

Watcher: The Missing Piece of the Security Puzzle

John C. Munson
Computer Science Department

University of Idaho
Moscow, ID

jmunson@cs.uidaho.edu

Scott Wimer
Software Systems International, LLC

121 Sweet Avenue
Moscow, ID 83844

scottw@softsysint.com

Abstract

 Modern intrusion detection systems are comprised
of three basically different approaches, host based,
network based, and a third relatively recent addition
called procedural based detection. The first two have
been extremely popular in the commercial market for a
number of years now because they are relatively simple
to use, understand and maintain. However, they fall
prey to a number of shortcomings such as scaling with
increased traffic requirements, use of complex and false
positive prone signature databases, and their inability to
detect novel intrusive attempts. The procedural based
intrusion detection systems represent a great leap
forward over current security technologies by addressing
these and other concerns. This paper presents an
overview of our work in creating a true procedural
Disallowed Operational Anomaly (DOA) system.

1. Introduction

 All modern software design methodologies have
their origin in the very primitive standalone computer
environments. These computer systems were not
hooked up to the Internet nor even simple local
networks. Typically one job ran on the computer at a
time and jobs were batched and run sequentially. In this
environment, the only threat to a program's integrity
while it was executing was provided by the ineptitude of
the computer operator. Life was simple enough that the
execution of the program could be monitored as it ran
through light displays on the operator's console. Control
of the program was provided by the computer operator.
Over time, control of program execution gradually
shifted from the operator to the operating system. A
human being simply could not respond in a timely
fashion to the demands of a program running at
electronic speeds.
 From a computer security standpoint, the computer
hardware, the operating system, user applications and the

computer operator were all well contained within the
confines of a room whose perimeter could be secured
with existing security technology. In this limited
environment, there was little need to consider invasive
forces from outside. That only came when the complete
secure environment was compromised by attaching it to
a completely unregulated and potentially hostile
information ether.
 The evolution of the original computing
environment was almost exactly duplicated by the
evolution of the personal computer. Originally these
systems were self contained computers. They were used
for entertainment and, to a limited extent, for business.
Then everything changed (except for the underlying
security premise). People attached modems to their PC's
and connected to the Internet. The software that they
were running was designed to run in a contained and
completely encapsulated environment.
 The Internet was not a major factor in the design of
early Windows O/S's. It was certainly not even
considered when the architectural framework for UNIX
was laid down. It still isn't a design consideration in the
evolution of legacy code for managing a personnel
system. We have a security problem today because the
same naive premise about the operating environment of
most our software is still in effect. That is, the software
will operate in a closely confined hardware facility and if
it is to be exposed to a more hostile world, a big brother
security system will protect it.
 The literature and media abound with reports of
successful violations of computer system security by
both external attackers and internal users [7]. These
breaches occur through physical attacks, social
engineering attacks, and attacks on the system software.
It is this later category of attack that is the focus of this
paper. During an attack, the intruder subverts or bypasses
the security mechanisms of the system in order to gain
unauthorized access to the system or to increase their
current access privileges. These attacks are successful
when the attacker is able to exploit a vulnerability in the
software to cause it to execute in a manner that is

typically inconsistent with the software specification and
thus lead to a breach in security [1]. Intrusion detection
systems monitor traces of user activity to determine if an
intrusion has occurred. The traces of activity can be
collated from audit trails or logs [11,17], network
monitoring [9,15] or a combination of both. Once the
data regarding a relevant aspect of the behavior of the
system is collected, the classification stage starts.
 Although taxonomies that are more complex exist
[3,9], intrusion detection classification techniques can be
broadly catalogued in the two main groups: misuse
intrusion detection [12,13] and anomaly intrusion
detection [10]. The first type of classification technique
searches for occurrences of known attacks with a
particular "signature" and the second type searches for
departures from normality. Some of the newest intrusion
detection tools incorporate both approaches [2,16].
 Most current intrusion detection techniques examine
the input to software or the output from software. NIDS
(Network-based Intrusion Detection Systems) tools fit
directly into this category. Log scanning tools also fall
into this category. Other tools examine the input and
output of the system calls made by programs. These I/O
driven intrusion detection techniques have built in
limitations. These limitations are discussed below
because they represent the primary challenges successful
new intrusion detection techniques need to overcome.
 As we will see in the behavioral software model,
program modules are distinctly associated with certain
functionalities and operations that the program is capable
of performing. As each operation is executed, a subset
of software modules is executed which creates a
particular and distinct signature of module executions
[15]. An alternative approach examines sequences of
system calls as indicators of system behavior [cf. 18].
What is missing in these approaches is an understanding
that a program is being driven, ultimately by a human
being whose activity set constitutes behavior. Thus, we
can say that this user behavior induces characteristic
behavior on the part of the program. Further, when
users are behaving perfectly normally, this normal user
behavior induces normal or nominal behavior on the part
of the program. As we come to understand the nominal
behavior of a system as it is executing its customary
activities we can profile this nominal system behavior
quite accurately. Departures from the nominal system
profile represent potential malicious activity on the
system.
 Some unwanted activity may be understood from
previous assaults on the system. We can store profiles
and recognize these activities from our historical data.
What historical data cannot do is to permit us to
recognize new assaults. An effective security tool would
be designed to recognize assaults as they occur through
the understanding and comparison of the current

behavior against nominal system activity. This can
only be accomplished if the program is instrumented and
its activity is closely watched. Monitoring and
controlling program execution at run time through
behavioral control is the missing piece in the security
puzzle.

2. Current state of the art

 In the current state of the art of intrusion and misuse
detection, the software system is regarded as a black box.
The misuse determination is made either on the basis of
data inputs to the system or data outputs from the system.
For any given program, the set of all possible input data
is enormous. This holds true for all software:
applications, servers, compilers, and operating systems.
The set of all valid input is usually substantially smaller
than the total input set. A useful example would be a
web server that only knows how to parse input that is in
accordance with the HTTP specification. A string of
3000 'a's would not constitute valid input for that web
server. The web server will behave differently when
handling GET request than when it is passed the huge
string of 'a's. The set of invalid input consists of all
members of the total input set that are not members of
the valid input set.
 Each program has a set of potentially destructive,
intrusive and malicious input. Rule and signature based
intrusion detection techniques exploit this set to spot
attacks. These systems scan the input data for
occurrences of items from the known malicious set and
raise an alarm when a match is found. The discovery of
new elements for the malicious set is a difficult and time
consuming task. Research has established that variations
on known malicious input slip past many signature based
IDS tools [8,17]. Therefore each of these variations must
then be added to the set of known malicious input. This
growth challenges the ability of signature based
techniques to scale.
 A second drawback to examining the input for
instances of malicious data is the "post attack" nature of
the discovery process. The set of malicious input is not
known a priori for each program. Rather, elements are
added to the set as new attacks are observed, studied and
de-constructed. Attacks that security professionals do
not get to study may never result in additions to the
known malicious input set. Therefore, the discovery
process is dependent on successful attacks, and thorough
forensic work following these attacks. This leads to a
race between the attackers and the security community.
 Intrusion detection tools can monitor the output data
for matches against the known malicious output set.
These tools raise an alarm if a match is found. By adding
fingerprint type patterns to data that should be kept
private, these tools can also function as a simple access

control list, raising the alarm when the sensitive data are
leaked. Tools that function this way have the same
primary limitations as tools that look at the input data to
programs. The information provided is useful but not
timely if the goal is to prevent attacks from succeeding.
Knowing that an attack has succeeded may better than
not knowing at all, but the information is not available in
time to take action.
 From our perspective, the input to a program
determines the execution behavior of the program. In
fact, a specific change in execution behavior to
compromise the system in some way is the goal of many
attacks and exploits. The ability to identify these
behavioral changes would be valuable. Even more
valuable would be the ability to stop these behavioral
changes. Preventing these changes would thwart many
types of attacks.

3. The software behavioral model

 In order to understand running software it will be
necessary to build a metaphor that describes what the
software is doing in relation to the user who is causing it
to perform useful work. Software systems are
constructed to perform a set of operations for their
customers, the users. An example of such an operation
might be the activity of adding a new user to a computer
system [1]. At the software level, these operations must
be reduced to a well-defined set of functions. These
functions represent the decomposition of operations into
sub-problems that may be implemented on computer
systems. The operation of adding a new user to the
system might involve the functional activities of
changing to current directory to a password file, updating
the password file, establishing user authorizations, and
creating a new file for the new user. During the software
design process, the basic functions are mapped by system
designers to specific software program modules. These
modules will implement the functionality.
 From the standpoint of computer security, not all
operations are equal. Some user operations may have
little or no impact on computer security considerations.
Other operations, such as, system maintenance activities,
have a much greater impact on security. System
maintenance activities being performed by systems
administrators would be considered nominal system
behavior. System maintenance activities being
performed by dial-up users, on the other hand, would not
be considered nominal system behavior. In order to
formalize this decomposition process, a formal
description of these relationships will be established [5].
 Software systems are generally designed to
implement a set of functional requirements or
functionalities F. Thus, if the system is executing a
functionality Ff ∈ then it cannot be expressing

elements of any other functionality in F. Each of these
functionalities in F was designed to implement a set of
business requirements. From a user's perspective, this
software system will implement a specific set of
operations, O. This mapping from the set of user
perceived operations, O, to a set of specific program
functionalities is one of the major functions in the
software specification process. In Table 1 we can see
how two hypothetical user operations are mapped by this
process onto a set of four functionalities. In this table
there is a T in the intersection row and column for
operation, o1, and functionality f1 indicating that
functionality f1 implements requirement (operation) o1.

Table 1. Mapping operations to functionalities

O x F f1

 f2
 f3

 f4

o1
 T T

o2
 T T T

 From a computer security standpoint, we can
envision operations as the set of services available to a
user (e.g., login, open a file, write to a device) and
functionality as the set of internal operations that
implement a particular operation (e.g., user-id validation,
ACL lookup, labeling). When viewed from this
perspective, it is apparent that user operations that may
appear to be non-security relevant may actually be
implemented with security relevant functionalities
(sendmail is a classic example of this, an inoffensive
operation of send mail can be transformed into an attack
if the functionalities that deal with buffers can be
overloaded).

Table 2. Mapping functionalities to modules.

O x F m1
 m2

 m3
 m4

 m5
 m6

f1
 T T T

f2
 T T T

f3
 T T T

f4
 T T T

 The software design process is strictly a matter of
assigning functionalities in F to specific program
modules Mm ∈ the set of program modules. The actual
granularity of the notion of a module is not a significant
factor in this discussion. The granularity should be
sufficient to provide the resolution needed for subsequent
measurement purposes. For our purposes in this
discussion, a module will be a C function. The design
process may be thought of as the process of defining just
how the functional requirements will be implemented is
a set, M, of program modules. In Table 2, we can see the
hypothetical mapping of the set of four functionalities

established in Table 1, to a specific set of program
modules.
 As a program executes it will make many transitions
from module to module. Each of these transitions will
represent one epoch, or time increment. For the
purposes of measurement, we are interested in the
relative frequency of execution for each module during a
fixed number of epochs or dump interval. We will
accumulate these data in a module profile. A module
profile for an n module system will be an n element
vector. Each element of the vector will contain a tally of
the number of instances that each module has executed
during the current dump interval.
 We can see that there is a distinct relationship
between any given operation, o, and a given set of
program modules. That is, if the user performs a
particular operation then this operation will manifest
itself in certain modules receiving control. We can tell,
inversely, which program operations are being executed
by observing the pattern of modules executing, i.e. the
module profile. In a sense, then, the mapping of
operations to modules and the mapping of modules to
operations is reflexive.
 It is a most unfortunate accident of most software
design efforts that there are really two distinct set of
operations. On the one hand, there is a set of explicit
operations EO . These are the intended operations that
appear in the Software Requirements Specification
documents. On the other hand, there is also a set of
implicit operations, IO , that represent unadvertised
features of the software that have been implemented
through designer carelessness or ignorance. These are
not documented, nor well known except by a group of
knowledgeable and/or patient system specialists, called
hackers.
 The set of implicit operations, IO , is not well
known for most systems. We are obliged to find out
what they are the hard way. Crackers and other
interested citizens will find them and exploit them. What
is known is the set of operations EO and the mappings of
the operations onto the set of modules, M. For each of
the explicit operations there is an associated module
profile. That is, if an explicit operation is executed, then
a well defined set of modules will execute in a very
predictable fashion. We can use this fact to develop a
reasonable profile of the system when it is executing a
set of operations from the set of explicit operations. We
can use this nominal system behavior to serve as a stable
platform against which we may measure intrusive
activity. That is, when we observe a distribution of
module profiles that is not representative of the
operations in EO then we may assume that we are

observing one or more operations from the set IO ; we
are being attacked.
 When a program is actually executing, we will
observe its behavior from two different sources. The
first behavioral aspect is the mapping between the user
operations and the sequence of program module
executions. So if a user executed the following sequence
of operations from the set shown in Table 1, { o1, o1, o1,
o2, o1, o2} then we might observe the following execution
sequence of modules, {m1, m2, m1, m3, m1, m2, m1, m6,
m1, m5}. The point, here, is that there is that there is a
distinct relationship between what the user is doing, the
sequence of module executions that we can observe.
This constitutes the behavior of the program.
 The second behavioral aspect of program execution
has to do with the way that program modules interact
when the program is executing. We can see, for
example, that functionality f3 is implemented in modules
m3 and m6. We are very interested in the way that m3 and
m6 are invoked in the implementation of that
functionality. It may well be that m3 calls m6 and
whenever m3 is invoked m6 is also always invoked. In
this case there is little or no information in the call to m6
and we can learn to ignore it. A very different
circumstance arises when module m3 is sometimes called
when f3 is invoked and other times only m6 is called. In
this case, the operation of the two modules is almost
completely independent.
 The behavioral data on the interaction of program
modules can be gleaned from the profiles of module
execution. The sequences themselves do not well
disclose system behavior. To extract the actual
behavioral data we will tally the frequency of execution
of each module during a fixed number of program
epochs, or module calls. In this case, at fixed intervals
we will dump a profile vector containing the frequency
of module executions. This vector will contain the
essential information as to the precise nature of specific
module interactions. It is the interaction of the modules
that reveal behavior, not the sequences module
executions.

4. The missing piece in the security puzzle

 In our approach to anomaly detection or software
misuse, we are interested in the behavior of the software
system. We actually open up the running software
system and measure its behavior while it is running. In
this context the data may be seen as stimuli for the
program that exhibits some activity in response to each
datum. Data in the normal range of user activity will
induce normal behavior on the software. Data outside of
this range will induce different or unusual behavior on
the system that may be readily observed. In this
approach the focus shifts from trying to model and

understand the data space to which a program may be
subjected to the behavior of the program in response to
the data input.
 The central issue here is that once we understand the
notion that a program exhibits behavior that can be
measured, we can begin to assert behavioral control on
the program execution. We can certify certain behaviors
as nominal and reject behaviors that are outside of this
range. We can do this in real time because we are
monitoring the activity of the system in real time.
 Control is the central issue in computer security. It
has long been accepted that data control in the form of
encryption is a necessity to preserve the integrity of
information flowing from one agency to another.
Controlling access to system resources has also shown
great value for imposing a security regime.
 Access control has been used over time as a means
of attaining some modicum of security. In the middle
ages, castles were constructed to limit the access of
marauding bands of itinerant soldiers to the populace of a
region. These castles were effective if and only if they
were sufficiently strong. This made them a nightmare
for the occupants. The castles were cold, drafty and very
restrictive in terms of the movement of their inhabitants.
With the advent of the trebuchet and the cannon, even
these imposing and uncomfortable structures became
obsolete. There are other real good examples of failed
access control in the Great Wall of China or the Maginot
Line constructed before World War II to defend France
against the Germans. Access control is a deterrent but
not a solution. Trusted computer operating systems have
all of the user comfort of medieval castles. They are a
classical example of the castle architecture carried into
computer operating system design.
 The big downfall of all access control technology is
the inherent vulnerability built into the system from the
start. The Maginot Line did not surround France. The
Germans simply went around it to the north when the
time came to invade France. All software systems
contain similar vulnerabilities. They work well as long
as the enemy is cooperative and does not exploit the
intrinsic vulnerabilities in the system. For very large
software systems, however, it is virtually impossible (and
completely unnecessary) to know and remove all
vulnerabilities. Access control is useful to build specific
well understood defenses around specific system
resources such as files or system services. That is all.
 The missing piece of the computer security puzzle is
that of behavioral control. It is simply not possible to
build systems that are free from vulnerabilities. That
should never be an objective of software development.
Normal users of a system doe not exploit vulnerabilities.
Only the deliberate misuse of systems will exploit
vulnerabilities. This misuse can be detected and acted on
immediately. To demonstrate this concept we have

tested a web server that contains perhaps one of the most
vulnerable builds of RedHat 6.2 Linux running on the
Internet which we have invited people to attack. With
our technology in place we have bee able to identify
these assaults and stop them before they can exploit the
known vulnerabilities in this operating system.

5. Watcher

 The Disallowed Operational Anomaly computer
security solution is a technology based on our behavioral
control methodology. The DOA methodology is
embodied in the Watcher for Linux product. The Linux
operating system was selected as the first expression for
this technology for a number of reasons. The principle
reason was that it was a sufficiently large and complex
piece of software. While the core DOA technology is
applicable to any piece of software, the Linux kernel
provided a good demonstration ground. Implicit in this
is the fact that the source was available so that it could be
easily instrumented. We chose to instrument an OS
kernel because doing so imposed a high reliability
requirement on the instrumentation and profiling process
we developed. When instrumenting other applications,
such as apache, there is not such a high reliability
requirement.
 The Linux kernel source was altered in four ways.
First, about 3300 instrumentation points were inserted
throughout the source for the kernel. These
instrumentation points, or sensors, are the source of the
execution behavioral data that is stored into the baseline
and measure. The sensors placed in code are principally
used to determine whether a given code segment has
been reached [cf. 14]. Secondly, a few elements were
added to the task_struct and sk_buff structures in
the kernel. These were employed to identify the cause of
the behavior observed at the instrumentation points.
Thirdly, code was added to start the profiling process
when a process is executed or an IP packet is handed
from the device driver to ip_rcv(). And finally, a
quick check was added in ip_rcv() against a table of
banned IP addresses. This permits packets to be dropped
from banned hosts very early.
 Software execution can be observed through a
variety of techniques. Some techniques are more
invasive than others, source instrumentation vs. library
interposing, for example. The granularity of execution
information available also varies depending on the
technique chosen. Some techniques can only provide
information at the system call level [cf. 6, 7, 11, 18],
others can provide it at instruction level in the monitored
program. These techniques are collectively called
"sensors" in this document. Sensors are the
methodologies for observing information from running

software. Sensors provide the necessary telemetry to
observe the execution behavior of a program.

5.1. Behavioral tagging

 Watching execution behavior through the interaction
of the modules in M only tells us part of the story.
Knowing what behavior or operations in the set O are
occurring leads directly to the question of attribution.
The problems is to know who or what is causing the
behavior being observed right now. Several sensor
techniques described above lend themselves to tagging
the cause of the behavior to the behavioral data. This
information is referred to as "tag data." Common tag
data from our work with the Linux kernel and library
interposing on Solaris 7 are: IP addresses, process IDs,
TCP session IDs, socket file descriptors, user IDs, etc.
 Source code instrumentation and library interposing
are two methods we have used that support tagging
rather easily. Implementing behavioral tagging using
other sensor techniques may be more difficult.
Behavioral analysis becomes a powerful security
technique by making use of the behavioral tag data.

5.2. Behavioral baseline

 Behavioral data can be accumulated into a set
representing a baseline of program behavior. The type of
behavior captured in the baseline determines its utility.
If the normal behavior of a program is stored in the
baseline, then it can be used to detect abnormal program
usage. If the baseline is generated by testing the
program, then it can be used to detect untested behavior.
For this paper, our interest is security rather than
reliability; we focus on detecting abnormal program
usage rather than untested behavior.
 Creating a baseline for normal program usage is
simple. The data from the sensors simply needs to be
stored. However, for a complex program such as a web
server or an operating system, the baseline can become
very large. A program's sensors can quite easily
produce, on average, half a million data points per
minute. At times of high system activity, we have seen
an instrumented Linux kernel emit over 50,000 data
points each second. Real-time analysis techniques were
developed that could deal with the enormous volume of
behavioral data.
 Obviously the entire collection of behavioral data
cannot be used in real-time for analysis without very
powerful hardware. A compact model that completely
represents the baseline will be required for both speed
and brevity. This model must be constructed so that real-
time comparisons between it and the profiles emitted by
the running program can be performed. To solve this
problem, the sensors for each program store data into a

profile. The profile has a dump interval that specifies the
amount of epoch to gather before the profile is emitted.
The sensor in each program module is given a numerical
value called a "click ID." These start at 1 and count up
incrementally.

5.3. The profiles

 For a program that has 100 points of
instrumentation, the profile is an array of 100 integers.
The click IDs are used as indexes into the profile array.
When the path of execution passes over a sensor, the
value at profile[clickID] is incremented. The
profile is handed off for processing once a fixed number
of epochs have been recorded into it. Each profile can be
viewed as a point in a 100 dimensional space. The
baseline then is a collection of points in 100 dimensional
space. For real programs, there are usually several
hundred points of instrumentation. In the Linux kernel
we instrumented, there are just over 3000 points of
instrumentation. For the kernel's baseline, this means a
collection of points in a 3000 dimensional space.
 By treating each profile as the coordinates of a point,
we have made the behavior visual, and reduced the
bandwidth of behavioral data emitted by the program.
While working in the 3000 dimensional space is easier
from a bandwidth point of view, it is still too
computationally intensive for real-time application. We
must reduce the dimensionality to a manageable level for
this approach to work.

5.4. Problem simplification

 By looking at the data in each profile and the
corresponding instrumented source code it is clear that
certain modules always are invoked together. Modules
identified by click IDs of 7, 8, 13, and 74 may always be
called together for example. Through the use of a
statistical filter we are able to establish a mapping vector
that maps each actual program modules to a virtual
module in a much smaller profile. This mapping process
is shown graphically in Figure 1. For the Linux kernel,
the virtual profile tends to have between 80 and 120
virtual modules. This means that Watcher is not
processing the profiles from the 3300 points of the Linux
kernel but is processing the set of much small
dimensionality, the virtual profiles. The size of the
virtual profile depends on the variety of different tasks
performed by the program. In general, single purpose
programs have smaller virtual profiles than general
purpose programs whose behavior repertoire is much
larger. The underlying structure of the virtual modules
will depend very much on the diversity of the activity
performed. In general the larger the set of operations

actually selected by the user from O, the greater the
number of virtual modules

5

a
p
p
b
g
r
t
t
t
s

p
d
t
w
c
v
w
f
t
b
n

5

p
a
b
W

abnormality of a profile when compared against the
baseline data.
 As each profile is emitted by the sensors, the virtual
profile for it is a point in the same space as the model
built from the baseline. The distance between the new Actual ModulesActual ModulesActual Modules

Figure 1. Mapping Actual Module Counts to

Virtual Modules

.5. Creating a model of normal behavior

Each virtual profile can be viewed as a point in an
pproximately 100 dimensional space. By plotting these
oints we observe something rather remarkable. The
oints form natural clusters. The complete plot of the
aseline represents all of the behavior from the baseline
eneration period. The entire cluster can then be
epresented by its center and some radius, epsilon, about
he center point. These are called centroids. By storing
he mapping vector and the list of centroids, we are able
o represent the behavior from the baseline very
uccinctly.

The size of the model is determined primarily by the
rogram's range of behavior, rather than the amount of
ata collected in the baseline. The model representing
he behavior of the Linux IP stack is roughly 30k, even
hen the baseline ranges from 2 to 60 MB. These

entroids allow Watcher to represent nominal behavior
ery succinctly and thus enable real-time comparisons
ith new behavior. The actual centroids representation

or a typical calibration of the Linux kernel is shown in
he Figure 2. This succinct representation of normal
ehavior permits the rapid computation of distances for
ew emerging virtual profiles.

.6. Behavioral Measurement

The behavioral baseline will serve as a reference
oint to identify when a program is behaving
bnormally. Abnormality, however, is not a simple
inary condition. Rather, it is a continuous function.
hat is needed is technique for measuring the

point and the closest centroid can be calculated. This
distance is a scalar measurement of the normality of the
behavior stored in the profile. If the distance is less than
the epsilon radius used in creating the model, then the
behavior is normal. If the distance is greater than the
epsilon radius, then the distance answers the question of
the how abnormal the behavior was. When an attack
changes the behavior of the program, the module sensors
emit a profile whose distance is greater than the epsilon.
When testing attacks that would normally succeed, these
attacks impact the behavior of the targeted program
dramatically. They are very visible.
 The distance values describe the normality of the
current program behavior. By measuring the behavior of
the program we open the door for enforcement of normal
behavior. Ideally, an administrator should be able to
force all important programs to execute in their normal,
approved manner. When an attack cannot change the
behavior of the targeted program, the attack fails.
Stopping the attack as it starts is the goal of behavioral
control. Doing this requires two additional steps,
establishing thresholds and defining control policy.
 As long as the distances are less than the epsilon
radius, the behavior of the program is normal.
Administrators may choose to label distances slightly
greater than the epsilon normal also, because they are
nearly normal. A threshold distance can be established
which separates normal and allowed behavior from
abnormal behavior. Enforcing normal behavior requires
that abnormal behavior be stopped.
 The threshold value is a variable under the control of
the administrator. In periods of heightened threat, the
threshold can be lowered for more rigid behavioral
control. In periods of reduced threat, the threshold can
be raised, creating a less restrictive, but less secure,
behavioral environment for the program.

5.7. Policy

 Each profile contains tagging information in
addition to the behavioral information. After calculating
the distance the tag information becomes very useful. If
the distance for a profile is over the anomaly threshold,
the behavior may need to be stopped. If the tag is a
process ID, the process can be stopped or killed by
sending it a signal. If the tag is a socket's file descriptor,
shutdown(2) can be called to close the socket. If the
tag is a source IP address, incoming packets from that IP
can be ignored in a number of ways.

Virtual Modules

Mapping
Vector

Virtual ModulesVirtual Modules

Mapping
Vector

Mapping
Vector

 The actions taken in response to anomalous behavior
are determined by a variety of factors. For critical
programs or servers, the responses chosen will probably
be draconian. The responses are controlled by the
administrator. The behavioral measurement techniques
we have developed address the question of where and
when to take action.
 This approach can spot and stop attacks that share
two key characteristics. First, the attack must effect the
execution of the program. Second, the attacked program
must generate enough behavior to fill more than a single
profile. If an attack can completely express itself in less
than a single profile, our approach will spot the
abnormality and the cause, but will not be able to prevent

the attack. However, we have yet to observe any
successful attacks that can completely express
themselves in a single profile.
 If an attack is simply ignored by the program, then
its behavior is not likely to be effected. If an attack does
not require that the execution of a program be changed,
then behavioral analysis is unlikely to spot it. For
example, ftpd does not behave differently when
downloading /etc/passwd as opposed to any other
file, say,/tmp/harmless. Other security techniques
address the problem of unauthorized but
programmatically allowed behavior. Access Control
Lists (ACLs) seem to be the most powerful method for
addressing this class of security problem.

6. Experimental Results: Victim

 For experimental purposes, we have chosen to
demonstrate the capabilities presented through execution
behavioral measurement and control by connecting a
highly vulnerable version of the Linux kernel on a

computer connected to the Internet. We then published
the URL for the machine to various sites to attract the
attention of crackers to the machine. As additional
incentive we published the fact that we would ship the
computer to the first person who succeeded in rooting the
operating system on this computer. The challenge
provided intensive interest from a number of commercial
organization and individual crackers.
 To prepare victim for its role as a web server, we
generated an "Everything" install of RedHat 6.2;
installed Watcher kernel plug-in with the 2.2.18 kernel;
put a test web site on victim; requested pages from the
test web site; turned on nearly every service listed in
inetd.conf; set up cron jobs to restart services that

get killed; set up cron jobs to build log summary files;
and set up a cron job to force httpd and inetd to be
restarted. While other security systems rely on either
specific or general knowledge about attacks, our
approach is very different. We calibrated the system for
its normal behavior as a web server and also some
standard system administration activity are what
constitute normal behavior. The behavior of the system
was compared in real-time against the behavior
expressed by the baseline.
 Watcher was the only security control on victim.
Victim demonstrated that this technology is not only
viable, but directly applicable when it comes to rejecting
intrusion attempts. The victim challenge was equivalent
to parking a car in New York city with the keys in it,
windows rolled down the doors unlocked and open, and
the car running with a sign on it saying "Steal Me", and
an ad in the paper saying where the car is and to how
steal it. In our security metaphor, when an attempt is
made to steal this car (trash victim) the car simply
vanishes from their sight. The security vulnerabilities

1
1 0

1 9

2 8

3 7

4 6

5 5

6 4

7 3

8 2

9 1

1 0 0
0

0 .2

0 .4

0 .6

0 .8

1

Figure 2. Nominal Behavior of Linux Kernel

are not the problem. Dealing effectively with the assault
is the solution.
 Anomalous and normal behaviors are a function of
the role a system has been deployed in. For victim, the
normal behavior is serving web pages. Additionally, it is
normal for system administrator to be tailing log files,
and building the auto-generated portions of the victim
site. That is essentially the extent of "normal" behavior.
Abnormal behavior is anything else. The difference
between normal and abnormal is not a bold black line
though. What is really of interest is the difference
between normal behavior, and the behavior currently
occurring. This is where the behavioral measurement
aspect of our approach applies. Thresholds are
established on the allowed difference from normal;
anything over the thresholds is stopped. For victim these
were clearly set thresholds rather low.
 There have now been several thousand assaults on
the victim machine. The results of this experiment look
like this:

 Attack Rejection rate
 Port Scans 100%
 Buffer Overflows 100%
 Worms 100%

Within the domain of behavior control and vulnerability
exploits, the software on victim can easily manage 100%
of the misuses to which it has been subjected to date.

7. Summary

 While the existing paradigms of computer security
are still very useful and serve perfectly well in their
capacities, there has existed a gap in the computer
security space. Our technology and approach fills that
gap by providing procedural based intrusion detection
and response. We suggest that this gives Watcher the
unique ability to detect and halt completely novel attacks
that have yet to be seen on the Internet, and better yet,
we have the ability to protect the first person to see a
new attack or exploit. No one needs to be sacrificed to
the new virus or worm anymore.
 In essence, we have learned to solve the right
problem. Removing all software vulnerabilities is
clearly an unsolvable problem. Providing restrictive and
onerous barriers to software use makes the software
uncomfortable and difficult to use. Monitoring and
controlling program execution at run time through
behavioral control is the missing piece in the security
puzzle. The complete puzzle has three pieces; data
control (encryption), access control, and behavioral
control.

8. References

[1] J. Alves-Foss, D. Frincke and J. Munson. Measuring
Security: A Methodological Approach, International
Workshop on Enterprise Security, Stanford, CA, June
1996.

[2] D. Anderson, T. Frivold and A. Valdez: Next-
generation intrusion detection expert system (NIDES).
Technical Report, Computer Science Laboratory, SRI
International, Menlo Park, CA, SRI-CSL-95-07, May
1995.

[3] M. Bishop: A Taxonomy of UNIX and Network
Security Vulnerabilities," M. Bishop, Technical Report
95-10, Department of Computer Science, University of
California at Davis, May 1995.

[4] D. Denning: An intrusion-detection model. IEEE
Transactions on Software Engineering, Vol.13, No:2,
pp.222-232, February 1987.

[5] S. G. Elbaum and J. C. Munson, "Intrusion Detection
through Dynamic Software Measurement", Proceedings
of the USENIX Workshop on Intrusion Detection and
Network Monitoring , Santa Clara, CA, April 1999.

[6] A.K. Ghosh, C. Michael and M. Schatz: A real-time
intrusion detection system based on learning program
behavior, Proceedings of theThird International
Workshop, RAID 2000 , Springer-Verlag, Toulouse,
France, pp. 93-109, October 2000.

[7] A. K. Ghosh, A. Schwartzbard and M. Schatz:
Learning program behavior profiles for intrusion
detection. Proceeding of the USENIX Workshop on
Intrusion Detection and Network Monitoring, Santa
Clara, CA, April 1999.

[8] L. R. Halme and R. K. Bauer: AINT misbehaving - a
taxonomy of anti-intrusion techniques. Proc. of the 18th
National Information Systems Security Conference, pp.
163-172, October 1995.

[9] J. Hochberg, K. Jackson, C. Stallings, J. F. McClary,
D. DuBois and J. Ford: NADIR: An automated system
for detecting network intrusion and misuse. Computers
& Security, Vol.12, No:3, pp.235-248, May 1993.

[10] H. S. Javitz and A. Valdes: The SRI IDES statistical
anomaly detector. Proc. of the IEEE Symposium on
Research in Security and Privacy, pp.316-326, May
1991.

[11] A. P. Kosoresow and S. A. Hofmeyr, "Intrusion
Detection via System Call Traces", IEEE Software,
Septemeber/October 1997, pp. 35-42.

[12] S. Kumar and E. H. Spafford: A pattern matching
model for misuse intrusion detection. Proc. of the 17th
National Computer Security Conference, pp. 11-21,
October 1994.

[13] S. Kumar and E. H. Spafford: A Software
Architecture to Support Misuse Intrusion Detection,
Proc. 18th National Information Systems Security
Conference, pp.194-204, 1995.

[14] The Linux Kernel Instrumentation Project,
http://sourceforge.net/projects/kip/

[15] J. C. Munson, “A Software Blackbox Recorder.”
Proceedings of the 1996 IEEE Aerospace Applications

Conference, IEEE Computer Society Press, Los
Alamitos, CA, November, pp. 309-320, 1996.

[16] A. P. Porras and G. P. Neumann: EMERALD:
Event Monitoring Enabling Responses to Anomalous
Live Disturbances. National Information Systems
Security Conference, 1997.

[17] M. Sobirey, Richter and H. Konig. The intrusion
detection system AID. Architecture, and experiences in
automated audit analysis. Proc. of the International
Conference on Communications and Multimedia
Security, pp. 278-290, September 1996.

[18] C. Warrender, S. Forrest, and B. Pearlmutter:
Detecting intrusions using system calls: alternative data
models, IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, pp. 133-145, 1999.

