Probabilistic Trees and Automata for
Application Behavior Modeling

Geoff Mazeroff

mazeroff@cs.utk.edu

Victor De Cerqueira
cerqueir@cs.utk.edu

Jens Gregor
jgregor@cs.utk.edu

Michael G. Thomason
thomason@cs.utk.edu

Department of Computer Science
University of Tennessee
1122 Volunteer Blvd., Suite 203
Knoxville, TN 37996-3450

ABSTRACT

We describe methods for inferring and using probabilistadeds
that capture characteristic pattern structures that msy iexsym-
bolic data sequences. Our emphasis is on modeling the sezjoén
system calls made during the execution of a software apjgita
To obtain learning data, sequences of predetermined sysdésn
are intercepted and mapped into simple symbolic descriptior

a number of runs of the application being modeled. We ther con
struct a probabilistic suffix tree (PST) that representtiobabil-

ity of each system call given a finite-length sequence ofiptesky
observed system calls. Ultimately, we translate the PST amt
analogous probabilistic suffix automaton (PSA) which is@ipao-
nious, variable-order Markov chain. Either model can sgheatly

be used for real-time data monitoring by means of a matching a
gorithm. New contributions include an algorithm for comipgr
two PSTs. We also outline how to extract important Markovian
statistics from a PSA and discuss their possible use. Frelim
experimental results are presented based on Visual Basiooma
embedded in Microsoft Excel worksheets.

1. INTRODUCTION

In this paper we describe methods for inferring and usindpg@ro
bilistic models based on sequences of software applicatietem
calls. Although we concentrate here on application bemaiad-
eling, the methods presented are general by nature and cesetie
in other contexts.

The premise of our approach is as follows. As an applicati@n e
cutes, resource requests are repeatedly made to the agesgs-
tem in order to read or write a file, allocate memory, dynaihica
link with a runtime library, create a child process, and sthfowe
contend that non-trivial applications exhibit patterndehavior in
the sense that the sequence of system calls associatecheite-t

source requests tend to recur in an order that can be cagiyrad
stochastic model.

Our focus is on malicious mobile code neutralization [8].phr-
ticular, we aim to “fingerprint” the normal behavior of Micoft
Office applications with the goal of later being able to detdzs
normal behavior as something that deviates therefrom. Asane
models, we have chosen to use the probabilistic suffix tr&g\P
and probabilistic suffix automaton (PSA) developed by Roalet
[6]. Compared with traditional Markov chains, these moddiawv
high-order information to be handled in an efficient way.

Related work includes the general literature on intrusietection.
In addition to malicious mobile code such as email virusesyi
sions come in many shapes and forms including spoofing where
a user impersonates another user, software exploitatiochvei-

ten is based on controlled buffer overflow, and packet flopdis
seen in denial-of-service attacks. Much of this literaforises on
UNIX application audit trails, e.g., [1] [3] [4] [5] [7], whih leads to
behavior modeling at a higher level from what is considerexh

The paper is organized as follows. In Section 2 we descrilve ho
a Microsoft Office application can be monitored in order tp-ca
ture the sequence of system calls made during its executidm.
describe the PST and its inference in Section 3 together aith
new contribution in the form of a method for comparing two BST
Cross-model comparisons are a useful tool for determiriegek-
tent to which one application model differs from another.Skc-
tion 4 we present the PSA and its inference. We also propotie me
ods for application behavior analysis based on match pilitiedh
and Markovian statistics. Finally, Section 5 provides ipngary
experimental results based on Visual Basic macros embeidded
Microsoft Excel worksheets.

2. APPLICATION MONITORING

The utility we used to capture the sequence of system calB, |
(Identify/Monitor/Protect), was developed by our resbaasso-
ciates at the Florida Institute of Technology [8]. The IMB faro-
vides several pieces of information, such as the call sfacktion
class (section name), function name, parameters to theidanc
etc. The following IMP log excerpt describes one functiofl,ca
ReadFi | e, made during the execution of Microsoft Excel. The
notable components of the log entry are the section n&hkE,

and the function nameéReadFi | e. These allow us to determine
the type of function used as well as its full name.

2884: LoggerDi | . dl | #LoggerDi | . dl | #

LoggerDi | . dl | #Logger DI | . dI | #OLEAUT32. dI | :
12/ 17/ 2002 11:53: 34:536: FI LE: Kernel 32.dl | :
ReadFi | e: 0: TRUE: 3dc: hFil e
C. \ W NDOWB\ Syst enB2\ wshom ocx: 13e6a0:

| pBuf f er: 10: nNunmber Of Byt esToRead: 13e67c:
| pNurber Of Byt esRead: 0: | pOver | apped

Once the log has been generated, we parse it to determinedhe s
tion and function names of every system call. In order to best-
late the two qualifiers, the function name is appended togbtm
name (e.g.FlI LE_ReadFi | e). This correlation will hereafter be
referred to as a “log symbol.” After parsing the log file we dav
a list of all unique log symbols, which are then given a one-to
one integer mapping simply for convenient referencing. &@m-
ple, Fl LE_ReadFi | e and REG STRY_RegOpenKeyExWmay
respectively correspond to the numbers 12 and 7 such that

...FILE. .. ReadFile...
... REA STRY. . . RegOpenKeyExW . .
...FILE. .. ReadFile...

ultimately is represented by the integer sequence

12
7
12.

This integer encoded system call information is then used as
learning sample for the probabilistic suffix tree.

3. PROBABILISTIC SUFFIX TREES

In the following subsections, we describe the suffix tre€l{Rodel
and how it is inferred from the given learning sample. Witbprect

to model usage, we explain how samples can be matched againsg_ 2

PSTs and how PSTs can be compared to one another.

3.1 The Suffix Tree Model

A probabilistic suffix tree is am-ary tree whose nodes are defined
by the occurrence of symbols in the learning sample. Thelnoda
relationship (i.e., child/parent) is based on the pareintgoa suffix

of its children. Each node also contains the probabilityyofilsols
that follow the given symbol in the learning sample. An advan
tage of the suffix tree model is that it is parsimonious. Tlee tr
order (depth) is kept to a minimum by excluding nodes thatato n
provide stochastic information not already given by erigtiodes.
This process of keeping the tree “trimmed” is described irreno
detail below. If the tree were not parsimonious, each bravmid
grow to depthn (wheren is the number of symbols) which would
make the model impractical to use in a computational sense fo
large learning samples.

The suffix tree model is best described using an exampleré&igu
is a pictorial representation of a small suffix tree inferfiexin the
learning samplel 2 31 2 3 2 1 3".

This model is called suffix treebecause each node’s parent is a
suffix of that node. The “prefix” in this case represents the hi
tory of symbols observed thus far. For example, the nod@™1
is a child of “2” because the symbol “2” is a suffix of ‘2". The

) (378,308, 1/4)

Figure 1: A small probabilistic suffix tree

node “12” indicates that the suffix “2” was preceded by “1” in the
learning sample. The numbers in parentheses adjacent hotes

in Figure 1 are the next-symbol conditional probabiliti€ar ex-
ample, according to the next-symbol frequency distributié the
node “2”, the symbol “2” is followed by “1” a third of the timenal
followed by “3” the remainder of the time. Observing the l&ag
sample verifies this statement. The root of the PST is the yempt
symbol, which is inherently a suffix of all other nodes. Ndiatt
the probability of next symbol for the root is not the sametses t
probability of occurrence of each of the individual symbdfghis
were the case, the root’s next-symbol probability distitiuwould

be (1, 3, 1) since each symbol is equally likely to occur in the
sample. This alternate distribution occurs because it tiknown
which symbol would occur after the last symbol in the leagnin
sample. In this case, it is impossible to infer which of thee¢h
symbols would follow the last symbol, “3", in the above saepl

Inferring the Suffix Tree

The algorithm for building a suffix tree is relatively simpMe start
with the root node (empty symbol), and scan through the satopl
determine the probability of each symbol occurring. As rizergd
above we must adjust the probability distribution to ac¢danthe

last symbol in the sample. Next, each symbol becomes a abild n

of the root. For each leaf node in the tree, we scan througbaime

ple to determine the next-symbol probability distributidburing

the scan we also take note of which symbols precede the turren
leaf node because these symbols may become children of the cu
rent node. For example if we are currently dealing with thdeno
“1_2" and the sample contains “3 1 2", “B2" becomes a child
node of “12” because “12” is a suffixof “3_1.2". If the newly-
created leaf node has the same next-symbol probabilitsitaliion

as its parent, we remove the leaf node. This is done becadseyad

a node with the same probabilities as its parent does not myld a
additional stochastic information. It is this conditiorattikeeps the
tree as parsimonious as the learning data allows. This psoak
adding leaf nodes continues until no more leaf nodes can dedad
to the suffix tree.

To better illustrate the effect of “trimming” the tree, ndtet the
sample given in Section 3.1 has the two occurrences of “2 8& o
instance followed by a “1” and the other followed by a “2". The
reason the node “3” does not appear in the tree is because it has

the same probability distribution as its parent (i(&., 1,0)). See

(0 (348, 33, 1/4) /w 318 1/4) /@@1,@,3,’8}

Figure 3: Comparing nodes in the PST

(12,102, 0 2“.|(1f3, 0, 2/3)

3
“ 3.4 Comparing PSTs

Comparing two suffix trees can be based on a distance (i.eyttm

ra

L of difference) between them. The distance between treefirsad!
YA, 102,00 (1. 0,09 @0, 1) as the cumulative distance between the nodes in each tree. Th

13 @l T @ distance between two nodes is defined by a cost metric, fongbea

2 2 2
(x1—22)" + (1 —y2)" + ... + (k1 — k2)

Figure 2: Trimming nodes from the PST is the sum of the squares of the differences. The distaneeket
the two nodes shown in Figure 3 is 0.03125 when using the above

_ cost metric. This distance is zero if and only if the two nodes

Figure 2. identical.

. . Presently we consider two types of comparisons: semantic an
3.3 MatChlng Samples AgamSt a,PST) - flooded. Semantic comparisons involve comparing only thoses
The suffix tree can be used as a model against which additional \yhich exist in both trees. Depending on the learning date, tree
samples are matched. Matching in this sense means trayéh&in 5y have many more nodes than the second, making the compari-
sample while using the PST to calculate the cumulative fitiba son process more complicated. To address this problem wemel
of occurrence for the symbols in the sample. the fact that if a given node does not exist in the suffix tremay

) . : have the same probability as its parent. We can “flood” the tre
To match a sample against a PST, we start with the first synmiabl @ ith unnecessary nodes in order to make the comparison by-cre
look at the root node to dgtermlne the probablllty of enceqng ing as many child nodes as needed while copying the probabili
that symbol. Next we continue by traversing the sample, rgipg distribution from the parent suffix node which exists in botes.
the next symbol onto the previous one. We then attempt tofied t o, example, if “13” exists in the first tree but not in the second
node based on the newly created label excluding the last@ymb {aa we can “flood” the common suffix node. “3”. in the second
For example, if we are trying to match ‘3.2, we attempt to find tree by copying the probability distribution into a new ndaleeled

the node “13” because it contains the probability of “2” occurring «1 37~ Now that both trees contain “3". the cost metric can be
after it. If the node does not exist, however, we remove ome-sy applied successfully.

bol at a time from the front of the node label we are trying talfin

until we encounter a node that does exist in the tree. Thisga® In addition to being used for sample matching and compar giiv-

is called *backtracking” since we move up the tree towardrtiu poses, the PST is used for the inference of an analogoushplisba
until we find a valid node in order to continue the matching-pro ic suffix automaton.

cess. Note that in the worst case we’ll have to backtrackdadbt

because it should contain the next-symbol probability ideorto

proceed with the matching algorithm. The cumulative prdigb 4. PRO_BABILIS_TIC SUFF!X AUTO_MATA

of match is found by multiplying the probabilities at eachtaa !N the following subsections, we describe the suffix autam&b SA)

point against the current cumulative probability, whictyibe at model and how it |S|nferreo_l from the given suffix tree. Withpect _

1.0. to model usage, we explain how samples can be matched against
PSAs and how their Markovian statistics can be used in a behav

For example if we wish to match the sample “1 3 2" against the 10ral sense.

PST shown in Figure 1, the following steps would occur. Step 1 .
the root node gives a probability of 3/8 for encountering’a Step 4.1 The Suffix Automaton Model

2: node “1” gives a conditional probability of 1/3 for encaering The suffix automaton is a recurrent discrete-parameter deskain

a “3”, so our cumulative probability thus far is 3/24. Stepn®de of variable-order. The PSA has a well-defined state spacérand

“1_3" does not exist, so we remove a symbol from the front which sition function, which gives us the ability to calculate Mavian

gives “3". Node “3” gives a probability of 1/2 for encounteg a properties such as steady-state distributions and measittcans

“2". The cumulative probability of match for the sample 48/ matrices. Another advantage of using the suffix automatdahes
ability to generate sequences based on the learning datanfhich

Matching is useful when trying to determine if certain setpes the model was inferred. The concept of a PSA generating a se-

are likely to occur. The higher the probability of match, there guence is analogous to the sequence’s existence in thangarn

likely the given sample may have been used to infer the surfix t sample used to infer the suffix tree.

For example, when matching “1 2" against the PST from Figure 1

the probability of match is 2/8. This can be verified because o As with the suffix tree, the PSA is best explained using a piaito
of a possible eight times, “1 2" occurs in the learning dataéw example. Figure 4 shows the PSA inferred from the PST in Eigur
In comparison “1 2" is more likely to have been used to infexr th 1. The example PSA contains three transient states (i.g.;1Q
suffix tree than “1 3 2” with its cumulative probability of 34 and “2") and five recurrent states. The values on the arcsemimy

state “3” is recurrent because there is an incident arc frar™
which was defined as a recurrent state in Step 1. Any nodes not
marked recurrent after visiting each node are defined asiénain

by default.

4.3 Matching Samples Against a PSA
Matching samples against a suffix automaton yields the catiwel
probability of the given sample being generated by the PSA.

To match a sample against a PSA, we start with the first synttubl a
find its corresponding state in the automaton. Next we caatly
traversing the sample, appending the next symbol onto theqars
one. We then attempt to find the state based on the newly dreate
label. If the node exists, we note the probability of trapsing
from the previous state to the current state and continuerapp
ing symbols from the sample. If the node does not exist, hewev
we remove one symbol at a time from the front of the state label
we are trying to find until we encounter a node that does emist i
the automaton. Note that in the worst case we will have to-back
track to a transient node because it should contain thesyembol
probability in order to proceed with the matching algorithiithis
Figure 4: Probabilistic suffix automaton worst-case is similar to backtracking to the root node inRIST.

For example, if we wish to match the sample “1 3 2” against the

PSA in Figure 4, the following steps would occur. Step 1: ntdde
two given states represents the probability of transitigfiiom one exists, so append “3” which occurs with probability 1/3. B
state to the next. Transitions may only occur where arcsrasept. node “32” exists and a transition occurs with probability 1/1. The
For example, “1” cannot be directly followed by ‘B’ because an cumulative probability of match is 1/3.
arc does not exist between them.

The use of matching samples against suffix automata is amadog

4.2 Inferring the Suffix Automaton to that of matching samples against suffix trees. The higheygp
Before describing the algorithm for inferring the suffix ammaton, bility of match, the more likely it is that the automaton wdilave
it is necessary to note that the nodal relationship in theraaton generated the sample. For example, the probability of miatch

is slightly different from the relationship in the suffix &reinstead ~ the sample "1 3 3"is 1/8, which is less likely than the pregiex-
of parents we havpredecessorsind instead of children we have ~a@mple “1 3 2. The lower probability of match is verified by g
successorsThe concept of a predecessor is based on the excluding that two adjacent 3's never occur in the learning sample.

the right-most symbol. For example, the predecessor tottte s

“1.3.2"is “1_3", as opposed to the parent of 3L2" being “3.2" 4.4 Markovian Statistics

in the suffix tree. Markov models provide a wide array of descriptive statss{].
We mention two such statistics: the steady-state distdbaind the

The suffix automaton is created entirely from the informatioo- expected number of transitions until a given state is rehciide

vided in the suffix tree without any direct reference to treméng steady-state distribution of a recurrent discrete-patamdarkov

sample. The first step is to add all of the leaf nodes in thexsuffi chain is defined as

tree to the automaton as recurrent states. The second $teqrés

ate a state that corresponds to the root of the suffix treetterd

“flood” downward from that state to all of the states createStep = Z miPij
1. For example, to connect the “root” state with.312”, we cre- i
ate two intermediate states ‘3’ and “3” connected from the root
state to “3” to “13” and finally to “1.3.2". The third step is to
create any necessary arcs between states. This is accoeapby
visiting each state in the automaton and looking at its sgrtbol
probability (available in the PST). If a given symbol has afzero
probability of occurrence after the given state label, weesal the
symbol to the end of the state label and remove symbols frem th
front of the new label until we find a state that exists in the automa-
ton. For example, state “3” in Figure 4 has a non-zero probability

or, in matrix notationII = IIP whereP is the transition matrix
andII is a row vector of steady-state probabilities for each recur
rent state. The steady-state distributignis the probability of the
automaton being in stagein the long-run. This statistic is useful
when determining which states are least likely to be enevedt
over a significantly large sample.

The expected number of transitions until a given state ishediis

of encountering a next symbol of “1”; therefore, a new lalsadre- defined as

ated, “32_1" and symbols are removed from the left side until a

match is found. Removing the “3” yields “2" which is a defined mi; =1+ Zpikmkj.
state, so an arc is created betweer?"3and “2.1". The final step k#j

is to assign state types to the states created in Steps 2 dihis3s

done by visiting each of the created nodes and determiniagyif Given that the automaton is in statehe mean number of transi-
edges incident upon them originated from recurrent stdfekis tionsm; is the average number of transitions until the next occur-
is the case, the given node is marked as recurrent. For egampl rence ofj in the long-run.

As an illustrative example, consider the PSA in Figure 4. W& fi the other models for the remaining macros. Therefore, tlaisrm

identify the subset of states that are recurrent, namel,_2", could be deemed malicious based on not having seen the new sym
“2.17, 37, “3 1", “3_2" }. The corresponding steady-state distri- bol in the modeled context.
bution isIT = [%,%,2,1,]. The most likely state is thus “3”.

The other recurrent states are half as likely to occur. Witipect 5.3 Comparing PSTs Against a Benign Model
to the mean transition matrix then we obtain The behavior of the individual macros can be used to inferST
which can then be compared to determine the distance between

6 6 1 5 5 them. We want to see whether the distance between PSTs mod-
6 6 1 5 5 eling malicious behavior and PSTs modeling benign behawilbr
m=15 5 3 4 4 be greater than the distance between two PSTs represemiyg o
1 7 2 6 6 benign behavior. We constructed a benign model using thelsam
71 2 6 6 generated for thBCLi ght andAccunul at e macros. The ta-
ble below lists the distance between each of the PSTs gedeat
where theith column or row in the matrix corresponds to e the five individual macros and the newly constructed benigdeh
recurrent state. Thus, the mean number of transitions fi&hto using a direct comparison with an absolute sum of the difiezs

“3_1” corresponds tenss = 4. Additionally, the mean number of ~ COSt metric.
transitions from “12” to “3” corresponds tanis = 1, which is
expected since the only transition from state2"lis to state “3".

ABCLi ght | Accunul ate | Cel I range | Homepage | Spawnshel |

96.457| 96.563 | 148.979] 140.902| 168.386

5. BEHAVIOR ANOMALY DETECTION

In the following subsections we describe how the stochastid-
els defined thus far can be used to detect anomalous behavior i The models that differed most from the reference PST cooresp
the context of Visual Basic macros embedded in MicrosoftdExc to the two malicious macros as well as the benign macro which
worksheets. We provide descriptions of the macros theraselnd was not used to infer the benign model. T@el | r ange macro
several examples of the model usage techniques mentioeed pr is considered benign, yet it differs from the benign modetersn

ously. Specifically we discuss encountering foreign symbmm- than the maliciouslonepage macro. This demonstrates the need
paring PST models, matching samples against a benign nettel, to have a more encompassing benign model against which com-
using Markovian statistics from the PSA. parisons can be made. Otherwise macros considered to bgnbeni

may be deemed malicious when they actually are not (i.elsa fa
5.1 Macro Descriptions positive).

In order to demonstrate model usage, five macros were wtitize . . .

two of which were considered malicious. Malicious in thisse 5.4 Matching Against a Benign Model

means that the tasks performed are not typically handleddayas, As a candidate sample increases in length, matching aigasitan
and could possibly achieve undesired effects on the usecchime. be used “on the fly.” Such techniques have been investigatied u
The first macroAccunul at e, manipulates numeric values con- a “sliding window” approach in order to obtain a series of chat
tained in worksheet cells Al through A30 by doubling their-cu probabilities [1]. Ideally a benign sample when matchedrega
rent values. The second macfeel | r ange, alters the values in benign model should yield a high probability of match. Likesy
the same range adccumul at e except it uses a loop to insert a malicious sample should yield a low probability of matcim |
the values 1 through 100 into each of the cells. The third macr reality however, a malicious sample could have a high pritibab
ABCLi ght, creates a graph based on cell values entered by the of match except for a few instances when the probability igfmu
user. The fourth macrdjonepage, modifies the registry key used lower than expected - which may be indicative of anomalous ac

by Microsoft Internet Explorer which contains the “home @afpr tivity. The examples presented below are based on spansériga
the browser. The fifth macr@pawnshel | , executes another ap- data and may not reflect the results of matching samples stgain
plication from within Excel. The first three macros are cdeséed much larger benign model.

benign since they simply manipulate cell values within tbe-c

text of the Excel worksheet. The last two macros are consiler We matched the samples fGel | r ange andHonmepage against
malicious since they manipulate the Windows registry aretate the benign model described in Section 5.3. In order to pigper
separate applications. This behavior is of consequencabedhe detect anomalies in this case, the probability of match lshba
ILOVEYOU virus begins propagating itself by setting the aldf higher forCel | r ange since it is classified as a benign macro.
home page to a specified Web address, and the applicatiog bein Figure 5 verifies this behavior since the probability of rhaav-
executed bySpawnshel | may very well be an application that erages higher fo€el | r ange than forHomepage. Specifically

corrupts files on the user's machine [8]. for this sequenceCel | r ange’s probability of match exceeded
Horrepage'’s probability of match 63% of the time. Figure 6 demon-
5.2 Foreign Symbols strates that when we compare a sample which was used to create

If during a “malicious” execution a system call is made in aco the benign model against the model itself, the mean prababf
text which did not occur during the benign execution, bothRIST match is higher. Specifically, the mean probability of matoh
and PSA would yield a probability of zero for encountering th ~ C8! | range and ABCLi ght are 0.242 and 0.247 respectively,
new symbol. Therefore, both models can be used to detect new'Vhereas the mean probability of match fomepage is 0.165.
behavior, which in this sense is deemed anomalous. For exam- . L

ple, Spawnshel | is the only macro that invokes the system call 5.5 Markovian Statistics

Cr eat eProcess. Since each function corresponds to a unique The Markovian statistics made available by the PSA can be ase
symbol, the symbol fo€r eat ePr ocess is not presentin any of well. The steady-state distribution describes how likelgtestate

Probability of Match
o o

°

.
03 ") — Cellrange |
\ - — - Homepage
|
Vo !

150

Probability of Match
° o

o

Figure 6: Matching benign macros only

is to be visited in the long-run. If a sample causes the autmma
to be in an unlikely state with great frequency, the samplddcbe
considered anomalous. The mean number of transitionsasoéls
interest. If a sample causes the automaton to transition ftate

1 to statej in a consistently low number of transitions and; is
quite large, this may indicate that the observed sampletiinge

from statei to statej through some shorter route than the expected

one.

With the benign model mentioned previously, the leasthilstate
(m = 0.000044) involves the system calRegEnunkKey EXWReg-

Cl oseKey, Regd osekKey, RegQuer yVal ueExW andReg-
Quer yVal ueExWin that order. Conversely, the most-likely state
(m = 0.035659) involves the system calRegOpenKey followed

by three repetitions of the sequerReqQuer yVal ueExWReg-

Cl oseKey, andRegCl oseKey. If a PSA were generated to
model a given macro and the system calls in new data occuited w
greater relative frequency than in the model, the new daikldme
deemed suspicious. With regard to the mean number of tiamsit
and the least-likely and most-likely states, then we olestre fol-
lowing values:

mij | Least-likely | Most-likely
Least-likely 22,475 441
Most-likely 22,557 28

Thus, if during execution the least-likely state is accdsem
the most-likely state after just a few hundred state traorstthen
the system call sequence being analyzed is not typical. ames
would, of course, be true for other significant state-paitistics

deviations.

6. CONCLUSION

The goal of this paper was to describe a method of obtaining se
quences of applications system calls and for building andgus
stochastic models based on such sequences. We have pdesente
a means of capturing and encoding system call information fo
Microsoft Windows-based applications using IMP. We hawal
presented two stochastic models, the probabilistic suféig and
probabilistic suffix automaton, as a means of modeling setiple

samples. We have demonstrated that the models can serve as be

havior profiles in order to detect observed anomalous behaWie
believe that these models can ultimately be used to profidghe
behavior in a target application (e.g., Microsoft Excel}lsat ma-
licious behavior (e.g., macro viruses) can be detected.h Wit
concept in mind, the probabilistic models described in gaper
may be of use in the realm of computing security as a means of
detecting malicious application behavior.

7. ACKNOWLEDGEMENTS

The work is supported by the Office of Naval Research undertgra
number N0O0014-01-1-0862. Portions of the figures in thisepap
were generated by the software package SPARTA as descrilzed i
companion paper for the 2003 ACM Southeast Conference.

8. REFERENCES

[1] S.A. Hofmeyr, S. Forrest, and A. Somayaiji. Intrusion
detection using sequences of system catisirnal of
Computer Security6(3):151-180, 1998.

[2] J.G. Kemeny and J.L. SneHinite Markov ChainsSpringer,
New York, 1960.

[3] C. Ko, G. Fink, and K. Levitt. Automated detection of
vulnerabilities in privileged programs by execution
monitoring. InProceedings of the 10th Annual Computer
Security Applications Conferengeages 134—-144, Orlando,
FL, 1994. IEEE Computer Society Press.

[4] T. Lane and C.E. Brodely. Temporal sequence learning and
data reduction for anomaly detectiokCM Trans.
Information and System Securi:295-331, 1999.

[5] T.F. Lunt. Detecting Intruders in Computer Systems. In
Proceedings of the Sixth Annual Symposium and Technical
Displays on Physical and Electronic Securityp90.

[6] D. Ron, Y. Singer, and N. Tishby. The power of amnesia:
Learning probabilisitc automata with variable memory kng
Machine Learning25:117-142, 1996.

[7] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus, and
Y. Vardi. Computer intrusion: Detecting masquerades.
Statistical Sciencel6:1-17, 2001.

[8] J.A. Whittaker and A. De Vivanco. Neutralizing
Windows-based malicious mobile code.Rroc. ACM
Symposium on Applied Computing (Madrid, March 2002)
pages 242-246. ACM Press, 2002.

