
Probabilistic Trees and Automata for
Application Behavior Modeling

Geoff Mazeroff Victor De Cerqueira Jens Gregor Michael G. Thomason
mazeroff@cs.utk.edu cerqueir@cs.utk.edu jgregor@cs.utk.edu thomason@cs.utk.edu

Department of Computer Science

University of Tennessee

1122 Volunteer Blvd., Suite 203

Knoxville, TN 37996-3450

ABSTRACT
We describe methods for inferring and using probabilistic models
that capture characteristic pattern structures that may exist in sym-
bolic data sequences. Our emphasis is on modeling the sequence of
system calls made during the execution of a software application.
To obtain learning data, sequences of predetermined systemcalls
are intercepted and mapped into simple symbolic descriptions for
a number of runs of the application being modeled. We then con-
struct a probabilistic suffix tree (PST) that represents theprobabil-
ity of each system call given a finite-length sequence of previously
observed system calls. Ultimately, we translate the PST into an
analogous probabilistic suffix automaton (PSA) which is a parsimo-
nious, variable-order Markov chain. Either model can subsequently
be used for real-time data monitoring by means of a matching al-
gorithm. New contributions include an algorithm for comparing
two PSTs. We also outline how to extract important Markovian
statistics from a PSA and discuss their possible use. Preliminary
experimental results are presented based on Visual Basic macros
embedded in Microsoft Excel worksheets.

1. INTRODUCTION
In this paper we describe methods for inferring and using proba-
bilistic models based on sequences of software applicationsystem
calls. Although we concentrate here on application behavior mod-
eling, the methods presented are general by nature and can beused
in other contexts.

The premise of our approach is as follows. As an application exe-
cutes, resource requests are repeatedly made to the operating sys-
tem in order to read or write a file, allocate memory, dynamically
link with a runtime library, create a child process, and so forth. We
contend that non-trivial applications exhibit patterns ofbehavior in
the sense that the sequence of system calls associated with the re-

source requests tend to recur in an order that can be capturedby a
stochastic model.

Our focus is on malicious mobile code neutralization [8]. Inpar-
ticular, we aim to “fingerprint” the normal behavior of Microsoft
Office applications with the goal of later being able to detect ab-
normal behavior as something that deviates therefrom. As our core
models, we have chosen to use the probabilistic suffix tree (PST)
and probabilistic suffix automaton (PSA) developed by Ron etal.
[6]. Compared with traditional Markov chains, these modelsallow
high-order information to be handled in an efficient way.

Related work includes the general literature on intrusion detection.
In addition to malicious mobile code such as email viruses, intru-
sions come in many shapes and forms including spoofing where
a user impersonates another user, software exploitation which of-
ten is based on controlled buffer overflow, and packet flooding as
seen in denial-of-service attacks. Much of this literaturefocuses on
UNIX application audit trails, e.g., [1] [3] [4] [5] [7], which leads to
behavior modeling at a higher level from what is considered here.

The paper is organized as follows. In Section 2 we describe how
a Microsoft Office application can be monitored in order to cap-
ture the sequence of system calls made during its execution.We
describe the PST and its inference in Section 3 together witha
new contribution in the form of a method for comparing two PSTs.
Cross-model comparisons are a useful tool for determining the ex-
tent to which one application model differs from another. InSec-
tion 4 we present the PSA and its inference. We also propose meth-
ods for application behavior analysis based on match probabilities
and Markovian statistics. Finally, Section 5 provides preliminary
experimental results based on Visual Basic macros embeddedin
Microsoft Excel worksheets.

2. APPLICATION MONITORING
The utility we used to capture the sequence of system calls, IMP
(Identify/Monitor/Protect), was developed by our research asso-
ciates at the Florida Institute of Technology [8]. The IMP log pro-
vides several pieces of information, such as the call stack,function
class (section name), function name, parameters to the function,
etc. The following IMP log excerpt describes one function call,
ReadFile, made during the execution of Microsoft Excel. The
notable components of the log entry are the section name,FILE,



and the function name,ReadFile. These allow us to determine
the type of function used as well as its full name.

2884:LoggerDll.dll#LoggerDll.dll#
LoggerDll.dll#LoggerDll.dll#OLEAUT32.dll:
12/17/2002 11:53:34:536:FILE:Kernel32.dll:
ReadFile:0:TRUE:3dc:hFile =
C:\WINDOWS\System32\wshom.ocx:13e6a0:
lpBuffer:10:nNumberOfBytesToRead:13e67c:
lpNumberOfBytesRead:0:lpOverlapped

Once the log has been generated, we parse it to determine the sec-
tion and function names of every system call. In order to bestcorre-
late the two qualifiers, the function name is appended to the section
name (e.g.,FILE ReadFile). This correlation will hereafter be
referred to as a “log symbol.” After parsing the log file we have
a list of all unique log symbols, which are then given a one-to-
one integer mapping simply for convenient referencing. Forexam-
ple, FILE ReadFile andREGISTRY RegOpenKeyExW may
respectively correspond to the numbers 12 and 7 such that

...FILE...ReadFile...

...REGISTRY...RegOpenKeyExW...

...FILE...ReadFile...

ultimately is represented by the integer sequence

12
7
12.

This integer encoded system call information is then used asa
learning sample for the probabilistic suffix tree.

3. PROBABILISTIC SUFFIX TREES
In the following subsections, we describe the suffix tree (PST) model
and how it is inferred from the given learning sample. With respect
to model usage, we explain how samples can be matched against
PSTs and how PSTs can be compared to one another.

3.1 The Suffix Tree Model
A probabilistic suffix tree is an�-ary tree whose nodes are defined
by the occurrence of symbols in the learning sample. The nodal
relationship (i.e., child/parent) is based on the parent being a suffix
of its children. Each node also contains the probability of symbols
that follow the given symbol in the learning sample. An advan-
tage of the suffix tree model is that it is parsimonious. The tree
order (depth) is kept to a minimum by excluding nodes that do not
provide stochastic information not already given by existing nodes.
This process of keeping the tree “trimmed” is described in more
detail below. If the tree were not parsimonious, each branchwould
grow to depth� (where� is the number of symbols) which would
make the model impractical to use in a computational sense for
large learning samples.

The suffix tree model is best described using an example. Figure 1
is a pictorial representation of a small suffix tree inferredfrom the
learning sample “1 2 3 1 2 3 2 1 3”.

This model is called asuffix treebecause each node’s parent is a
suffix of that node. The “prefix” in this case represents the his-
tory of symbols observed thus far. For example, the node “12”
is a child of “2” because the symbol “2” is a suffix of “12”. The

Figure 1: A small probabilistic suffix tree

node “1 2” indicates that the suffix “2” was preceded by “1” in the
learning sample. The numbers in parentheses adjacent to thenodes
in Figure 1 are the next-symbol conditional probabilities.For ex-
ample, according to the next-symbol frequency distribution of the
node “2”, the symbol “2” is followed by “1” a third of the time and
followed by “3” the remainder of the time. Observing the learning
sample verifies this statement. The root of the PST is the empty
symbol, which is inherently a suffix of all other nodes. Note that
the probability of next symbol for the root is not the same as the
probability of occurrence of each of the individual symbols. If this
were the case, the root’s next-symbol probability distribution would
be

� �� � �� � �� � since each symbol is equally likely to occur in the
sample. This alternate distribution occurs because it is not known
which symbol would occur after the last symbol in the learning
sample. In this case, it is impossible to infer which of the three
symbols would follow the last symbol, “3”, in the above sample.

3.2 Inferring the Suffix Tree
The algorithm for building a suffix tree is relatively simple. We start
with the root node (empty symbol), and scan through the sample to
determine the probability of each symbol occurring. As mentioned
above we must adjust the probability distribution to account for the
last symbol in the sample. Next, each symbol becomes a child node
of the root. For each leaf node in the tree, we scan through thesam-
ple to determine the next-symbol probability distribution. During
the scan we also take note of which symbols precede the current
leaf node because these symbols may become children of the cur-
rent node. For example if we are currently dealing with the node
“1 2” and the sample contains “3 1 2”, “31 2” becomes a child
node of “12” because “12” is a suffixof “3 1 2”. If the newly-
created leaf node has the same next-symbol probability distribution
as its parent, we remove the leaf node. This is done because adding
a node with the same probabilities as its parent does not add any
additional stochastic information. It is this condition that keeps the
tree as parsimonious as the learning data allows. This process of
adding leaf nodes continues until no more leaf nodes can be added
to the suffix tree.

To better illustrate the effect of “trimming” the tree, notethat the
sample given in Section 3.1 has the two occurrences of “2 3”: one
instance followed by a “1” and the other followed by a “2”. The
reason the node “23” does not appear in the tree is because it has
the same probability distribution as its parent (i.e.,

� �� � �� � ��). See



Figure 2: Trimming nodes from the PST

Figure 2.

3.3 Matching Samples Against a PST
The suffix tree can be used as a model against which additional
samples are matched. Matching in this sense means traversing the
sample while using the PST to calculate the cumulative probability
of occurrence for the symbols in the sample.

To match a sample against a PST, we start with the first symbol and
look at the root node to determine the probability of encountering
that symbol. Next we continue by traversing the sample, appending
the next symbol onto the previous one. We then attempt to find the
node based on the newly created label excluding the last symbol.
For example, if we are trying to match “13 2”, we attempt to find
the node “13” because it contains the probability of “2” occurring
after it. If the node does not exist, however, we remove one sym-
bol at a time from the front of the node label we are trying to find
until we encounter a node that does exist in the tree. This process
is called “backtracking” since we move up the tree toward theroot
until we find a valid node in order to continue the matching pro-
cess. Note that in the worst case we’ll have to backtrack to the root
because it should contain the next-symbol probability in order to
proceed with the matching algorithm. The cumulative probability
of match is found by multiplying the probabilities at each match
point against the current cumulative probability, which begins at
1.0.

For example if we wish to match the sample “1 3 2” against the
PST shown in Figure 1, the following steps would occur. Step 1:
the root node gives a probability of 3/8 for encountering a “1”. Step
2: node “1” gives a conditional probability of 1/3 for encountering
a “3”, so our cumulative probability thus far is 3/24. Step 3:node
“1 3” does not exist, so we remove a symbol from the front which
gives “3”. Node “3” gives a probability of 1/2 for encountering a
“2”. The cumulative probability of match for the sample is 3/48.

Matching is useful when trying to determine if certain sequences
are likely to occur. The higher the probability of match, themore
likely the given sample may have been used to infer the suffix tree.
For example, when matching “1 2” against the PST from Figure 1,
the probability of match is 2/8. This can be verified because out
of a possible eight times, “1 2” occurs in the learning data twice.
In comparison “1 2” is more likely to have been used to infer the
suffix tree than “1 3 2” with its cumulative probability of 3/48.

Figure 3: Comparing nodes in the PST

3.4 Comparing PSTs
Comparing two suffix trees can be based on a distance (i.e., amount
of difference) between them. The distance between trees is defined
as the cumulative distance between the nodes in each tree. The
distance between two nodes is defined by a cost metric, for example

�� � � � � �� � �� � � � � �� � ��� � �� � � �� ��

is the sum of the squares of the differences. The distance between
the two nodes shown in Figure 3 is 0.03125 when using the above
cost metric. This distance is zero if and only if the two nodesare
identical.

Presently we consider two types of comparisons: semantic and
flooded. Semantic comparisons involve comparing only thosenodes
which exist in both trees. Depending on the learning data, one tree
may have many more nodes than the second, making the compari-
son process more complicated. To address this problem we rely on
the fact that if a given node does not exist in the suffix tree, it may
have the same probability as its parent. We can “flood” the tree
with unnecessary nodes in order to make the comparison by creat-
ing as many child nodes as needed while copying the probability
distribution from the parent suffix node which exists in bothtrees.
For example, if “13” exists in the first tree but not in the second
tree, we can “flood” the common suffix node, “3”, in the second
tree by copying the probability distribution into a new nodelabeled
“1 3”. Now that both trees contain “13”, the cost metric can be
applied successfully.

In addition to being used for sample matching and comparative pur-
poses, the PST is used for the inference of an analogous probabilis-
tic suffix automaton.

4. PROBABILISTIC SUFFIX AUTOMATA
In the following subsections, we describe the suffix automaton (PSA)
model and how it is inferred from the given suffix tree. With respect
to model usage, we explain how samples can be matched against
PSAs and how their Markovian statistics can be used in a behav-
ioral sense.

4.1 The Suffix Automaton Model
The suffix automaton is a recurrent discrete-parameter Markov chain
of variable-order. The PSA has a well-defined state space andtran-
sition function, which gives us the ability to calculate Markovian
properties such as steady-state distributions and mean transitions
matrices. Another advantage of using the suffix automaton isthe
ability to generate sequences based on the learning data from which
the model was inferred. The concept of a PSA generating a se-
quence is analogous to the sequence’s existence in the learning
sample used to infer the suffix tree.

As with the suffix tree, the PSA is best explained using a pictorial
example. Figure 4 shows the PSA inferred from the PST in Figure
1. The example PSA contains three transient states (i.e., “0”, “1”,
and “2”) and five recurrent states. The values on the arcs connecting



Figure 4: Probabilistic suffix automaton

two given states represents the probability of transitioning from one
state to the next. Transitions may only occur where arcs are present.
For example, “1” cannot be directly followed by “32” because an
arc does not exist between them.

4.2 Inferring the Suffix Automaton
Before describing the algorithm for inferring the suffix automaton,
it is necessary to note that the nodal relationship in the automaton
is slightly different from the relationship in the suffix tree. Instead
of parents we havepredecessorsand instead of children we have
successors. The concept of a predecessor is based on the excluding
the right-most symbol. For example, the predecessor to the state
“1 3 2” is “1 3”, as opposed to the parent of “13 2” being “3 2”
in the suffix tree.

The suffix automaton is created entirely from the information pro-
vided in the suffix tree without any direct reference to the learning
sample. The first step is to add all of the leaf nodes in the suffix
tree to the automaton as recurrent states. The second step isto cre-
ate a state that corresponds to the root of the suffix tree, andthen
“flood” downward from that state to all of the states created in Step
1. For example, to connect the “root” state with “13 2”, we cre-
ate two intermediate states “13” and “3” connected from the root
state to “3” to “13” and finally to “1 3 2”. The third step is to
create any necessary arcs between states. This is accomplished by
visiting each state in the automaton and looking at its next-symbol
probability (available in the PST). If a given symbol has a non-zero
probability of occurrence after the given state label, we append the
symbol to the end of the state label and remove symbols from the
front of the new label until we find a state that exists in the automa-
ton. For example, state “32” in Figure 4 has a non-zero probability
of encountering a next symbol of “1”; therefore, a new label is cre-
ated, “32 1” and symbols are removed from the left side until a
match is found. Removing the “3” yields “21” which is a defined
state, so an arc is created between “32” and “2 1”. The final step
is to assign state types to the states created in Steps 2 and 3.This is
done by visiting each of the created nodes and determining ifany
edges incident upon them originated from recurrent states.If this
is the case, the given node is marked as recurrent. For example,

state “3” is recurrent because there is an incident arc from “2 1”
which was defined as a recurrent state in Step 1. Any nodes not
marked recurrent after visiting each node are defined as transient
by default.

4.3 Matching Samples Against a PSA
Matching samples against a suffix automaton yields the cumulative
probability of the given sample being generated by the PSA.

To match a sample against a PSA, we start with the first symbol and
find its corresponding state in the automaton. Next we continue by
traversing the sample, appending the next symbol onto the previous
one. We then attempt to find the state based on the newly created
label. If the node exists, we note the probability of transitioning
from the previous state to the current state and continue append-
ing symbols from the sample. If the node does not exist, however,
we remove one symbol at a time from the front of the state label
we are trying to find until we encounter a node that does exist in
the automaton. Note that in the worst case we will have to back-
track to a transient node because it should contain the next-symbol
probability in order to proceed with the matching algorithm. This
worst-case is similar to backtracking to the root node in thePST.
For example, if we wish to match the sample “1 3 2” against the
PSA in Figure 4, the following steps would occur. Step 1: node“1”
exists, so append “3” which occurs with probability 1/3. Step 2:
node “32” exists and a transition occurs with probability 1/1. The
cumulative probability of match is 1/3.

The use of matching samples against suffix automata is analogous
to that of matching samples against suffix trees. The higher proba-
bility of match, the more likely it is that the automaton would have
generated the sample. For example, the probability of matchfor
the sample “1 3 3” is 1/8, which is less likely than the previous ex-
ample “1 3 2”. The lower probability of match is verified by noting
that two adjacent 3’s never occur in the learning sample.

4.4 Markovian Statistics
Markov models provide a wide array of descriptive statistics [2].
We mention two such statistics: the steady-state distribution and the
expected number of transitions until a given state is reached. The
steady-state distribution of a recurrent discrete-parameter Markov
chain is defined as

�� � �
�

��� ��

or, in matrix notation,� � �� where� is the transition matrix
and� is a row vector of steady-state probabilities for each recur-
rent state. The steady-state distribution�� is the probability of the
automaton being in state� in the long-run. This statistic is useful
when determining which states are least likely to be encountered
over a significantly large sample.

The expected number of transitions until a given state is reached is
defined as

	 �� � 
 � �
� �
�

� ��	 �� �

Given that the automaton is in state�, the mean number of transi-
tions	 �� is the average number of transitions until the next occur-
rence of� in the long-run.



As an illustrative example, consider the PSA in Figure 4. We first
identify the subset of states that are recurrent, namely,� “1 2”,
“2 1”, “3”, “3 1”, “3 2” �. The corresponding steady-state distri-
bution is� � � �� � �� � �� � �� � �� �. The most likely state is thus “3”.
The other recurrent states are half as likely to occur. With respect
to the mean transition matrix then we obtain

	 �
�
����

� � 
 	 	
� � 
 	 	
	 	 
 � �

 � 
 � �
� 
 
 � �

�
����

where the�th column or row in the matrix corresponds to the�th
recurrent state. Thus, the mean number of transitions from “3” to
“3 1” corresponds to	 �� � �. Additionally, the mean number of
transitions from “12” to “3” corresponds to	 �� � 
, which is
expected since the only transition from state “12” is to state “3”.

5. BEHAVIOR ANOMALY DETECTION
In the following subsections we describe how the stochasticmod-
els defined thus far can be used to detect anomalous behavior in
the context of Visual Basic macros embedded in Microsoft Excel
worksheets. We provide descriptions of the macros themselves and
several examples of the model usage techniques mentioned previ-
ously. Specifically we discuss encountering foreign symbols, com-
paring PST models, matching samples against a benign model,and
using Markovian statistics from the PSA.

5.1 Macro Descriptions
In order to demonstrate model usage, five macros were utilized –
two of which were considered malicious. Malicious in this sense
means that the tasks performed are not typically handled by macros,
and could possibly achieve undesired effects on the user’s machine.
The first macro,Accumulate, manipulates numeric values con-
tained in worksheet cells A1 through A30 by doubling their cur-
rent values. The second macro,Cellrange, alters the values in
the same range asAccumulate except it uses a loop to insert
the values 1 through 100 into each of the cells. The third macro,
ABCLight, creates a graph based on cell values entered by the
user. The fourth macro,Homepage, modifies the registry key used
by Microsoft Internet Explorer which contains the “home page” for
the browser. The fifth macro,Spawnshell, executes another ap-
plication from within Excel. The first three macros are considered
benign since they simply manipulate cell values within the con-
text of the Excel worksheet. The last two macros are considered
malicious since they manipulate the Windows registry and execute
separate applications. This behavior is of consequence because the
ILOVEYOU virus begins propagating itself by setting the default
home page to a specified Web address, and the application being
executed bySpawnshell may very well be an application that
corrupts files on the user’s machine [8].

5.2 Foreign Symbols
If during a “malicious” execution a system call is made in a con-
text which did not occur during the benign execution, both the PST
and PSA would yield a probability of zero for encountering the
new symbol. Therefore, both models can be used to detect new
behavior, which in this sense is deemed anomalous. For exam-
ple, Spawnshell is the only macro that invokes the system call
CreateProcess. Since each function corresponds to a unique
symbol, the symbol forCreateProcess is not present in any of

the other models for the remaining macros. Therefore, this macro
could be deemed malicious based on not having seen the new sym-
bol in the modeled context.

5.3 Comparing PSTs Against a Benign Model
The behavior of the individual macros can be used to infer PSTs
which can then be compared to determine the distance between
them. We want to see whether the distance between PSTs mod-
eling malicious behavior and PSTs modeling benign behaviorwill
be greater than the distance between two PSTs representing only
benign behavior. We constructed a benign model using the samples
generated for theABCLight andAccumulate macros. The ta-
ble below lists the distance between each of the PSTs generated for
the five individual macros and the newly constructed benign model
using a direct comparison with an absolute sum of the differences
cost metric.

ABCLight Accumulate Cellrange Homepage Spawnshell

96.457 96.563 148.979 140.902 168.386

The models that differed most from the reference PST correspond
to the two malicious macros as well as the benign macro which
was not used to infer the benign model. TheCellrange macro
is considered benign, yet it differs from the benign model more so
than the maliciousHomepage macro. This demonstrates the need
to have a more encompassing benign model against which com-
parisons can be made. Otherwise macros considered to be benign
may be deemed malicious when they actually are not (i.e., a false
positive).

5.4 Matching Against a Benign Model
As a candidate sample increases in length, matching algorithms can
be used “on the fly.” Such techniques have been investigated using
a “sliding window” approach in order to obtain a series of match
probabilities [1]. Ideally a benign sample when matched against a
benign model should yield a high probability of match. Likewise,
a malicious sample should yield a low probability of match. In
reality however, a malicious sample could have a high probability
of match except for a few instances when the probability is much
lower than expected - which may be indicative of anomalous ac-
tivity. The examples presented below are based on sparse learning
data and may not reflect the results of matching samples against a
much larger benign model.

We matched the samples forCellrange andHomepage against
the benign model described in Section 5.3. In order to properly
detect anomalies in this case, the probability of match should be
higher forCellrange since it is classified as a benign macro.
Figure 5 verifies this behavior since the probability of match av-
erages higher forCellrange than forHomepage. Specifically
for this sequence,Cellrange’s probability of match exceeded
Homepage’s probability of match 63% of the time. Figure 6 demon-
strates that when we compare a sample which was used to create
the benign model against the model itself, the mean probability of
match is higher. Specifically, the mean probability of matchfor
Cellrange and ABCLight are 0.242 and 0.247 respectively,
whereas the mean probability of match forHomepage is 0.165.

5.5 Markovian Statistics
The Markovian statistics made available by the PSA can be used as
well. The steady-state distribution describes how likely each state



0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y 

of
 M

at
ch

Cellrange
Homepage

Figure 5: Matching benign and malicious macros

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y 

of
 M

at
ch

Cellrange
ABCLight

Figure 6: Matching benign macros only

is to be visited in the long-run. If a sample causes the automaton
to be in an unlikely state with great frequency, the sample could be
considered anomalous. The mean number of transitions is also of
interest. If a sample causes the automaton to transition from state
� to state� in a consistently low number of transitions and	 �� is
quite large, this may indicate that the observed sample is getting
from state� to state� through some shorter route than the expected
one.

With the benign model mentioned previously, the least-likely state
(� � � �������) involves the system callsRegEnumKeyExW,Reg-
CloseKey, RegCloseKey, RegQueryValueExW, andReg-
QueryValueExW in that order. Conversely, the most-likely state
(� � � ��
	�	�) involves the system callsRegOpenKey followed
by three repetitions of the sequenceReqQueryValueExW,Reg-
CloseKey, andRegCloseKey. If a PSA were generated to
model a given macro and the system calls in new data occurred with
greater relative frequency than in the model, the new data could be
deemed suspicious. With regard to the mean number of transitions
and the least-likely and most-likely states, then we observe the fol-
lowing values:

	 �� Least-likely Most-likely
Least-likely 22,475 441
Most-likely 22,557 28

Thus, if during execution the least-likely state is accessed from
the most-likely state after just a few hundred state transitions then
the system call sequence being analyzed is not typical. The same
would, of course, be true for other significant state-pair statistics

deviations.

6. CONCLUSION
The goal of this paper was to describe a method of obtaining se-
quences of applications system calls and for building and using
stochastic models based on such sequences. We have presented
a means of capturing and encoding system call information for
Microsoft Windows-based applications using IMP. We have also
presented two stochastic models, the probabilistic suffix tree and
probabilistic suffix automaton, as a means of modeling sequential
samples. We have demonstrated that the models can serve as be-
havior profiles in order to detect observed anomalous behavior. We
believe that these models can ultimately be used to profile benign
behavior in a target application (e.g., Microsoft Excel) sothat ma-
licious behavior (e.g., macro viruses) can be detected. With this
concept in mind, the probabilistic models described in thispaper
may be of use in the realm of computing security as a means of
detecting malicious application behavior.

7. ACKNOWLEDGEMENTS
The work is supported by the Office of Naval Research under grant
number N00014-01-1-0862. Portions of the figures in this paper
were generated by the software package SPARTA as described in a
companion paper for the 2003 ACM Southeast Conference.

8. REFERENCES
[1] S.A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion

detection using sequences of system calls.Journal of
Computer Security, 6(3):151–180, 1998.

[2] J.G. Kemeny and J.L. Snell.Finite Markov Chains. Springer,
New York, 1960.

[3] C. Ko, G. Fink, and K. Levitt. Automated detection of
vulnerabilities in privileged programs by execution
monitoring. InProceedings of the 10th Annual Computer
Security Applications Conference, pages 134–144, Orlando,
FL, 1994. IEEE Computer Society Press.

[4] T. Lane and C.E. Brodely. Temporal sequence learning and
data reduction for anomaly detection.ACM Trans.
Information and System Security, 2:295–331, 1999.

[5] T.F. Lunt. Detecting Intruders in Computer Systems. In
Proceedings of the Sixth Annual Symposium and Technical
Displays on Physical and Electronic Security, 1990.

[6] D. Ron, Y. Singer, and N. Tishby. The power of amnesia:
Learning probabilisitc automata with variable memory length.
Machine Learning, 25:117–142, 1996.

[7] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus, and
Y. Vardi. Computer intrusion: Detecting masquerades.
Statistical Science, 16:1–17, 2001.

[8] J.A. Whittaker and A. De Vivanco. Neutralizing
Windows-based malicious mobile code. InProc. ACM
Symposium on Applied Computing (Madrid, March 2002),
pages 242–246. ACM Press, 2002.


