
A Formal Framework and Evaluation Method for Network Denial of

Service

Catherine Meadows

Code 5543

Naval Research Laboratory

Washington, DC 20375

meadows@itd.nrl.navy.mil

Abstract

Denial of service is becoming a growing concern. As

our systems communicate more and more with others

that we know less and less, they become increasingly

vulnerable to hostile intruders who may take advan-

tage of the very protocols intended for the establishment

and authentication of communication to tie up our re-

sources and disable our servers. Since these attacks

occur before parties are authenticated to each other, we

cannot rely upon enforcement of the appropriate access

control policy to protect us (as is recommended in the

classic work of Gligor and Millen in [5, 18, 19]). In-

stead we must build our defenses, as much as possible,

into the protocols themselves. This paper shows how

some principles that have already been used to make

protocols more resistant to denial of service can be for-

malized, and indicates the ways in which existing cryp-

tographic protocol analysis tools could be modi�ed to

operate within this formal framework.

1 Introduction

Denial of service is becoming a growing concern. As
our systems communicate more and more with others
that we know less and less, they become increasingly
vulnerable to hostile intruders who may take advantage
of the very protocols intended for the establishment
and authentication of communication to tie up our re-
sources and disable our servers. Since these attacks
occur before parties are authenticated to each other,
we cannot rely upon enforcement of the appropriate
access control policy to protect us (as is recommended
in the classic work of Gligor and Millen in [5, 18, 19]).
Instead we must build our defenses, as much as possi-
ble, into the protocols themselves.

The SYN attack on TCP (see [24] for a more com-
plete discussion) is a classic example of this type of
attack. In TCP, a source host initiates the protocol
by sending a SYN (synchronization/start) message to
its destination. The destination host responds with a
SYN ACK, and waits for am ACK of the SYN ACK.
When it receives it, the connection is established. The
destination host keeps track of unacknowledged SYN
ACKs in a connection queue. When a SYN ACK is
acknowledged, it is removed from the queue.

The SYN attack is simple. The attacker sends SYN
messages with fake source addresses to its victim, which
then sends back SYN ACK messages which are never
acknowledged. As a result, the victim's connection
queue �lls up, and TCP services are denied to legit-
imate users.

Although the SYN attack makes use of the features
of a particular protocol, it is easy to see how it could
be generalized. An attacker initiates an authentication
protocol with its intended victim, using a fake identity.
At some point in the protocol, the attacker simply stops
participating. The victim is left with an unmanageably
large number of uncompleted protocols on its hands,
and shuts down operations. The victim cannot defend
against this attack by refusing connections from the
attacker, since the attacker uses a fake identity, and
sometimes a number of di�erent fake identities.

Attacks like this can be foiled by the use of good au-
thentication protocols. But two things need to be kept
in mind. First of all, such a protocol must provide au-
thentication from the very beginning. It is not enough
that the destination host should be able to verify the
origin of the SYN ACK ACK message. It must be able
to verify the origin of the SYN message as well. This
is in contrast to such de�nitions of protocol security
as are found in [3], in which correctness is de�ned in
terms of the guarantees that must hold if the entire pro-



tocol completes. Thus the requirements for protection
against denial of service appear to be much stronger
than usual authentication requirements.

On the other hand, strong authentication itself can
be a hook for denial of service attacks, since the mech-
anisms used to provide it are computationally intense.
For example, suppose that the SYN message was pro-
tected by a digital signature. An attacker could send
a number of bogus SYN messages with incorrect sig-
natures, and the victim would use up its resources in
verifying the signatures instead of in storing the SYN
messages in the connection queue. The results, how-
ever, would be similar.

The approach that has been taken to resolve these
con
icting requirements has been to use weak authen-
tication when the protocol is initiated, but stronger
authentication as it completes. Thus the protocol pro-
vides protection against a weak attacker in its ini-
tial stages without leaving itself vulnerable to denial
of service attacks that take advantage of strong au-
thentication, while still ultimately protecting the pro-
tocol against spoo�ng by a strong attacker. This does
not leave the protocol completely invulnerable against
a denial of service attack by a strong opponent, but
it means that that opponent will have to work much
harder, having �rst to break the weak authentication
mechanisms.

A classic example of this approach is o�ered by Pho-
turis [10]. A Photuris exchange begins with an inter-
change of cookies. A cookie is a unique nonce computed
from the names of the sending and receiving parties and
local secret information available only to the sender.
Thus only the sender can origniate a cookie that it will
accept, and only the originator of a cookie can verify
that is genuine. Also, the cookie generation and veri�-
cation methods are required to be fast, to make them
less vulnerable to denial of service attacks. After initia-
tor and responder exchange cookies, both cookies are
included in all further messages. When either party
receives a message, it �rst veri�es the cookie. With
this it gets the assurance that the message must have
been sent after the cookie was generated, and by some-
one who was able to see the cookie. Thus the receiver
knows that, if no intruder with the capability to gen-
erate new messages out of recent messages is present,
then the message is genuine. Once this level of assur-
ance is attained, the receiver performs the rest of the
veri�cation to achieve a higher degree of assurance.

Cookies provide an add-on that can be used to make
an existing protocol more resistant to denial of service.
But it is also possible to use these same principals as
the basis for the design of an entire protocol. This is
what is done by Kent et al. in [11], in which a proto-

col is developed that uses signed Lamport hash chains
[13] to play the role of cookies in providing the weak
authentication, while digital signatures are used to pro-
vide the strong authentication. Since the hash chains
are precomputed and pre-authenticated, a member of
the chain can be inserted in a signed message without
having to include an initial cookie exchange in the pro-
tocol. Thus the participants gain the weak assurance
without having to include a pair of cookie exchange
messages in each instance of the protocol. The strong
assurance can then be gained within the same message
by verifying the digital signature. A separate protocol
is needed to set up the hash chains, but this needs to
executed much less often.

As we can see, the assurance o�ered by these pro-
tocols can increase in two ways. First of all, it can
increase monotonically as each message is sent. In the
cookie exchange, the receiver of a cookie has no way of
verifying that the cookie it receives is genuine, so no as-
surance is o�ered at this stage. As the remaining mes-
sages are received and veri�ed, however, the amount of
assurance increases. The other way in which the assur-
ance can increase is as a message is veri�ed, as in [11],
in which all messages are both signed and include a
chained hash. When a party receives a message, it can
verify the chained hash to determine its freshness; then
it can verify the digital signature to determine that the
message is not only recent but authentic.

The level of di�culty of the protocol execution also
increases with the level of assurance. The cookie ex-
changes in Photuris proceed with a very low degree of
assurance; however, cookie generation is intended to
be cheap, so the risk to denial of service is lessened.
But the protection against denial of service provided
by including cookies in the later messages is somewhat
higher, and it gives the receivers of the messages the
con�dence necessary to proceed to the next, more ex-
pensive stage of the authentication. Likewise for the
protocol in [11], veri�cation of chained hashes is cheap
compared to signature veri�cation.

We see that the type of assurance we must attempt
to gain here is somewhat di�erent from that the type
of results that we attempt to prove to show that a
protocol satis�es its authentication goals. For an au-
thentication protocol, we generally only need to prove
that its requirements are satis�ed when the protocol
completes. Moreover, we attempt to prove that the
protocol is sound against the attacks of a uniformly
strong intruder. But in order to prove that a proto-
col is secure against denial of service attacks, we must
show that it satis�es the necessary properties at each
step of the way. Moreover, the assumptions about the
intruder's strengths that we consider may vary as the



protocol proceeds.
Thus the process of assuring that a protocol is se-

cure against denial of service is potentially much more
complex than the problem of assuring that a proto-
col satis�es its authentication requirements. However,
the underlying process, showing that certain authenti-
cation goals are achieved in the face of attack by an
intruder who possesses certain capabilities, is similar
to that used to show that a protocol satis�es its au-
thentication requirements. Thus it should be possible
to apply many of the tools and techniques that have
been developed for the veri�cation of authentication
properties to the analysis of denial of service. In this
paper we provide a framework for evaluating a protocol
for resistance to denial of service attacks in a way that
is intended to allow us to make maximal use of these
tools.

The remainder of the paper is organized as follows.
In Section 2 we motivate and present the framework.
In Section 3 we apply the framework to an example. In
Section 4 we discuss the ways in which existing security
protocol analysis tools and methods could be modi�ed
to verify protocols within this framework.

2 The Framework

Our construction of the framework begins with the
observation that any point at which during a protocol
execution at which a responder may accept a bogus
message as genuine could be used to launch a denial
of service attack. If a bogus initial message could be
accepted as genuine, an attack such as the SYN attack
would be possible, in which the target wastes its re-
sources storing and responding to bogus messages. If
a bogus intermediate message is accepted, this could
cause the target to waste even more of its resources to
get to that point in the protocol. Finally, if a bogus
�nal message is accepted as genuine, this could give
rise to a particularly insidious denial of service attack
in which a principal believes that it has been provided
a service (e.g. a key shared with another party) when
in fact this service was not provided. We will refer to
these types of attacks as service spoo�ng attacks. Simi-
lar concerns exist for the case of the initiator, although
these are not as strong here, since a denial of service
attack would in most cases require the initiator to ini-
tiate a large number of protocols, which the attacker
then subverts. This is not impossible, but it is not cer-
tainly not as likely as the attacker initiating a large
number of protocols.

The fact that a certain degree of guarantee must
be achieved at each step of the way naturally leads us
to Gong and Syverson's concept of fail-stop protocols

[7]. Brie
y, a protocol is fail-stop if any bogus message
(that is, a replay or a message manufactured by the
intruder) can be detected, and the protocol halts upon
detection.

Fail-stop protocols have some of the desirable fea-
tures of a denial-of-service-resistant protocol. How-
ever, in order to achieve the fail-stop property, they
must make use of strong authentication right from the
beginning. This makes fail-stop protocols potentially
vulnerable to denial of service attacks in which the tar-
get is forced to use up resources verifying bogus mes-
sages. Thus we need to modify our concept of fail-stop
in order to make it applicable to our needs. However,
we will do so in the manner we suggested earlier in
this paper, by modifying our notion of an intruder's
capability.

2.1 Alice-and-Bob Specifications and Causal Se-
quencing

In this paper we will be making use of the popu-
lar \Alice-and-Bob" speci�cation style. This has been
criticized as confusing the description of what should
happen with what actually does happen [6]. But in
this case, a description of what does happen which can
be made to correspond to a description of what should
happen is exactly what we want, so much so that we are
led to a formal de�nition of what we will call annotated
Alice-and-Bob speci�cations.

De�nition 1 An Alice-and-Bob speci�cation is a se-

quence of statements of the form A ! B : M where

A and B are processes and M is a message.

Since we are interested in how messages are pro-
cessed, as well as what messages are sent, we need to
annotate our Alice-and-Bob speci�cations to include
message processing steps.

De�nition 2 An annotated Alice-and-Bob speci�ca-

tion is a sequence of statements of the form A ! B :
T1; :::; Tk k M k O1; :::; On where A and B are pro-

cesses, M is a message, and T1; :::; Tk and O1, ..., On
are sequences of operations performed by A and B, re-

spectively.

The sequence T1; :::; Tk preceding the message in an
annotated Alice-and-Bob speci�cation represents the
sequence of operations performed by A in producing
M , while the sequence O1; :::; On represents the se-
quence of operations performed by B in processing and
verifying M . We now look at the make-up of a line in
an Alice-and-Bob protocol more closely.



De�nition 3 Let L = A ! B : T1; :::; Tk k M

k O1; :::; On be a line in an annotated Alice-and-Bob

speci�cation. We say that X is an event occurring in
L if

1. X is one of the Ti or Oj , or;

2. X is `A sends M to B' or `B receives M from A'.

We say that the events T1; :::; Tk and `A sends M to

B' occur at A and the events `B receives M from A',

O1; :::; On occur at B. There are two types of events:

normal events and veri�cation events (also called veri-
�cation operations). Normal events can occur at either

sender or receiver, and have only one outcome : suc-

cess. Veri�cation events occur only at the receiver. A

veri�cation operation can have two outcomes, success

or failure. If the operation succeeds, then B engages in

the next event in L; if the operation fails, B stops does

not engage in the next event, and stops participating in

the protocol. We also attach at the end of each line a

special event called an accept event which describes B's

deciding to proceed with the protocol after successfully

verifying a message.

For example, consider the case in which A computes
a digital signature over B's name and a nonce, and
sends the result to B, together with its own name and
B's. The resulting annotated speci�cation would look
like this:

A ! B :
computenonce1; storenonce1; storename1; sign1 k

A;B; SA(B;NA)) k
checkname2; storenonce2; storename2; checksig1;

accept1
where computenonce denotes A's computing a nonce,
storenonce and storename denote A (respectively, B)s
storing its nonce and B's (respectively, A's), name for
future reference, sign denotes A's computing a digi-
tal signature, checkname denotes the checking for the
presence of B's name, and checksig denotes the check-
ing of A's digital signature.

We now want to use our annotated Alice-and-Bob
speci�cations to help us give our requirements for a
cryptographic protocol. For this, as in [7], we use a
notion very similar to Lamport's notion of causally-
precedes [12]. The only di�erence between our notion
and Lamport's is that Lamport was dealing with a sit-
uation in which, although messages could be delayed or
lost, they were not spoofed, redirected, or altered by
a hostile intruder. Thus, Lamport used the notion of
causally-before to describe what actually happened in
his environment, while we will merely use it to describe
what we would like to happen in our environment.

For motivation, we �rst give Lamport's de�nition:

De�nition 4 Let S be a system of distributed pro-

cesses that communicate by sending messages. Let E

be a temporally ordered sequence of events in S, where

E consists of internal events, sending of messages, and

receiving of messages. If a and b are two events from

E, then b is causally-after a if:

1. a and b occur at the same process, and a precedes

b;

2. a is the sending of a message by one process, and

b is the receiving of the same message by another

process, or;

3. there is an event c such that c is causally-after a

and b is causally-after c.

We say that E1 is causally-after E2 if E2 causally-
precedes E1.

We note that notions very similar to Lamport's have
found fruitful application in the analysis of crypto-
graphic protocols, most notably in the de�nition of
strand spaces [4]. However, for our purposes, we
will need something a little di�erent. An Alice-and-
Bob speci�cation of a cryptographic protocol can be
thought of as giving of a requirements speci�cation in
terms of what events should causally-precede others.
We thus de�ne desirably-precedes (or desirably-after),
as follows:

De�nition 5 1. If A ! B : R1; :::; Rm k M k

O1; :::; On appears then the event in which B re-

ceives M desirably-precedes any of the Oi, and Oi
desirably-precedes any of the Oj for which i < j;

2. If A ! B : R1; :::; Rm k M k O1; :::; On appears

then any Ri desirably-precedes the event in which

A sends M and Ri desirably-precedes any of the

Rj whenever i < j;

3. If A ! B : R1; :::; Rm k M k O1; :::; On precedes

B ! Y : S1; :::; Sp k N k T1; :::; Tk then On
desirably-precedes S1;

4. If A ! B : R1; :::; Rm k M k O1; :::; On appears

then the event in which A sends M to B desirably-

precedes the event in which B receives M from A,

and;

5. If E1 desirably-precedes E2 and E2 desirably-

precedes E3 then E1 desirably-precedes E3.

Note that our de�nition of desirably-precedes as-
sumes that a principal will not start creating a mes-
sage it wants to send until it has �nished processing all
relevant messages it has received. This assumption is



reasonable when we are attempting to avoid denial of
service attacks : a principal should not risk wasting re-
sources on creating a message until it has veri�ed that
the messages it has received are genuine.

2.2 Fail-Stop Protocols

A fail-stop protocol is one that provides a certain
degree of security against attack. Thus, in order to de-
�ne a fail-stop protocol, we need �rst to say what an
attack is. But an attack describes a behavior of the
implemented protocol that deviates from its require-
ments. An Alice-and-Bob speci�cation describes the
desired behavior very well; what we need to supply as
well the derivation of an implementation of a protocol
from an Alice-and-Bob speci�cation as follows. This
will allow us to make clear the di�erence between ac-
tual and required behavior.

De�nition 6 An implementation of an Alice-and-Bob

speci�cation is a set of programs, one for each partic-

ipant in the protocol. We say that the program corre-

sponding to A implements A and refer to it at Pr(A).
Multiple copies of this program can exist and can be

running on behalf of di�erent principals. Pr(A) has

the following properties:

1. For each instance of A ! B : R1; :::; Rm k M k

O1; :::; On in the protocol there are corresponding

portion of Pr(A) describing A performing the op-

erations R1; :::; Rm and sending the resulting mes-

sage to B. When we can avoid confusion, we

will refer to these as Pr(A)[A ! B : M ] and

Pr(A)[Ri].

2. For each instance of C ! A : R1; :::; Rm
k M k O1; :::; On, there are corresponding por-

tions of Pr(A) describing A receiving a message.

performing the operations O1; :::; On on a received

message, and halting if any of the veri�cation op-

erations fail. When we can avoid confusion, we

will refer to these as Pr(A)[B ! A : M ] and

Pr(A)[Oi].

3. If both E1 and E2 occur at A, and E1 desirably-

precedes E2, then Pr(A)[E1] always executes be-

fore Pr(A)[E2].

We do not go any further into describing a pro-
cedure for deriving implementations from annotated
Alice-and-Bob speci�cations, but we note that a num-
ber of tools, such as Casper [16] and the CAPSL-to-
NRL translator [1] already exist that provide such a
functionality by translating high-level Alice-and-Bob-
style speci�cations into process algebra and state ma-
chine speci�cations.

De�nition 7 We say that the event B receives M

from A in a cryptographic protocol has occurred if the

program fragment Pr(B)[A ! B : M ] has executed

successfully. We say that M has been interfered with if

the event B receives M from A occurs but some event

desirably-preceding it did not.

Note that the fact that B receivesM from A occurs
does not mean the B actually received M from A or
anyone else. It simply means that B received a message
at the point at which it was expecting the message M ,
and it is ready to perform a set of tests to determine
whether the message was genuinely M . Thus although
we use the term \interfered with" to be consistent with
the language in [7], we note that it covers not only
messages that were tampered with, but fake messages
generated by an intruder.

We are now ready for the de�nition of fail-stop from
[7], modi�ed slightly to take into account our slightly
di�erent de�nition of an event.

De�nition 8 An Alice-and-Bob speci�cation of a

cryptographic protocol is fail-stop if, whenever a mes-

sage is interfered with, then no accept event desirably-

after the receiving of that message will occur.

We have as yet said nothing yet about our assump-
tions about an intruder's capabilities. In most of the
literature on cryptographic protocol analysis, the as-
sumptions that are made about what an intruder can
do are the same. An intruder is assumed to be able to
read all tra�c, delete and modify tra�c, have access
to system operations such as the encryption functions
used, to be in collusion with some legitimate users of
the system, and possibly have access to compromised
session keys and other secrets from previous executions
of the protocol. In our case, of course, we are interested
in intruders with di�erent capabilities:

De�nition 9 We de�ne an intruder action to be an

event engaged in by an intruder that a�ects messages

received by legitimate participants in a protocol. We de-

�ne an intruder capability to be a set of actions avail-

able to an intruder, partially ordered by set inclusion.

We do not list the types of capabilities available to
the intruder, since at this point we do not want to limit
ourselves. However, examples would include such cases
as an intruder who could send messages but not read
messages that were not addressed to it, an intruder
who could send and read messages but not block mes-
sages, an intruder who could send, read, and block mes-
sages, but could not replace the blocked messages with
other messages in real time, and so forth. We might



also want to include actions outside the usual intruder
model, such as the ability to break certain classes of
cryptosystems.

De�nition 10 Let � be a function from the set of

events de�ned by an annotated Alice-and-Bob speci�-

cation P to a set of intruder capabilities. We refer to

� as an intruder capability function. We say that P

is fail-stop with respect to � if, for each event E in

the system, if an intruder of capability �(E) interferes
with any message desirably-causally-preceding E, then

neither E nor any events desirably-after E will occur.

The idea behind an intruder capability function is
that, for each accept event E, an intruder of capability
�(E) should not be able to cause E to occur by using
its capabilities to manipulate the system.

If we set �(E) to be the usual intruder capability
whenever E is an accept event, and the null capability
for all other events, then the reader can verify that our
de�nition of fail-stop is equivalent to Gong and Syver-
son's. In the case of denial of service, though, we may
want � to be gradually increasing with respect to �nal
veri�cation events. For example, in the Photuris pro-
tocol, the intruder capability associated with the �rst
accept events, which only concern the cookie exchange,
would be the ability to read and block messages, but
nothing else, while the intruder capability associated
with the later events is greater. We would also want �
to be gradually increasing with respect to any sequence
of veri�cation events on a single line of an annotated
Alice-and-Bob speci�cation, since the amount of assur-
ance gained after each check done on a single message
should increase the con�dence in that message.

Intruder capability functions tell us only half the
story, however. We also need a way of calculating the
expense of executing each protocol step. In order to do
this, we need to de�ne a cost function.

De�nition 11 A cost set C is a partially ordered set

with partial order < together with a function + from C

� C to C such that + is associative and commutative,

and x + y � max(x,y), along with an zero element 0

such that x = 0 + x = x + 0, for all x in C.

Examples of cost could be things like time or money,
in which case + is simple addition. Or it could be a
rough estimate such as a division into \easy" or \hard,"
in which case x + y is simply the maximum of x and
y. In general, we would expect the cost of a veri�-
cation event to express the expense of performing the
veri�cation, the cost of sending a message to express
the expense involved in preparing that message, and
the cost of accepting a message (that is, the cost of a

�nal accept event) to be the cost of performing all the
veri�cation steps on that message, as well as the cost
of sending the next message, if any.

De�nition 12 A function � from the set of events de-

�ned by an annotated Alice-and-Bob speci�cation P to

a cost set C which is 0 on the accept events is called

an event cost function.

We now de�ne two functions based on cost functions.
One describes the cost of processing a single message in
a protocol. The other describes the cost of a principal's
reaching a given point in the protocol.

De�nition 13 Let P be an annotated Alice-and-Bob

protocol, let C be a cost set, and let � be an event cost

function de�ned on P and C. We de�ne the message
acceptance cost function associated with � to be the

function �0 on events following the receipt of a message

as follows:

If the line A ! B : O1; :::Ok k M k V1; :::; Vn
appears in P , then for each event Vj :

�0(Vj) = �(V1) + :::+ �(Vj).

We de�ne the protocol engagement cost function as-
sociated with � to be the function � de�ned on accept

events as follows:

If the line A ! B : O1; :::Ok k M k V1; :::; Vn
appears in the protocol, where Vn is the accept event,

then:

1. If there are no lines B ! X : O0

1
; :::O0

k k M 0

k V 0

1
; :::; V 0

n such that Vn immediately desirably-

precedes O0

1
, then �(Vn) is the sum of all the costs

of all operations occurring at B desirably-preceding

Vn;

2. If there is a line B ! X : O0

1
; :::O0

k k M 0

k V 0

1
; :::; V 0

n such that Vn immediately desirably-

precedes O0

1
, then �(Vn) is the sum of the costs of

all operations occurring at B desirably-preceding

Vn, plus the sum of the costs of the O0

i,.

Thus the message acceptance cost represents the
cost of reaching a certain point in accepting a message,
while the protocol engagement cost represents the to-
tal cost of accepting a message in terms of both the
cost of processing it and the costs of any events that
are necessarily engaged in as a result of accepting the
message.

Our construction of message acceptance and proto-
col engagement costs re
ects two ways in which denial
of service attacks can proceed. One is by sending a
principal a bogus message at any point in the proto-
col, and having the victim waste resources processing



it. This is protected against by performing the rela-
tively cheap veri�cation events �rst upon receiving a
message, and should be re
ected in the message ac-
ceptance costs. In particular, we would like the costs
to start out cheap, and only become more expensive
towards the end of the message. The other is to per-
suade a principal to waste resources participating in a
bogus instance of the protocol; this can be defended
against by performing cheap veri�cation and compu-
tation events early in the protocol, and should be re-

ected in the protocol engagement costs.

We are now ready to relate cost and intruder capa-
bility functions.

De�nition 14 Let C be a cost set and G an intruder

capability set. We de�ne a tolerance relation de�ned
by a protocol designer to be the subset of C � G con-

sisting of all pairs (c,g) such that the protocol designer

is willing to tolerate a situation in which an e�ort of

cost c that provides security against an intruder of ca-

pability g but no greater. We say that (c0,g0), is within
the tolerance relation if there is a (c,g) in the relation

such that c0 � c and g0 � g.

We do not put any constraints on the tolerance re-
lation, since we believe it may vary from situation to
situation.

We can now describe the procedure for evaluating
whether or not a protocol is secure against denial of
service using the following steps:

1. Decide what your cost function is, and what you
assume the various capabilities of the intruder can
be.

2. Decide what your tolerance relation is: how much
are you willing to spend to provide a certain level
of security, and how much insecurity are you will-
ing to put up with given a certain amount of cost?

3. Calculate an intruder capability function � such
that:

a) If E1 is an event immediately preceding a ver-
i�cation event E2, in a line of a protocol, then
(�0(E2),�(E1)) is in the tolerance relation. This
means, that, if M is the message received in the
line in which E1 and E2 appear, the cost of getting
to the point where E2 succeeds or fails is �0(E2),
and no intruder of capability �(E1) will have been
able to successfully interfere with M after E1 has
�nished executing.

b) If E is an accept event, then (�(E),�(E)) is in
the tolerance relation.

4. Verify that the protocol is fail-stop with respect to
�.

Note that Step 3a) allows us to reason about the
ability of a protocol to prevent an intruder from mount-
ing a denial-of-service attack by causing a legitimate
principal to waste resources processing a message be-
fore it has been able to verify that it could not have
been spoofed by an intruder of a certain capability.
Step 3b) allows us to reason about the ability of a pro-
tocol to prevent an intruder from mounting a denial-of-
service attack by causing a legitimate principal to waste
resources participating in a protocol up to receiving a
particular message and responding to it, before it has
been able to verify that that message could not have
been spoofed by an intruder of a certain capability.

3 Example: The Station-to-Station

Protocol

In this section we show how we can apply our frame-
work to the Station to Station protocol of Di�e, van
Oorschot, and Wiener. This protocol was designed
with message economy rather than denial of service
in mind, so, not surprisingly, it turns out not to meet
the demands of our framework. However, the frame-
work can help us identify areas of weakness and suggest
possible improvements from the denial of service per-
spective.

The protocol uses Di�e-Hellman for key genera-
tion and digital signatures for authentication. It in-
volves a number of di�erent operations, to which we
assign costs as follows: exponentiation over a �nite
�eld during the protocol execution (expensive), repre-
sented by exp, exponentiation over a �nite �eld which
can be precomputed (medium), represented by preexp,
computation and veri�cation of digital signatures (ex-
pensive), represented by sign and checksig, single
key encryption and decryption (medium), represented
by encrypt and decrypt, checking for the presence of
names and retrieving nonces (cheap), represented by
checkname and retrievenonce, and storing of names
and nonces (medium), represented by storename and
storenonce. We de�ne a + operation on costs byX+Y
= max(X;Y ), where expensive > medium > cheap >

0.
Next, let ZP be the integers modulo P for some

P , let � be a generator of the multiplicative group of
ZP, let �

x denote � raised to the x'th power mod P ,
let K = �XB �XA = �XA�XB , let EK represent single
key encryption with key K, and SB denote a digital
signature obtained using B's private key. We can now
use our notation to describe the protocol as follows:



1. A! B : preexp1 k
�XA k

storenonce1; storename1; accept1:

2. B ! A :
preexp1; sign1; exp1; encrypt1 k

�XB ; EK(SB(�
XB ; �XA )) k

checkname1; retrievenonce1; exp2; decrypt1;

checksig1; accept2:

3. A! B :
retrievenonce2; sign2; encrypt2 k

EK(SA(�
XA ; �XB )) k

checkname2; retrievenonce2; decrypt2;

checksig2; accept4:

Since we are dealing with a protocol that has al-
ready been developed, rather than designing one from
scratch, we will proceed in an order somewhat di�erent
than that recommended in the last section. First, we
will determine the values of the cost functions. Sec-
ondly, we determine the intruder capability function
with respect to which the protocol is fail-stop. We will
use this to determine a likely set of tolerance relations,
and discuss their signi�cance to the protocol.

We �rst note that protocol engagement cost function
is expensive for all accept events. For the �rst, the re-
sponder B must compute the Di�e-Hellman key and
sign a message. For the second, the initiator A must
check a signature, compute a Di�e-Hellman key and
sign a message. For the third, B must check a signa-
ture. For the message acceptance cost functions, none
is de�ned for the �rst message, since it contains no ver-
i�cation events. For the second the cost of B's checking
the name is cheap, while the cost of B's performing the
signature is expensive. Likewise for the third message:
the cost of A's checking a name is cheap, while the cost
of its checking a signature is expensive.

How does the intruder capability function fare for
the accept events? Clearly, since the �rst message is
not authenticated at all, it protects only against a very
weak intruder, so best we can take �(accept1) to be is
the intruder with the powers of a non-malicious net-
work, or an intruder with the capability of sending a
message. Any intruder who could create an acceptable-
looking return address should be able to defeat the
protocol at this point. We can take �(accept3) to the
intruder with full powers (we have veri�ed this using
the NRL Protocol Analyzer). What is surprising, how-
ever, is �(accept2). We would expect this to also be
an intruder with full powers, but as a matter of fact
it is somewhat weaker. As was shown by Lowe in [15],
the event accept2 is vulnerable against the following

attack, where I is the intruder, and IZ is the intruder
impersonating Z:

1. A! IB : �XA

2. IC ! B : �XA

3. B ! IC : �XB ; EK(SB(�
XB ; �XA))

4. IB ! A : �XB ; EK(SB(�
XB ; �XA))

5. A! IB : K(SA(�
XA ; �XB ))

At this point A is convinced that it is sharing a
key with B, although B knows nothing about this; if
B received A's �nal message it would reject it, since
it is expecting a response from C. Note that all this
attack requires is an intruder with the ability to inter-
cept messages intended for B, and to forward them to
B as messages from C. It does not need to be capa-
ble of performing any cryptographic operations such as
exponentiation or the checking of a digital signature.

Since this is an attack against the initiator, not the
responder, it is potentially less useful for tying up re-
sources; the victim must decide to initiate an instance
of the protocol before the attack can be mounted.
(Note that a successful denial-of-service attack using
this vulnerability would require the initiator to start
the protocol not once, but many times.) On the other
hand, it can be thought of as a service spoo�ng attack,
since A thinks it shares a key with B, when in fact it
does not.

We now discuss what the values of � for the veri�ca-
tion events. The �rst veri�cation event is checkname1.
Since no veri�cation is done before the name is checked,
the associated � is the intruder with the powers of a
non-malicious network. However, since no event except
the reception of the message precedes checkname1 at
that line, and the cost of checkname1 itself is quite
low, the pair (c,g) computed should be well within
any tolerance relation. The next veri�cation event is
checksig1. The message acceptance cost of checksig1 is
expensive; however �(decrypt1), the immediately pre-
ceding event, is an intruder who is not able to forge
B's return address and prevent messages from reach-
ing their destinations, in other words a relatively weak
intruder. This pair would probably not be within
most tolerance relations. The next veri�cation event
is checkname2. Again, the message acceptance cost
of checkname2 is cheap, while the assurance provided
before checkname2 is executed is against an intruder
with the powers of a non-malicious network. Again,
the associated pair (c,g) should be well within any
tolerance relation. Finally, the last veri�cation event
is checksig2. Again, the message acceptance cost of



checksig2 is expensive, but the assurance provided un-
til checksig2 has been executed successfully is relatively
weak: it is only strong against an intruder who cannot
forge A's address and prevent messages from reaching
their destinations.

Thus the Station-to-Station protocol, as it stands, is
vulnerable to denial of service attacks in several places.
In the �rst message, an intruder who is capable of do-
ing nothing more than sending messages could send
a bogus message and cause the responder to waste re-
sources responding to it. Likewise, since the only cheap
interim checks on the last two messages are weak, an
intruder who is capable of faking return addresses could
cause either initiator or responder to waste resources in
processing a bogus message. Finally, though less seri-
ously, a somewhat more capable intruder could mount
Lowe's attack and convince an initiator that it is shar-
ing a key with a responder when it does not, and when
the responder is not even expecting a message from the
initiator.

There are a number of ways in which this proto-
col could be strengthened against denial of service at-
tacks. First, a cookie exchange could be done initially,
to introduce some weak authentication before the ma-
jor message exchange starts, as is done in the IKE pro-
tocol [8], which uses a protocol based on the station-
to-station protocol. Secondly, if cookies are included in
second and third messages, checking them could pro-
vide weak authentication for these as well (as is also
done by IKE). Weak authentication could also be pro-
vided by including both �XA and �XB in the second
and third messages, so that either party Y could check
for the presence of �XY before proceeding with the
more expensive veri�cation steps. Finally, Lowe's at-
tack could be prevented by including the identity of the
intended receiver in the signed part of the message, as
is recommended in [15].

4 Applicability of Existing Tools and

Models

In this section, we consider how some of the existing
tools and methods could be applied within our frame-
work.

We begin with belief logics. To look at them, we
would not expect belief logics such as BAN [2] to be
very useful within our framework. They use an implicit
model of the intruder, and guarantee properties such
as freshness and authentication, not immunity against
intruders of various strengths. However, like our frame-
work, BAN and similar logics are used to analyze pro-
tocols incrementally; one sees what degree of security
is provided by each message as it is processed. And,

although the properties guaranteed by these logics are
currently cast in terms of beliefs in the properties of
keys and messages, not properties of the intruder, there
does not seem to be any inherent reason why they could
not be recast as statements about what capabilities the
intruder is supposed to have. For example, consider a
message that contains a fresh sub-element, such as a
cookie. That message is authentic if we assume the the
intruder is not able to read and modify messages in real
time. On the other hand, a signed message containing
a fresh sub-element is authenticated in the face of a
stronger intruder.

We next consider tools that make use of state explo-
ration techniques in some form or the other. These in-
clude model checkers such as FDR/Casper [16] or Mur�
[22], specialized tools such as the Interrogator [20] that
provide much of the same capability but are �ne-tuned
for cryptographic protocol analysis, and tools such as
the NRL Protocol Analyzer [17] that combine state
exploration with a limited theorem-proving capabil-
ity. What all of these tools have in common is that
at some point their designers implemented the stan-
dard intruder model as part of the tool. Thus, in order
to make use of our framework, it would be necessary to
have the option to replace the standard intruder with
intruders of di�erent strengths. This should not be
too di�cult, since all these tools model the intruder
as an independent state machine; all that is needed is
to replace this state machine with another. Similarly,
most uses of theorem provers to analyze cryptographic
protocols (e.g. Paulson [23]), include an independent
speci�cation of an intruder; thus it should be straight-
forward to deal with intruders of various strengths for
theorem provers as well as state exploration tools.

Another issue remains to be considered, however.
Usually, when we attempt to prove security of crypto-
graphic protocols, we examine only a handful or prop-
erties, e.g., that two parties always agree on a key, that
the key is not a replay, that the key remains secret,
and so forth. In the case of denial of service, we are
attempting to prove at least one goal for each accept
event (and thus for each message sent), as well as one
goal for each veri�cation event. Thus the work involved
could be multiplied several times. The model checkers
have an advantage here; since model checkers verify
whether or not a program satis�es its speci�cation, all
the user has to do is write a speci�cation in terms of
all the security goals that are relevant to a particular
intruder strength, and run the protocol together with
that intruder. Thus it may be possible to proceed so
that the amount of work really only increases by a fac-
tor equal to the number of intruder strengths involved.

In the case of tools such as theorem provers and the



NRL Protocol Analyzer, in which goals are veri�ed sep-
arately, the problem is a little more di�cult. In this
case it would probably be necessary to develop some
standard lemmas involving di�erent goals and intrud-
ers of di�erent strengths to allow us to use the weaker
results that we �nd to aid us in proving the stronger
ones. This is an open area of research.

Finally, we consider the applicability of high-level
protocol description languages, such as CAPSL [21]
and Casper [16]. These languages are based on the
popular Alice-and-Bob notation, so the most straight-
forward thing would appear to be to include the an-
notations that we have used in building our frame-
work. But, as a matter of fact, this may not be neces-
sary. Translators for these languages commonly infer
the necessary operations directly from the speci�ca-
tion; there is no reason that they should not also be
able to derive a sequence of such operations that is
optimal with respect to increasing cost, assuming that
they are given the cost of each type of operation. Thus,
all that would be needed to be added to the high-level
speci�cation would be an estimate of the cost of each
type of operation; these could even be built into the
translators when they are well understood.

5 Conclusion

We have developed a framework for reasoning about
network denial of service, and indicated how existing
tools and methods could be modi�ed for reasoning
within this framework. But there is still much work
that remains to be done. Denial of service, unlike
authentication, is a matter of degree. No protocol is
completely immune against denial of service attacks.
Moreover certain types of mechanisms, such as strong
authentication, may make a protocol more resistant to
one kind of attack but more vulnerable to other kinds.
Things are made even more complicated by the fact
that certain types of denial of service attacks may take
advantage of other, previous, denial of service attacks.
For example, an attack that requires an intruder to
impersonate another principal may be easier to imple-
ment if that principal was disabled by a denial of ser-
vice attack. This may include extending our model to
cases in which intruder strengths may vary for di�erent
executions of a protocol. Thus, we need ways of mea-
suring the degree to which a protocol is vulnerable to
denial of service, and ways of using our measurements
to reason about the di�erent ways denial of service re-
quirements can interact.

Another issue arises from the possible interaction of
our framework with other classes of defenses against de-
nial of service. For example, the SYN attack depends

upon the necessary fact that principals must store state
information when they participate in a protocol. There
is no way to make this requirement go away, but it is
possible to mitigate the bad e�ects by paying careful
attention to such matters as how much state informa-
tion is held, and for how long. We have not addressed
this problem here, but others have begun applying for-
mal techniques to its analysis [14]. It may turn out to
be useful to pursue this matter further and see if our
framework can be adapted and/or expanded to take
into account countermeasures such as these. Another
possibility for further investigation is the use of crypto-
graphic \puzzles" to increase the di�culty of a clients'
making any connection whether genuine or fake, thus
making it more di�cult for a malicious client to 
ood
a server [9]. Here, the concept of increasing the client's
work is still used, but the cryptographic functions are
used directly to increase a client's workload instead of
to provide authentication. It may be that, with some
modi�cation, our framework could be extended to han-
dle this type of defense.

6 Acknowledgments

We would like to thank Stephen Brackin and the
anonymous referees for their helpful comments on ear-
lier versions of this paper. This work was supported
by ONR.

References

[1] Stephen Brackin, Catherine Meadows, and
Jonathan Millen. CAPSL interface for the NRL
Protocol Analyze. In Proceedings of ASSET'99.
IEEE Computer Society Press, March 1999.

[2] Michael Burrows, Mart��n Abadi, and Roger Need-
ham. A Logic of Authentication. ACM Transac-

tions in Computer Systems, 8(1):18{36, Feb. 1990.

[3] W. Di�e, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Designs, Codes, and Cryptography, 1992.

[4] F. Javier Thayer Fabrega, Jonathan C. Herzog,
and Joshua D. Guttman. Strand spaces: Why
is a security protocol correct? In Proceedings

of the 1998 IEEE Symposium on Security and

Privacy, pages 160{171. IEEE Computer Society
Press, May 1998.

[5] V. Gligor. A note on the denial-of-service problem.
In Proceedings of the 1983 Symposium on Security

and Privacy, pages 139{149. IEEE Computer So-
ciety Press, 1983.



[6] Dieter Gollmann. What do we mean by entity
authentication? In Proceedings of the 1996 IEEE

Symposium on Research in Security and Privacy,
pages 46{54. IEEE Computer Society Press, 1996.

[7] Li Gong and Paul Syverson. Fail-stop proto-
cols: An approach to designing secure proto-
cols. In R. K. Iyer, M. Morganti, Fuchs W. K,
and V. Gligor, editors, Dependable Computing for

Critical Applications 5, pages 79{100. IEEE Com-
puter Society, 1998.

[8] D. Harkins and D. Carrel. The Internet Key Ex-
change (IKE), version 8. draft-ietf-ipsec-isakmp-
oakley-08.txt, June 1998.

[9] Ari Juels and John Brainard. Client puzzles:
A cryptographic countermeasure against connec-
tion depeletion attacks. In Proceedings of the

1999 Network and Distributed System Security

Symposium (NDSS'99). Internet Society, March
1999. Available at http://www.isoc.org/ndss99/-
proceedings/.

[10] P. Karn and W. Simpson. The Photuris session
key management protocol. Internet draft: draft-
simpson-photuris-17.txt, November 1997.

[11] S. T. Kent, D. Ellis, P. Helinek, K. Sirois, and
N. Yuan. Internet routing infrastructure security
countermeasures. BBN Report 8173, BBN, Jan-
uary 1996.

[12] L. Lamport. Times, clocks, and the ordering of
events in a distributed system. CACM, 21(7):558{
565, July 1978.

[13] L. Lamport. Password authentication with in-
secure communication. Communications of the

ACM, pages 770{772, November 1981.

[14] Patrick Lincoln. personal communication, Sept.
1998.

[15] Gavin Lowe. Some new attacks upon security pro-
tocols. In Proceedings of the 9th IEEE Computer

Security Foundations Workshop, pages 162{169.
IEEE Computer Society, June 1996.

[16] Gavin Lowe. Casper, a compiler for the analysis
of security protocols. In Proceedings of 10th IEEE

Computer Security Foundations Workshop, pages
18{30. IEEE Computer Society Press, Jun 1997.

[17] Catherine Meadows. The NRL Protocol Ana-
lyzer: An overview. Journal of Logic Program-

ming, 26(2):113{131, 1996.

[18] Jonathan Millen. A resource allocation model for
denial of service. In Proceedings of the 1992 IEEE

Symposium on Security and Privacy, pages 137{
147. IEEE Computer Society Press, 1992.

[19] JonathanMillen. Denial of service : A perspective.
In F. Cristian, G. Le Lann, and T. Lunt, editors,
Dependable Computing for Critical Applications 4,
pages 93{108. Springer-Verlag, 1995.

[20] Jonathan Millen. The Interrogator model. In Pro-

ceedings of the 1995 IEEE Symposium on Security

and Privacy, pages 251{260. IEEE Computer So-
ciety Press, May 1995.

[21] Jonathan K. Millen. CAPSL: Common Authen-
tication Protocol Speci�cation Language. Techni-
cal Report MP 97B48, The MITRE Corporation,
1997. See http://www.csl.sri.com/ millen/capsl.

[22] J. Mitchell, M. Mitchell, and U. Stern. Automated
analysis of cryptographic protocols using Mur�.
In Proceedings of the 1997 IEEE Symposium on

Security and Privacy, pages 141{151. IEEE Com-
puter Society Press, May 1997.

[23] Lawrence C. Paulson. The inductive approach
to verifying cryptographic protocols. Journal of

Computer Security, 6:85{128, 1998.

[24] C. Schuba, I. Krsul, M. Kuhn, G. Spa�ord,
A. Sundaram, and D. Zamboni. Analysis of a
denial of service attack on TCP. In Proceedings

of the 1997 IEEE Symposium on Security and

Privacy, pages 208{223. IEEE Computer Society
Press, May 1997.


