct additional features for the records [13].

Machine learning algorithms (e.g., the RIPPER [4]

classi�cation rule learner) are then used to learn

the detection models. For (run-time) execution ef-

�ciency, multiple models each with di�erent com-

putation cost and detection accuracy are produced.

The idea is to execute the lighter weight detection

model(s) �rst; and if the desired prediction accu-

racy is not attained, the more time-consuming mod-

els will then be activated [5].

We next describe the key components of this

framework in more details.

3.1 Pattern Mining and Comparison

We compute the association rules and frequent

episodes from audit data, which capture the intra-

and inter- audit record patterns. These frequent pat-

terns can be regarded as the statistical summaries of

network and system activities captured in the audit

data, because they measure the correlations among

system features and the sequential (i.e., temporal)

co-occurrences of events.

The basic association rules and frequent episodes

algorithms do not consider any domain knowledge.

That is, assume I is the interestingness measure of a

pattern p, then I(p) = f(support(p); con�dence(p)),

where f is some ranking function. As a result,

the basic algorithms can generate many rules that

are \irrelevant" (i.e., uninteresting) to the appli-

cation. When customizing these algorithms for

audit data, we incorporate schema-level knowl-

edge into the interestingness measures. Assume

IA is a measure of whether a pattern p contains

the speci�ed important (i.e. \interesting") at-

tributes, our extended interestingness measure is

Ie(p) = fe(IA(p); f(support(p); con�dence(p))) =

fe(IA(p); I(p)), where fe is a ranking function that

�rst considers the attributes in the pattern, then the

support and con�dence values.

We discuss two kinds of important schema-level

knowledge about audit data here. First, there is a

partial \order of importance" among the attributes

of an audit record. Some attributes are essential in

describing the data, while others only provide aux-

iliary information. For example, a network connec-

tion can be uniquely identi�ed by the combination

of its start time, source host, source port, desti-

nation host, and service (destination port). These

are the essential attributes when describing network

data. We argue that the \relevant" association rules

should describe patterns related to the essential at-

tributes. We call the essential attribute(s) axis at-

tribute(s) when they are used as a form of item

constraints in the association rules algorithm. Dur-

ing candidate generation, an item set must contain

value(s) of the axis attribute(s). We consider the

3



correlations among non-axis attributes as not in-

teresting. In other words, if p contains axis at-

tribute(s), then IA(p) = 1, else IA(p) = 0. To avoid

having a huge amount of \useless" episode rules, we

extended the basic frequent episodes algorithm to

compute frequent sequential patterns in two phases:

compute the frequent associations using the axis at-

tribute(s); then generate the frequent serial patterns

from these associations.

Another interesting schema-level information is

that some attributes can be the references of other

attributes. A group of events are related if they

have the same reference attribute value. For ex-

ample, connections to the same destination host

can be related. When mining for patterns of such

related events, we need to use reference attribute

as an item constraint. That is, when forming an

episode, an additional condition is that, within its

minimal occurrences, the records covered by its con-

stituent itemsets have the same value(s) of the ref-

erence attribute(s). In other words, if the itemsets

of p refer to the same reference attribute value, then

IA(p) = 1, else IA(p) = 0.

We can compare the patterns, i.e., frequent

episodes computed using our extended algorithms,

from an intrusion dataset and the patterns from

the normal dataset to identify those that exhibit

only in the intrusion dataset. These patterns are

then used for feature construction. The details

of the pattern comparison algorithm is described

in [13]. The idea is to �rst convert patterns into

numbers in such a way that \similar" patterns are

mapped to \closer" numbers. Then pattern compar-

ison and intrusion pattern identi�cation are accom-

plished through comparing the numbers and rank

ordering the results. We devised an encoding pro-

cedure that converts each pattern into a numerical

number, where the order of digit signi�cance cor-

responds to the order of importance of the features.

Each unique feature value is mapped to a digit value

in the encoding process. The \distance" of two pat-

terns is then simply a number where each digit value

is the digit-wise absolute di�erence between the two

encodings. A comparison procedure computes the

\intrusion score" for each pattern from the intrusion

dataset, which is its lowest distance score against all

patterns from the normal dataset, and outputs the

user-speci�ed top percentage patterns that have the

highest intrusion scores as the \intrusion only" pat-

terns.

As an example, consider the \SYN ood" attack

where the attacker uses many spoofed source ad-

dresses to send a lot of S0 connections (only the

�rst SYN packet, the connection request, is sent) to

a port (e.g., http) of the victim host in a very short

time span (the victim's connection bu�er is �lled up,

hence Denial-of-Service). Table 1 shows one of the

top intrusion only patterns, produced using service

as the axis and dst host as the feature.

3.2 Feature Construction

Each of the intrusion patterns is used as a guideline

for adding additional features into the connection

records to build better classi�cation models. We

use the following automatic procedure for parsing

a frequent episode and constructing features:

� Assume F0 (e.g., dst host) is used as the refer-

ence feature, and the width of the episode is w

seconds.

� Add the following features that examine only

the connections in the past w seconds that share

the same value in F0 as the current connection:

{ A feature that computes \the count of

these connections";

{ Let F1 be service, src dst or dst host

other than F0 (i.e., F1 is an essential fea-

ture). If the same F1 value (e.g., \http")

is in all the item sets of the episode, add a

feature that computes \the percentage of

connections that share the same F1 value

as the current connection"; otherwise, add

a feature that computes \the percentage of

di�erent values of F1".

{ Let V2 be a value (e.g., \S0") of a feature

F2 (e.g., flag) other than F0 and F1 (i.e.,

V2 is a value of a non-essential feature). If

V2 is in all the item sets of the episode, add

a feature that computes \the percentage of

connections that have the same V2"; oth-

erwise, if F2 is a numerical feature, add a

feature that computes \the average of the

F2 values".

This procedure parses a frequent episode and uses

three operators, count, percent, and average, to con-

struct statistical features. These features are also

temporal since they measure only the connections

that are within a time window w and share the

same reference feature value. The intuition behind

the feature construction algorithm comes from the

straightforward interpretation of a frequent episode.

For example, if the same feature value appears in

all the itemsets of an episode, then there is a large

percentage of records that have the same value. We

treat the essential and non-essential features di�er-

ently. The essential features describe the anatomy

4



Table 1: Example Intrusion Pattern
Frequent Episode Meaning

(flag = S0, service = http, dst host = victim),

(flag = S0, service = http, dst host = victim)

! (flag = S0, service = http, dst host = victim)

[0:93; 0:03; 2]

93% of the time, after two http connections

with S0 ag are made to host victim, within 2

seconds from the �rst of these two, the third

similar connection is made, and this pattern

occurs in 3% of the data

of an intrusion, for example, \the same service (i.e.,

port) is targeted". The actual values, e.g., \http", is

often not important because the same attack method

can be applied to di�erent targets, e.g., \ftp". On

the other hand, the actual non-essential feature val-

ues, e.g., flag = S0, often indicate the invariant of

an intrusion because they summarize the connection

behavior according to the network protocols. The

\SYN ood" pattern shown in Table 1 results in

the following additional features: a count of connec-

tions to the same dst host in the past 2 seconds, and

among these connections, the percentage of those

that have the same service, and the percentage of

those that have the \S0" flag.

3.3 Constructing EÆcient Models

A detection model is deemed eÆcient if its (analysis

and ) detection delay, or computational cost, is small

enough for the model to keep up with the run-time

data streams (i.e., it can detect and respond to an

intrusion before much damage is done). The com-

putational cost of a model is derived mainly from

the costs of computing the required features. The

feature cost includes not only the time required for

computing its value, but also the time delay of its

readiness (i.e., when it can be computed).

We partition features into three relative cost lev-

els. Level 1 features, e.g., service, are computed

using at most the �rst three packets (or events) of

a connection (or host session). They normally re-

quire only simple recording. Level 2 features are

computed in the middle or near the end of a con-

nection using information of the current connection

only. They usually require just simple book keep-

ing. Level 3 features are computed using informa-

tion from all connections within a given time window

of the current connection. They are often computed

as some aggregates of the level 1 and 2 features. We

assign qualitative values to these cost levels, based on

our run-time measurements with a prototype system

we have developed using Network Flight Recorder

(NFR) [17]: level 1 cost is 1 or 5; level 2 cost is 10;

and level 3 cost is 100. It is important to note that

level 1 and level 2 features must be computed indi-

vidually. However, because all level 3 features re-

quire iteration through the entire set of connections

in a given time window, they can all be computed

at the same time, in a single iteration. This saves

computational cost when multiple level 3 features

are computed for analysis of a given connection.

3.3.1 A Multiple Model Approach

In order to reduce the computational cost of a de-

tection model, the low cost features should be used

whenever possible while maintaining a desired accu-

racy level. Our approach is to build multiple models,

each using features from di�erent cost levels. Low

cost models are always evaluated �rst by the IDS,

and high cost models are used only when the low cost

models can not predict with suÆcient accuracy. We

use a multiple ruleset approach based on RIPPER.

Before discussing the details of our approach, it

is necessary to outline the advantages and disadvan-

tages of the di�erent forms of rulesets that RIPPER

can generate: ordered or un-ordered.

Ordered Rulesets An ordered ruleset has the

form \if r1 then i1 elseif r2 then i2, : : :, else de-

fault". Before learning rules from a dataset, RIP-

PER �rst heuristically orders the classes by one

of the following methods: +freq, increasing fre-

quency; �freq, decreasing frequency; given, a user-
de�ned ordering; mdl, minimal description length

heuristics to guess an optimal ordering. After ar-

ranging the classes, RIPPER �nds rules to separate

class1 from classes class2; : : : ; classn, then rules to

separate class2 from classes class3; : : : ; classn, and

so on. The �nal class classn will become the de-

fault class. The end result is that rules for a sin-

gle class will always be grouped together, but rules

for classi are possibly simpli�ed, because they can

assume that the class of the example is one of

classi; : : : ; classn. If an example is covered by rules

from two or more classes, this conict is resolved in

favor of the class that comes �rst in the ordering.

An ordered ruleset is usually succinct and eÆ-

cient. Evaluation of an entire ordered ruleset does

not require each rule to be tested, but proceeds from

the top of the ruleset to the bottom until any rule

5



evaluates to true. The features used by each rule

can be computed one by one as evaluation proceeds.

The computational cost to evaluate an ordered rule-

set for a given connection is the total cost of com-

puting unique features until a prediction is made.

In any reasonable network environment, most con-

nections are normal. A �freq ruleset is most likely

lowest in computational cost and accurate in identi-

fying normal connections since the top of the ruleset

classi�es normal. On the contrary, a +freq rule-

set would most likely be higher in computational

cost but more accurate in classifying intrusions than

�freq since the ruleset identi�es intrusions from

normal connections and normal is the bottom de-

fault rule. Depending on the class order, the perfor-

mances of given and mdl will be in between those

of �freq and +freq.

Un-ordered Rulesets An un-ordered ruleset

has at least one rule for each class and there are

usually many rules for frequently occurring classes.

There is also a default class which is used for predic-

tion when none of these rules are satis�ed. Unlike

ordered rulesets, all rules are evaluated during pre-

diction and conicts are broken by using the most

accurate rule. Un-ordered rulesets, in general, con-

tain more rules and are less eÆcient in execution

than �freq and +freq ordered rulesets, but there

are usually several rules of high precision for the

most frequent class, normal.

With the advantages and disadvantages of ordered

and un-ordered rulesets in mind, we propose the fol-

lowing multiple ruleset approach:

� We �rst generate multiple training sets

T1; : : : ; T4 using di�erent feature subsets. T1
uses only cost 1 features. T2 uses features of

costs 1 and 5, and so forth, up to T4, which

uses all available features.

� Rulesets R1; : : : ; R4 are learned using their re-

spective training sets. R4 is learned as either

+freq or �freq ruleset for eÆciency, as it may
contain the most costly features. R1; : : : ; R3 are

learned as either �freq or un-ordered rulesets,

as they will contain accurate rules for classify-

ing normal connections, and we �lter normal as

early as possible to reduce computational cost.

� A precision measurement pr
1 is computed for

every rule, r, except for the rules in R4.

� A threshold value �i is obtained for every sin-

gle class. It determines the tolerable precision

1Precision describes how accurate a prediction is. If P is

the set of predictions with label i andW is the set of instances

with label i in the data set, by de�nition, p =
jP\W j
jP j

.

required in order for a classi�cation to be made

by any ruleset except for R4.

In real-time execution, the feature computation and

rule evaluation proceed as follows:

� R1 is evaluated and a prediction i is made.

� If pr � �i, the prediction i will be �red. In this

case, no more features will be computed and

the system will examine the next connection.

Otherwise, additional features required by R2

are computed and R2 will be evaluated.

� Evaluation will continue with R3, followed by

R4, until a prediction is made. The evaluation

of R4 does not require any �ring condition and

will always generate a prediction.

The computational cost for a single connection is the

total computational cost of all unique features used

before a prediction is made. If any level 3 features

(of cost 100) are used at all, the cost is counted only

once since all level 3 features are calculated in one

function call.

The precision and threshold values can be ob-

tained during model training from either the train-

ing set or a separate hold-out validation set. Thresh-

old values are set to the precisions of R4 for each

class on that dataset since we want to reach the same

accuracy as R4. Precision of a rule can be obtained

easily from the positive, p, and negative, n, counts

of a rule, p
p+n

. The threshold value will, on average,

ensure that the predictions emitted by the �rst three

rulesets are not less accurate than using R4 alone.

4 Experiments and Results

In this section, we describe our experiments in build-

ing intrusion detection models on the dataset from

the 1998 DARPA Intrusion Detection Evaluation

Program, prepared by MIT Lincoln Lab [14].

4.1 The DARPA Data

We were provided with about 4 gigabytes of com-

pressed tcpdump [7] data of 7 weeks of network traf-

�c. The data can be processed into about 5 million

connection records of about 100 bytes each. The

data contains the content (i.e., the data portion) of

every packet transmitted between hosts inside and

outside a simulated military base2. The data con-

2Disclaimer: We are in no position to endorse any claim

that this DARPA dataset reects a \typical" real-world en-

vironment. We used it in our study because it is the only

available comprehensive dataset with various normal back-

ground traÆc conditions and a large number of attacks.

6



tains four main categories of attacks: DoS, denial-

of-service, e.g., SYN ood; R2L, unauthorized ac-

cess from a remote machine, e.g., guessing password;

U2R, unauthorized access to local root privileges

by a local unprivileged user, e.g., bu�er-overow

attacks; and PROBING, surveillance and probing,

e.g., port-scan.

We preprocessed the binary tcpdump packet data

into ASCII connection records each with a set of

intrinsic features, i.e., duration, source and destina-

tion hosts, service, number of bytes transferred, and

a ag that signi�es normal or error conditions (e.g.,

\S0") of connection. This set of features are com-

monly used in many di�erent network analysis tasks

(other than intrusion detection).

4.2 Feature and Model Construction

We participated in the oÆcial 1998 DARPA Intru-

sion Detection Evaluation. The 7 weeks of connec-

tion data is training data, and can be labeled us-

ing the provided \truth �les". Due to constraints

in time and data storage space, we did not include

all connection records in pattern mining and model

learning. We instead extracted all the connection

records that fall within a surrounding time window

of plus and minus 5 minutes of the whole duration of

each attack to create a dataset for each attack type,

e.g., SYN ood and port-scan. We also extracted

sequences of normal records to create an aggregate

normal dataset that has the same distribution as the

original dataset.

For each attack type, we performed pattern min-

ing and comparison using its intrusion dataset and

the normal dataset. We constructed features accord-

ing to the top 20% intrusion-only patterns of each

attack type. Here we summarize the automatically

constructed temporal and statistical features:

� The \same host" feature that examine only the

connections in the past 2 seconds that have the

same destination host as the current connec-

tion: the count of such connections, the per-

centage of connections that have the same ser-

vice as the current one, the percentage of dif-

ferent services, the percentage of SYN errors,

and the percentage of REJ (i.e., rejected con-

nection) errors;

� The \same service" features that examine only

the connections in the past 2 seconds that have

the same service as the current connection: the

count of such connections, the percentage of dif-

ferent destination hosts, the percentage of SYN

errors, and the percentage of REJ errors.

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2

De
te

cti
on

 R
at

e

False Alarm Rate

Columbia 
Group1 
Group3 

Figure 1: The Overall Detection Performance

We call these the \time-based traÆc" features

for connection records. In order to detect \slow"

PROBING attacks, we sorted the connection records

by destination hosts, then mined patterns and con-

structed the \host-based traÆc" features that mirror

the \time-based traÆc" features.

We discovered that unlike most of the DoS and

PROBING attacks, the R2L and U2R attacks do

not have any intrusion-only frequent patterns. This

is because most of the DoS and PROBING attacks

involve sending a lot of connections to some host(s)

in a very short period of time, and therefore can have

frequent sequential patterns that are di�erent from

the normal traÆc. The R2L and U2R attacks are

embedded in the data portions of the packets and

normally involve only a single connection. There-

fore, it is unlikely that they can have any unique

frequent traÆc patterns. We instead used domain

knowledge to construct a set of \content" features

to indicate whether the connection contents suggest

suspicious behavior (see [11] for details).

4.2.1 Results

We briey report the performance of our detec-

tion models as evaluated by MIT Lincoln Lab [14]

(see [11] for more detailed results). We trained our

intrusion detection models, using the 7 weeks of la-

beled data, and used them to make predictions on

the 2 weeks of unlabeled test data (i.e., we were not

told which connection is an attack). The test data

contains a total of 38 attack types, with 14 types

in test data only (i.e., our models were not trained

with instances of these attack types, hence these are

considered as \new" attack types).

Figure 1 shows the ROC curves of the detection

models on all intrusions. We compare here our

models with other participants (denoted as Group 1

through 3, group 2 did not cover all intrusions) in the

DARPA evaluation program3. These participating

3The tested systems produced binary output, hence, the

7



Table 2: Average CompCost Per Connection

- ���� ����
CompCost 104.30 4.91

p
3.59

p

%rdc na 95.23% 96.56%

+ ���+ ���+
CompCost 190.93 4.93

p
4.85

p

%rdc na 97.42% 97.46%
p
: signi�cantly reduced

groups used pure knowledge engineering approaches.

We can see from the �gure that our detection model

has the best overall performance, under the \accept-

able" false alarm rate (under 0:02%). However, an

overall detection rate of below 70% is hardly satis-

factory in a mission critical environment.

4.3 Computational Cost Reduction

We compute both a single model and multiple mod-

els on the same DARPA dataset and compare their

computational cost and accuracy. We measure the

expected computational costs, denoted as Com-

pCost, in our experiments. The expected com-

putational cost over all occurrences of each con-

nection class and the average computational cost

per connection over the entire test set are de�ned

as

P
c2S

i

CompCost(c)

jSij
and

P
c2S

CompCost(c)

jSj , respec-

tively, where S is the entire test set, i is a connec-

tion class, and Si represents all occurrences of i in S.

In all of our reported results, CompCost(c) is com-

puted as the sum of the feature computation costs of

all unique features used by all rules evaluated until

a prediction is made for connection c.

4.3.1 Results

In presenting our results, we use +, � and � to

represent +freq, �freq and un-ordered rulesets, re-

spectively. A multiple model approach is denoted as

a sequence of these symbols. For example, ����
indicates that all 4 rulesets are �freq.
Table 2 shows the average computational cost per

connection for a single classi�er approach R4 (� or

+) and the respective multiple model approaches

(� � ��, � � �� or � � �+, � � �+). The

�rst row below each method is the average Com-

pCost per connection and the second row is the re-

ROC's are not continuous. In fact, they should just be data

points, one for each group. Lines are connected for display

and comparison purposes.

Table 3: Precision/Recall for Each Connection Class

CompCost Accuracy
+ ���+ + ���+

TP 0.99 0.99
normal 190.99 4.18

p 0.99 0.99

TP 1.0 1.0
back 75 7

p 1.0 1.0

TP 1.0 1.0
bu�er overow 175 75

p 1.0 1.0

TP 1.0 0.88 5
ftp write 146 60.5

p 1.0 1.0

TP 0.91 0.91
guess passwd 191 37

p 1.0 1.0

TP 1.0 0.83
imap 181 95.3

p 1.0 1.0

TP 0.99 0.99
ipsweep 191 1

p 1.0 1.0

TP 1.0 1.0
land 191 1

p 1.0 1.0

TP 1.0 1.0
load module 168.78 67

p 0.9 1.0

TP 1.0 1.0
multihop 182.43 88.42

p 0.88 0.88

TP 1.0 1.0
neptune 191 1

p 1.0 1.0

TP 1.0 1.0
nmap 191 1

p 1.0 1.0

TP 1.0 1.0
perl 151 77

p 1.0 1.0

TP 1.0 1.0
phf 191 1

p 1.0 1.0

TP 1.0 1.0
pod 191 1

p 0.98 0.98

TP 0.99 0.99
portsweep 191 1

p 1.0 1.0

TP 1.0 0.6
rootkit 155 54.2

p 0.77 1.0

TP 1.0 0.98
satan 191 1

p 0.99 0.99

TP 1.0 1.0
smurf 191 1

p 1.0 1.0

TP 1.0 1.0
spy 191 21.5

p 1.0 1.0

TP 1.0 1.0
teardrop 191 1

p 1.0 1.0

TP 0.99 0.99
warezclient 191 82.9

p 1.0 1.0

TP 0.6 0.6
warezmaster 191 87

p 1.0 1.0

duction (%rdc) by the multiple model over the re-

spective single model, Single�Multiple
Single

� 100%. As

clearly shown in the table, there is always a signi�-

cant reduction by the multiple model approach. In

all con�gurations, the reduction is more than 95%.

An average CompCost of no greater than 5 means

that in practice we can classify most connections by

examining the �rst three packets of the connection

at most 5 times. This signi�cant reduction is due to

the fact that R1; R2 and R3 are very accurate in �l-

tering normal connections (including intrusions not

worthy of response and re-labeled as normal), and

a majority of connections in real network environ-

ments are normal. Our multiple model approach

thus computes more costly features only when they

8



are needed. This is shown in the �rst two columns of

Table 3, which lists the detailed average CompCost

for each connection class for + and ���+.
Detailed precision and TP4 rates of four sample

models are shown in last two columns of Table 3 for

di�erent connection classes. The values for the sin-

gle classi�er and multiple classi�er methods are very

close to each other. This shows that the coverage of

the multiple classi�er method is similar to those of

the corresponding single classi�er method.

5 Discussion

We have presented how data mining approaches can

be applied to system audit data to construct features

and models for intrusion detection. The main ben-

e�t is that, instead of using the unreliable expert

knowledge to manually construct detection mod-

els, we can semi-automatically compute (or mine),

from a large amount of data, more accurate models.

An oÆcial evaluation showed that our mined mod-

els performed very well when compared with purely

knowledge-engineered models. Our experiments also

showed that our multiple-model approach can be

used to construct models with less computational

cost while maintaining accuracy. We are developing

a real-time system to verify that this approach can

indeed reduce run-time detection delay.

There are limitations in our current approaches,

which present research opportunities and challenges.

Our data mining approaches compute only the

\frequent" patterns of connection records. Many in-

trusions, e.g., those that embed all activities within

a single connection, do not have frequent patterns

in connection data. Some of these intrusions have

frequent patterns in packet data. However, there is

no �xed format of packet data contents, and hence

we cannot use our (attribute-based) data mining

programs. Free text mining algorithms are needed

for packet data. Still, some of these intrusions in-

volve only a single event (e.g., one command), and

hence leave no frequent patterns even in packet data.

Thus, we need algorithms capable of mining rare and

unexpected patterns for these intrusions.

We had hoped that the features we constructed

would be general enough so that new variations of

known intrusions can also be detected by our misuse

detectionmodels. The results from the 1998 DARPA

evaluation showed that our models were able to de-

4Unlike precision, TP rate describes the fraction of oc-

currences of a connection class that were correctly labeled.

Using the same notation as in the de�nition of precision,

TP =
jP\W j
jW j

.

tect a large percentage of new PROBING and U2R

attacks because these attacks have relatively lim-

ited variances. However, our models were not as

e�ective for new DoS and R2L attacks because they

exploit the weaknesses of a large number of di�er-

ent services (hence a wide variety of behavior) [11].

We need anomaly detection models to detect new

attacks. Anomaly detection is much more challeng-

ing than misuse detection. False alarm may not be

avoided because a new (or previously not observed)

normal activity can trigger an alarm. In the real-

world, the false alarm rate has to be extremely low

(given the huge number of connections) for the sys-

tem to be acceptable to human operators 5.

There is an increasing trend of distributed and co-

ordinated attacks. Merging audit data from di�er-

ent sites is not eÆcient, and may not be possible due

to legal constraints. We need correlation algorithms

capable of merging alarms (i.e., detection outcomes)

from di�erent sources.

6 Conclusion

Intrusion detection is a real-world application area

critical to the well-being of our society. Based on

the characteristics of system audit data, we devel-

oped specialized data mining algorithms to con-

struct features and detection models. Our experi-

ments showed that the mined models are accurate

(compared with expert system) and eÆcient.

There are still many open problems. We as re-

searchers must take up these opportunities and chal-

lenges, and make contributions to both data mining

and intrusion detection.

7 Acknowledgments

This research has been supported in part by DARPA

(F30602-96-1-0311 and F30602-00-1-0603).

Many thanks to Sal Stolfo and members of his

Columbia research team for all the guidances and

helps. We also wish to thank all the open-minded

researchers in security and data mining who gave us

encouragements and good suggestions at the early

stage of our research.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-

ing association rules between sets of items in

5A recent industry survey found that, on average, an op-

erator spends one hour to investigate an alarm

9



large databases. In Proceedings of the ACM

SIGMOD Conference on Management of Data,

pages 207{216, 1993.

[2] E. Amoroso. Intrusion Detection: An In-

troduction to Internet Surveillance, Correla-

tion, Traps, Trace Back, and Response. Intru-

sion.Net Books, 1999.

[3] D. Anderson, T. Frivold, and A. Valdes. Next-

generation intrusion detection expert system

(NIDES): A summary. Technical Report SRI-

CSL-95-07, Computer Science Laboratory, SRI

International, Menlo Park, California, May

1995.

[4] W. W. Cohen. Fast e�ective rule induction. In

Machine Learning: the 12th International Con-

ference, Lake Taho, CA, 1995. Morgan Kauf-

mann.

[5] Wei Fan, Wenke Lee, Sal Stolfo, and Matt

Miller. A multiple model cost-sensitive ap-

proach for intrusion detection. In Proceedings of

The Eleventh European Conference on Machine

Learning (ECML 2000), Lecture Notes in Arti-

�cial Intelligence No. 1810, Barcelona, Spain,

May 2000.

[6] K. Ilgun, R. A. Kemmerer, and P. A. Porras.

State transition analysis: A rule-based intru-

sion detection approach. IEEE Transactions

on Software Engineering, 21(3):181{199, March

1995.

[7] V. Jacobson, C. Leres, and S. McCanne.

tcpdump. available via anonymous ftp to

ftp.ee.lbl.gov, June 1989.

[8] S. Kumar and E. H. Spa�ord. A software archi-

tecture to support misuse intrusion detection.

In Proceedings of the 18th National Information

Security Conference, pages 194{204, 1995.

[9] T. Lane and C. E. Brodley. Temporal sequence

learning and data reduction for anomaly detec-

tion. ACM Transactions on Information and

System Security, 2(3):295{331, August 1999.

[10] W. Lee. A Data Mining Framework for Con-

structing Features and Models for Intrusion De-

tection Systems. PhD thesis, Columbia Univer-

sity, June 1999.

[11] W. Lee and S. J. Stolfo. A framework for con-

structing features and models for intrusion de-

tection systems. ACM Transactions on Infor-

mation and System Security, 3(4), November

2000.

[12] W. Lee, S. J. Stolfo, and K. W. Mok. Mining

audit data to build intrusion detection models.

In Proceedings of the 4th International Confer-

ence on Knowledge Discovery and Data Mining,

New York, NY, August 1998. AAAI Press.

[13] W. Lee, S. J. Stolfo, and K. W. Mok. Min-

ing in a data-ow environment: Experience in

network intrusion detection. In Proceedings of

the 5th ACM SIGKDD International Confer-

ence on Knowledge Discovery & Data Mining

(KDD-99), August 1999.

[14] R. Lippmann, D. Fried, I. Graf, J. Haines,

K. Kendall, D. McClung, D. Weber, S. Webster,

D. Wyschogrod, R. Cunninghan, and M. Ziss-

man. Evaluating intrusion detection systems:

The 1998 DARPA o�-line intrusion detection

evaluation. In Proceedings of the 2000 DARPA

Information Survivability Conference and Ex-

position, January 2000.

[15] H. Mannila, H. Toivonen, and A. I. Verkamo.

Discovering frequent episodes in sequences. In

Proceedings of the 1st International Conference

on Knowledge Discovery in Databases and Data

Mining, Montreal, Canada, August 1995.

[16] S. McCanne, C. Leres, and V. Jacobson.

libpcap. available via anonymous ftp to

ftp.ee.lbl.gov, 1989.

[17] Network Flight Recorder Inc. Network ight

recorder. http://www.nfr.com, 1997.

[18] S.J. Stolfo, W. Lee, P.K. Chan, W. Fan, and

E. Eskin. Data mining-based intrusion detec-

tors: An overview of the Columbia IDS project.

ACM SIGMOD Record, 30(4), December 2001.

[19] SunSoft. SunSHIELD Basic Security Module

Guide. SunSoft, Mountain View, CA, 1995.

[20] C. Warrender, S. Forrest, and B. Pearlmutter.

Detecting intrusions using system calls: Al-

ternative data models. In Proceedings of the

1999 IEEE Symposium on Security and Pri-

vacy, May 1999.

10


