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Abstract 
 
 Modern intrusion detection systems are comprised 
of three basically different approaches, host based, 
network based, and a third relatively recent addition 
called procedural based detection.  The first two have 
been extremely popular in the commercial market for a 
number of years now because they are relatively simple 
to use, understand and maintain.  However, they fall 
prey to a number of shortcomings such as scaling with 
increased traffic requirements, use of complex and false 
positive prone signature databases, and their inability to 
detect novel intrusive attempts.  The procedural based 
intrusion detection systems represent a great leap 
forward over current security technologies by addressing 
these and other concerns.  This paper presents an 
overview of our work in creating a true procedural 
Disallowed Operational Anomaly (DOA) system.   
 
 
1. Introduction 
 
 All modern software design methodologies have 
their origin in the very primitive standalone computer 
environments.   These computer systems were not 
hooked up to the Internet nor even simple local 
networks.  Typically one job ran on the computer at a 
time and jobs were batched and run sequentially.   In this 
environment, the only threat to a program's integrity 
while it was executing was provided by the ineptitude of 
the computer operator.   Life was simple enough that the 
execution of the program could be monitored as it ran 
through light displays on the operator's console.   Control 
of the program was provided by the computer operator.  
Over time, control of program execution gradually 
shifted from the operator to the operating system.  A 
human being simply could not respond in a timely 
fashion to the demands of a program running at 
electronic speeds. 
 From a computer security standpoint, the computer 
hardware, the operating system, user applications and the 

computer operator were all well contained within the 
confines of a room whose perimeter could be secured 
with existing security technology.  In this limited 
environment, there was little need to consider invasive 
forces from outside.  That only came when the complete 
secure environment was compromised by attaching it to 
a completely unregulated and potentially hostile 
information ether.   
 The evolution of the original computing 
environment was almost exactly duplicated by the 
evolution of the personal computer.  Originally these 
systems were self contained computers.  They were used 
for entertainment and, to a limited extent, for business.  
Then everything changed (except for the underlying 
security premise).  People attached modems to their PC's 
and connected to the Internet.  The software that they 
were running was designed to run in a contained and 
completely encapsulated environment. 
 The Internet was not a major factor in the design of 
early Windows O/S's.  It was certainly not even 
considered when the architectural framework for UNIX 
was laid down.  It still isn't a design consideration in the 
evolution of legacy code for managing a personnel 
system.  We have a security problem today because the 
same naive premise about the operating environment of 
most our software is still in effect.   That is, the software 
will operate in a closely confined hardware facility and if 
it is to be exposed to a more hostile world, a big brother 
security system will protect it.   
 The literature and media abound with reports of 
successful violations of computer system security by 
both external attackers and internal users [7].  These 
breaches occur through physical attacks, social 
engineering attacks, and attacks on the system software. 
It is this later category of attack that is the focus of this 
paper. During an attack, the intruder subverts or bypasses 
the security mechanisms of the system in order to gain 
unauthorized access to the system or to increase their 
current access privileges. These attacks are successful 
when the attacker is able to exploit a vulnerability in the 
software to cause it to execute in a manner that is 



typically inconsistent with the software specification and 
thus lead to a breach in security [1].  Intrusion detection 
systems monitor traces of user activity to determine if an 
intrusion has occurred.  The traces of activity can be 
collated from audit trails or logs [11,17], network 
monitoring [9,15] or a combination of both.  Once the 
data regarding a relevant aspect of the behavior of the 
system is collected, the classification stage starts.   
 Although taxonomies that are more complex exist 
[3,9], intrusion detection classification techniques can be 
broadly catalogued in the two main groups: misuse 
intrusion detection [12,13] and anomaly intrusion 
detection [10].  The first type of classification technique 
searches for occurrences of known attacks with a 
particular "signature" and the second type searches for 
departures from normality.  Some of the newest intrusion 
detection tools incorporate both approaches [2,16]. 
 Most current intrusion detection techniques examine 
the input to software or the output from software.  NIDS 
(Network-based Intrusion Detection Systems) tools fit 
directly into this category.  Log scanning tools also fall 
into this category.   Other tools examine the input and 
output of the system calls made by programs.  These I/O 
driven intrusion detection techniques have built in 
limitations.  These limitations are discussed below 
because they represent the primary challenges successful 
new intrusion detection techniques need to overcome. 
 As we will see in the behavioral software model, 
program modules are distinctly associated with certain 
functionalities and operations that the program is capable 
of performing.  As each operation is executed, a subset 
of software modules is executed which creates a 
particular and distinct signature of module executions 
[15].  An alternative approach examines sequences of 
system calls as indicators of system behavior [cf. 18].  
What is missing in these approaches is an understanding 
that a program is being driven, ultimately by a human 
being whose activity set constitutes behavior.  Thus, we 
can say that this user behavior induces characteristic 
behavior on the part of the program.   Further, when 
users are behaving perfectly normally, this normal user 
behavior induces normal or nominal behavior on the part 
of the program.  As we come to understand the nominal 
behavior of a system as it is executing its customary 
activities we can profile this nominal system behavior 
quite accurately.  Departures from the nominal system 
profile represent potential malicious activity on the 
system.    
 Some unwanted activity may be understood from 
previous assaults on the system.  We can store profiles 
and recognize these activities from our historical data.  
What historical data cannot do is to permit us to 
recognize new assaults.  An effective security tool would 
be designed to recognize assaults as they occur through 
the understanding and comparison of the current 

behavior against nominal system activity.    This can 
only be accomplished if the program is instrumented and 
its activity is closely watched.   Monitoring and 
controlling program execution at run time through 
behavioral control is the missing piece in the security 
puzzle. 
 
2. Current state of the art 
 
 In the current state of the art of intrusion and misuse 
detection, the software system is regarded as a black box.  
The misuse determination is made either on the basis of 
data inputs to the system or data outputs from the system.  
For any given program, the set of all possible input data 
is enormous.  This holds true for all software:  
applications, servers, compilers, and operating systems.  
The set of all valid input is usually substantially smaller 
than the total input set.  A useful example would be a 
web server that only knows how to parse input that is in 
accordance with the HTTP specification.  A string of 
3000 'a's would not constitute valid input for that web 
server.   The web server will behave differently when 
handling GET request than when it is passed the huge 
string of 'a's.  The set of invalid input consists of all 
members of the total input set that are not members of 
the valid input set.   
 Each program has a set of potentially destructive, 
intrusive and malicious input. Rule and signature based 
intrusion detection techniques exploit this set to spot 
attacks.  These systems scan the input data for 
occurrences of items from the known malicious set and 
raise an alarm when a match is found.  The discovery of 
new elements for the malicious set is a difficult and time 
consuming task.  Research has established that variations 
on known malicious input slip past many signature based 
IDS tools [8,17]. Therefore each of these variations must 
then be added to the set of known malicious input.  This 
growth challenges the ability of signature based 
techniques to scale. 
 A second drawback to examining the input for 
instances of malicious data is the "post attack" nature of 
the discovery process.  The set of malicious input is not 
known a priori for each program.  Rather, elements are 
added to the set as new attacks are observed, studied and 
de-constructed.  Attacks that security professionals do 
not get to study may never result in additions to the 
known malicious input set.   Therefore, the discovery 
process is dependent on successful attacks, and thorough 
forensic work following these attacks.  This leads to a 
race between the attackers and the security community.  
 Intrusion detection tools can monitor the output data 
for matches against the known malicious output set.  
These tools raise an alarm if a match is found. By adding 
fingerprint type patterns to data that should be kept 
private, these tools can also function as a simple access 



control list, raising the alarm when the sensitive data are 
leaked.  Tools that function this way have the same 
primary limitations as tools that look at the input data to 
programs.  The information provided is useful but not 
timely if the goal is to prevent attacks from succeeding.  
Knowing that an attack has succeeded may better than 
not knowing at all, but the information is not available in 
time to take action. 
 From our perspective, the input to a program 
determines the execution behavior of the program.  In 
fact, a specific change in execution behavior to 
compromise the system in some way is the goal of many 
attacks and exploits.  The ability to identify these 
behavioral changes would be valuable.  Even more 
valuable would be the ability to stop these behavioral 
changes.  Preventing these changes would thwart many 
types of attacks. 
 
3. The software behavioral model 
 
 In order to understand running software it will be 
necessary to build a metaphor that describes what the 
software is doing in relation to the user who is causing it 
to perform useful work.  Software systems are 
constructed to perform a set of operations for their 
customers, the users.  An example of such an operation 
might be the activity of adding a new user to a computer 
system [1].  At the software level, these operations must 
be reduced to a well-defined set of functions.  These 
functions represent the decomposition of operations into 
sub-problems that may be implemented on computer 
systems.  The operation of adding a new user to the 
system might involve the functional activities of 
changing to current directory to a password file, updating 
the password file, establishing user authorizations, and 
creating a new file for the new user.  During the software 
design process, the basic functions are mapped by system 
designers to specific software program modules.  These 
modules will implement the functionality.   
 From the standpoint of computer security, not all 
operations are equal.  Some user operations may have 
little or no impact on computer security considerations.  
Other operations, such as, system maintenance activities, 
have a much greater impact on security.  System 
maintenance activities being performed by systems 
administrators would be considered nominal system 
behavior.  System maintenance activities being 
performed by dial-up users, on the other hand, would not 
be considered nominal system behavior.  In order to 
formalize this decomposition process, a formal 
description of these relationships will be established [5].  
 Software systems are generally designed to 
implement a set of functional requirements or 
functionalities F. Thus, if the system is executing a 
functionality Ff ∈ then it cannot be expressing 

elements of any other functionality in F.  Each of these 
functionalities in F was designed to implement a set of 
business requirements. From a user's perspective, this 
software system will implement a specific set of 
operations, O. This mapping from the set of user 
perceived operations, O, to a set of specific program 
functionalities is one of the major functions in the 
software specification process.  In Table 1 we can see 
how two hypothetical user operations are mapped by this 
process onto a set of four functionalities.   In this table 
there is a T in the intersection row and column for 
operation, o1, and functionality f1 indicating that 
functionality f1 implements requirement (operation) o1.  
 
Table 1.  Mapping operations to functionalities 

 
O  x  F f1

 f2
 f3

 f4
 

o1
 T T   

o2
  T T T 

 
 From a computer security standpoint, we can 
envision operations as the set of services available to a 
user (e.g., login, open a file, write to a device) and 
functionality as the set of internal operations that 
implement a particular operation (e.g., user-id validation, 
ACL lookup, labeling). When viewed from this 
perspective, it is apparent that user operations that may 
appear to be non-security relevant may actually be 
implemented with security relevant functionalities 
(sendmail is a classic example of this, an inoffensive 
operation of send mail can be transformed into an attack 
if the functionalities that deal with buffers can be 
overloaded).  
 

Table 2.  Mapping functionalities to modules. 
 

O  x  F m1
 m2

 m3
 m4

 m5
 m6

 

f1
 T T  T   

f2
 T  T  T  

f3
 T  T   T 

f4
 T  T  T  

 The software design process is strictly a matter of 
assigning functionalities in F to specific program 
modules Mm ∈  the set of program modules.  The actual 
granularity of the notion of a module is not a significant 
factor in this discussion.  The granularity should be 
sufficient to provide the resolution needed for subsequent 
measurement purposes.  For our purposes in this 
discussion, a module will be a C function.  The design 
process may be thought of as the process of defining just 
how the functional requirements will be implemented is 
a set, M, of program modules.  In Table 2, we can see the 
hypothetical mapping of the set of four functionalities 



established in Table 1, to a specific set of program 
modules. 
 As a program executes it will make many transitions 
from module to module.  Each of these transitions will 
represent one epoch, or time increment.   For the 
purposes of measurement, we are interested in the 
relative frequency of execution for each module during a 
fixed number of epochs or dump interval.  We will 
accumulate these data in a module profile.  A module 
profile for an n module system will be an n element 
vector.  Each element of the vector will contain a tally of 
the number of instances that each module has executed 
during the current dump interval. 
 We can see that there is a distinct relationship 
between any given operation, o, and a given set of 
program modules.  That is, if the user performs a 
particular operation then this operation will manifest 
itself in certain modules receiving control.   We can tell, 
inversely, which program operations are being executed 
by observing the pattern of modules executing, i.e. the 
module profile.  In a sense, then, the mapping of 
operations to modules and the mapping of modules to 
operations is reflexive. 
 It is a most unfortunate accident of most software 
design efforts that there are really two distinct set of 
operations.  On the one hand, there is a set of explicit 
operations EO .  These are the intended operations that 
appear in the Software Requirements Specification 
documents.  On the other hand, there is also a set of 
implicit operations, IO , that represent unadvertised 
features of the software that have been implemented 
through designer carelessness or ignorance.   These are 
not documented, nor well known except by a group of 
knowledgeable and/or patient system specialists, called 
hackers.   
 The set of implicit operations, IO , is not well 
known for most systems.  We are obliged to find out 
what they are the hard way.  Crackers and other 
interested citizens will find them and exploit them.  What 
is known is the set of operations EO and the mappings of 
the operations onto the set of modules, M.  For each of 
the explicit operations there is an associated module 
profile.  That is, if an explicit operation is executed, then 
a well defined set of modules will execute in a very 
predictable fashion.  We can use this fact to develop a 
reasonable profile of the system when it is executing a 
set of operations from the set of explicit operations.   We 
can use this nominal system behavior to serve as a stable 
platform against which we may measure intrusive 
activity.  That is, when we observe a distribution of 
module profiles that is not representative of the 
operations in EO  then we may assume that we are 

observing one or more operations from the set IO ;  we 
are being attacked. 
 When a program is actually executing, we will 
observe its behavior from two different sources.  The 
first behavioral aspect is the mapping between the user 
operations and the sequence of program module 
executions.  So if a user executed the following sequence 
of operations from the set shown in Table 1, { o1, o1, o1, 
o2, o1, o2} then we might observe the following execution 
sequence of modules, {m1, m2, m1, m3, m1, m2, m1, m6, 
m1, m5}.  The point, here, is that there is that there is a 
distinct relationship between what the user is doing, the 
sequence of module executions that we can observe.  
This constitutes the behavior of the program. 
 The second behavioral aspect of program execution 
has to do with the way that program modules interact 
when the program is executing.  We can see, for 
example, that functionality f3 is implemented in modules 
m3 and m6.  We are very interested in the way that m3 and 
m6 are invoked in the implementation of that 
functionality.  It may well be that m3 calls m6 and 
whenever m3 is invoked m6 is also always invoked.   In 
this case there is little or no information in the call to m6 
and we can learn to ignore it.  A very different 
circumstance arises when module m3 is sometimes called 
when f3 is invoked and other times only m6 is called.  In 
this case, the operation of the two modules is almost 
completely independent.   
 The behavioral data on the interaction of program 
modules can be gleaned from the profiles of module 
execution.  The sequences themselves do not well 
disclose system behavior.  To extract the actual 
behavioral data we will tally the frequency of execution 
of each module during a fixed number of program 
epochs, or module calls.  In this case, at fixed intervals 
we will dump a profile vector containing the frequency 
of module executions.  This vector will contain the 
essential information as to the precise nature of specific 
module interactions.  It is the interaction of the modules 
that reveal behavior, not the sequences module 
executions.   
 
4. The missing piece in the security puzzle 
 
 In our approach to anomaly detection or software 
misuse, we are interested in the behavior of the software 
system.  We actually open up the running software 
system and measure its behavior while it is running.  In 
this context the data may be seen as stimuli for the 
program that exhibits some activity in response to each 
datum.  Data in the normal range of user activity will 
induce normal behavior on the software.  Data outside of 
this range will induce different or unusual behavior on 
the system that may be readily observed.   In this 
approach the focus shifts from trying to model and 



understand the data space to which a program may be 
subjected to the behavior of the program in response to 
the data input.   
 The central issue here is that once we understand the 
notion that a program exhibits behavior that can be 
measured, we can begin to assert behavioral control on 
the program execution.  We can certify certain behaviors 
as nominal and reject behaviors that are outside of this 
range.  We can do this in real time because we are 
monitoring the activity of the system in real time.   
 Control is the central issue in computer security.  It 
has long been accepted that data control in the form of 
encryption is a necessity to preserve the integrity of 
information flowing from one agency to another.  
Controlling access to system resources has also shown 
great value for imposing a security regime.   
 Access control has been used over time as a means 
of attaining some modicum of security.  In the middle 
ages, castles were constructed to limit the access of 
marauding bands of itinerant soldiers to the populace of a 
region.  These castles were effective if and only if they 
were sufficiently strong.  This made them a nightmare 
for the occupants.  The castles were cold, drafty and very 
restrictive in terms of the movement of their inhabitants.  
With the advent of the trebuchet and the cannon, even 
these imposing and uncomfortable structures became 
obsolete.  There are other real good examples of failed 
access control in the Great Wall of China or the Maginot 
Line constructed before World War II to defend France 
against the Germans.  Access control is a deterrent but 
not a solution.  Trusted computer operating systems have 
all of the user comfort of medieval castles.  They are a 
classical example of the castle architecture carried into 
computer operating system design.   
 The big downfall of all access control technology is 
the inherent vulnerability built into the system from the 
start.  The Maginot Line did not surround France.  The 
Germans simply went around it to the north when the 
time came to invade France.  All software systems 
contain similar vulnerabilities.  They work well as long 
as the enemy is cooperative and does not exploit the 
intrinsic vulnerabilities in the system.  For very large 
software systems, however, it is virtually impossible (and 
completely unnecessary) to know and remove all 
vulnerabilities.  Access control is useful to build specific 
well understood defenses around specific system 
resources such as files or system services.  That is all. 
 The missing piece of the computer security puzzle is 
that of behavioral control.  It is simply not possible to 
build systems that are free from vulnerabilities.  That 
should never be an objective of software development.  
Normal users of a system doe not exploit vulnerabilities.   
Only the deliberate misuse of systems will exploit 
vulnerabilities.  This misuse can be detected and acted on 
immediately.   To demonstrate this concept we have 

tested a web server that contains perhaps one of the most 
vulnerable builds of RedHat 6.2 Linux running on the 
Internet which we have invited people to attack.  With 
our technology in place we have bee able to identify 
these assaults and stop them before they can exploit the 
known vulnerabilities in this operating system.   
  
5. Watcher 
 
 The Disallowed Operational Anomaly computer 
security solution is a technology based on our behavioral 
control methodology.  The DOA methodology is 
embodied in the Watcher for Linux product.   The Linux 
operating system was selected as the first expression for 
this technology for a number of reasons.  The principle 
reason was that it was a sufficiently large and complex 
piece of software.  While the core DOA technology is 
applicable to any piece of software, the Linux kernel 
provided a good demonstration ground.  Implicit in this 
is the fact that the source was available so that it could be 
easily instrumented.  We chose to instrument an OS 
kernel because doing so imposed a high reliability 
requirement on the instrumentation and profiling process 
we developed.  When instrumenting other applications, 
such as apache, there is not such a high reliability 
requirement.  
 The Linux kernel source was altered in four ways.  
First, about 3300  instrumentation points were inserted 
throughout the source for the kernel. These 
instrumentation points, or sensors, are the source of the 
execution behavioral data that is stored into the baseline 
and measure.  The sensors placed in code are principally 
used to determine whether a given code segment has 
been reached [cf. 14]. Secondly, a few elements were 
added to the task_struct and sk_buff structures in 
the kernel.  These were employed to identify the cause of 
the behavior observed at the instrumentation points.  
Thirdly, code was added to start the profiling process 
when a process is executed or an IP packet is handed 
from the device driver to ip_rcv(). And finally, a 
quick check was added in ip_rcv() against a table of 
banned IP addresses.  This permits packets to be dropped 
from banned hosts very early. 
 Software execution can be observed through a 
variety of techniques.  Some techniques are more 
invasive than others, source instrumentation vs. library 
interposing, for example.  The granularity of execution 
information available also varies depending on the 
technique chosen.  Some techniques can only provide 
information at the system call level [cf. 6, 7, 11, 18], 
others can provide it at instruction level in the monitored 
program.  These techniques are collectively called 
"sensors" in this document.  Sensors are the 
methodologies for observing information from running 



software.  Sensors provide the necessary telemetry to 
observe the execution behavior of a program.   
 
5.1. Behavioral tagging 
 
 Watching execution behavior through the interaction 
of the modules in M only tells us part of the story.  
Knowing what behavior or operations in the set O are 
occurring leads directly to the question of attribution.  
The problems is to know who or what is causing the 
behavior being observed right now.  Several sensor 
techniques described above lend themselves to tagging 
the cause of the behavior to the behavioral data.  This 
information is referred to as "tag data."  Common tag 
data from our work with the Linux kernel and library 
interposing on Solaris 7 are:  IP addresses, process IDs, 
TCP session IDs, socket file descriptors, user IDs, etc. 
 Source code instrumentation and library interposing 
are two methods we have used that support tagging 
rather easily.  Implementing behavioral tagging using 
other sensor techniques may be more difficult.  
Behavioral analysis becomes a powerful security 
technique by making use of the behavioral tag data. 
 
5.2. Behavioral baseline 
 
 Behavioral data can be accumulated into a set 
representing a baseline of program behavior.  The type of 
behavior captured in the baseline determines its utility.  
If the normal behavior of a program is stored in the 
baseline, then it can be used to detect abnormal program 
usage.  If the baseline is generated by testing the 
program, then it can be used to detect untested behavior. 
For this paper, our interest is security rather than 
reliability; we focus on detecting abnormal program 
usage rather than untested behavior. 
 Creating a baseline for normal program usage is 
simple.   The data from the sensors simply needs to be 
stored.  However, for a complex program such as a web 
server or an operating system, the baseline can become 
very large.  A program's sensors can quite easily 
produce, on average, half a million data points per 
minute.  At times of high system activity, we have seen 
an instrumented Linux kernel emit over 50,000 data 
points each second.  Real-time analysis techniques were 
developed that could deal with the enormous volume of 
behavioral data. 
 Obviously the entire collection of behavioral data 
cannot be used in real-time for analysis without very 
powerful hardware.  A compact model that completely 
represents the baseline will be required for both speed 
and brevity.  This model must be constructed so that real-
time comparisons between it and the profiles emitted by 
the running program can be performed.  To solve this 
problem, the sensors for each program store data into a 

profile. The profile has a dump interval that specifies the 
amount of epoch to gather before the profile is emitted.  
The sensor in each program module is given a numerical 
value called a "click ID."  These start at 1 and count up 
incrementally.   
 
5.3. The profiles 
 
 For a program that has 100 points of 
instrumentation, the profile is an array of 100 integers.  
The click IDs are used as indexes into the profile array. 
When the path of execution passes over a sensor, the 
value at profile[clickID] is incremented.  The 
profile is handed off for processing once a fixed number 
of epochs have been recorded into it.  Each profile can be 
viewed as a point in a 100 dimensional space.  The 
baseline then is a collection of points in 100 dimensional 
space.  For real programs, there are usually several 
hundred points of instrumentation.  In the Linux kernel 
we instrumented, there are just over 3000 points of 
instrumentation.  For the kernel's baseline, this means a 
collection of points in a 3000 dimensional space. 
 By treating each profile as the coordinates of a point, 
we have made the behavior visual, and reduced the 
bandwidth of behavioral data emitted by the program.  
While working in the 3000 dimensional space is easier 
from a bandwidth point of view, it is still too 
computationally intensive for real-time application.  We 
must reduce the dimensionality to a manageable level for 
this approach to work. 
 
5.4. Problem simplification 
 
 By looking at the data in each profile and the 
corresponding instrumented source code it is clear that 
certain modules always are invoked together.  Modules 
identified by click IDs of 7, 8, 13, and 74 may always be 
called together for example.  Through the use of a 
statistical filter we are able to establish a mapping vector 
that maps each actual program modules to a virtual 
module in a much smaller profile.  This mapping process 
is shown graphically in Figure 1.  For the Linux kernel, 
the virtual profile tends to have between 80 and 120 
virtual modules.  This means that Watcher is not 
processing the profiles from the 3300 points of the Linux 
kernel but is processing the set of much small 
dimensionality, the virtual profiles.  The size of the 
virtual profile depends on the variety of different tasks 
performed by the program.  In general, single purpose 
programs have smaller virtual profiles than general 
purpose programs whose behavior repertoire is much 
larger.  The underlying structure of the virtual modules 
will depend very much on the diversity of the activity 
performed.  In general the larger the set of operations 



actually selected by the user from O, the greater the 
number of virtual modules 
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abnormality of a profile when compared against the 
baseline data. 
 As each profile is emitted by the sensors, the virtual 
profile for it is a point in the same space as the model 
built from the baseline.  The distance between the new Actual ModulesActual ModulesActual Modules
 
Figure 1.  Mapping Actual Module Counts to 

Virtual Modules 

.5. Creating a model of normal behavior 

Each virtual profile can be viewed as a point in an 
pproximately 100 dimensional space.  By plotting these 
oints we observe something rather remarkable.  The 
oints form natural clusters.  The complete plot of the 
aseline represents all of the behavior from the baseline 
eneration period.  The entire cluster can then be 
epresented by its center and some radius, epsilon, about 
he center point. These are called centroids.  By storing 
he mapping vector and the list of centroids, we are able 
o represent the behavior from the baseline very 
uccinctly.  

The size of the model is determined primarily by the 
rogram's range of behavior, rather than the amount of 
ata collected in the baseline.  The model representing 
he behavior of the Linux IP stack is roughly 30k, even 
hen the baseline ranges from 2 to 60 MB.  These 

entroids allow Watcher to represent nominal behavior 
ery succinctly and thus enable real-time comparisons 
ith new behavior.  The actual centroids representation 

or a typical calibration of the Linux kernel is shown in 
he Figure 2.  This succinct representation of normal 
ehavior permits the rapid computation of distances for 
ew emerging virtual profiles.   

.6. Behavioral Measurement  

The behavioral baseline will serve as a reference 
oint to identify when a program is behaving 
bnormally.  Abnormality, however, is not a simple 
inary condition.  Rather, it is a continuous function.  
hat is needed is technique for measuring the 

point and the closest centroid can be calculated.  This 
distance is a scalar measurement of the normality of the 
behavior stored in the profile.  If the distance is less than 
the epsilon radius used in creating the model, then the 
behavior is normal.  If the distance is greater than the 
epsilon radius, then the distance answers the question of 
the how abnormal the behavior was.  When an attack 
changes the behavior of the program, the module sensors 
emit a profile whose distance is greater than the epsilon.  
When testing attacks that would normally succeed, these 
attacks impact the behavior of the targeted program 
dramatically.  They are very visible. 
 The distance values describe the normality of the 
current program behavior.  By measuring the behavior of 
the program we open the door for enforcement of normal 
behavior.  Ideally, an administrator should be able to 
force all important programs to execute in their normal, 
approved manner.  When an attack cannot change the 
behavior of the targeted program, the attack fails. 
Stopping the attack as it starts is the goal of behavioral 
control.  Doing this requires two additional steps, 
establishing thresholds and defining control policy. 
 As long as the distances are less than the epsilon 
radius, the behavior of the program is normal.  
Administrators may choose to label distances slightly 
greater than the epsilon normal also, because they are 
nearly normal.  A threshold distance can be established 
which separates normal and allowed behavior from 
abnormal behavior.  Enforcing normal behavior requires 
that abnormal behavior be stopped. 
 The threshold value is a variable under the control of 
the administrator.  In periods of heightened threat, the 
threshold can be lowered for more rigid behavioral 
control.  In periods of reduced threat, the threshold can 
be raised, creating a less restrictive, but less secure, 
behavioral environment for the program. 
 
5.7. Policy 
 
 Each profile contains tagging information in 
addition to the behavioral information.  After calculating 
the distance the tag information becomes very useful.  If 
the distance for a profile is over the anomaly threshold, 
the behavior may need to be stopped.  If the tag is a 
process ID, the process can be stopped or killed by 
sending it a signal.  If the tag is a socket's file descriptor, 
shutdown(2) can be called to close the socket.  If the 
tag is a source IP address, incoming packets from that IP 
can be ignored in a number of ways. 
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 The actions taken in response to anomalous behavior 
are determined by a variety of factors.  For critical 
programs or servers, the responses chosen will probably 
be draconian.  The responses are controlled by the 
administrator. The behavioral measurement techniques 
we have developed address the question of where and 
when to take action. 
 This approach can spot and stop attacks that share 
two key characteristics. First, the attack must effect the 
execution of the program.  Second, the attacked program 
must generate enough behavior to fill more than a single 
profile.  If an attack can completely express itself in less 
than a single profile, our approach will spot the 
abnormality and the cause, but will not be able to prevent 

the attack.  However, we have yet to observe any 
successful attacks that can completely express 
themselves in a single profile. 
 If an attack is simply ignored by the program, then 
its behavior is not likely to be effected.  If an attack does 
not require that the execution of a program be changed, 
then behavioral analysis is unlikely to spot it.  For 
example, ftpd does not behave differently when 
downloading /etc/passwd as opposed to any other 
file, say,/tmp/harmless. Other security techniques 
address the problem of unauthorized but 
programmatically allowed behavior.  Access Control 
Lists (ACLs) seem to be the most powerful method for 
addressing this class of security problem. 
 
6. Experimental Results:  Victim 
 
 For experimental purposes, we have chosen to 
demonstrate the capabilities presented through execution 
behavioral measurement and control by connecting a 
highly vulnerable version of the Linux kernel on a 

computer connected to the Internet.   We then published 
the URL for the machine to various sites to attract the 
attention of crackers to the machine.  As additional 
incentive we published the fact that we would ship the 
computer to the first person who succeeded in rooting the 
operating system on this computer.  The challenge 
provided intensive interest from a number of commercial 
organization and individual crackers.   
 To prepare victim for its role as a web server, we 
generated an "Everything" install of RedHat 6.2;  
installed Watcher kernel plug-in with the 2.2.18 kernel; 
put a test web site on victim;  requested pages from the 
test web site;  turned on nearly every service listed in 
inetd.conf;  set up cron jobs to restart services that 

get killed;  set up cron jobs to build log summary files; 
and  set up a cron job to force httpd and inetd to be 
restarted.  While other security systems rely on either 
specific or general knowledge about attacks, our 
approach is very different.  We calibrated the system for 
its normal behavior as a web server and also some 
standard system administration activity are what 
constitute normal behavior.  The behavior of the system 
was compared in real-time against the behavior 
expressed by the baseline.  
 Watcher was the only security control on victim.  
Victim demonstrated that this technology is not only 
viable, but directly applicable when it comes to rejecting 
intrusion attempts.  The victim challenge was equivalent 
to parking a car in New York city with the keys in it, 
windows rolled down the doors unlocked and open, and 
the car running with a sign on it saying "Steal Me", and 
an ad in the paper saying where the car is and to how 
steal it.  In our security metaphor, when an attempt is 
made to steal this car (trash victim) the car simply 
vanishes from their sight.  The security vulnerabilities 
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are not the problem.  Dealing effectively with the assault 
is the solution. 
 Anomalous and normal behaviors are a function of 
the role a system has been deployed in.  For victim, the 
normal behavior is serving web pages.  Additionally, it is 
normal for system administrator to be tailing log files, 
and building the auto-generated portions of the victim 
site.  That is essentially the extent of "normal" behavior. 
Abnormal behavior is anything else.  The difference 
between normal and abnormal is not a bold black line 
though.  What is really of interest is the difference 
between normal behavior, and the behavior currently 
occurring.  This is where the behavioral measurement 
aspect of our approach applies.  Thresholds are 
established on the allowed difference from normal; 
anything over the thresholds is stopped.  For victim these 
were clearly set thresholds rather low. 
 There have now been several thousand assaults on 
the victim machine.  The results of this experiment look 
like this: 
 
 Attack   Rejection rate 
 Port Scans   100% 
 Buffer Overflows  100% 
 Worms    100% 
 
Within the domain of behavior control and vulnerability 
exploits, the software on victim can easily manage 100% 
of the misuses to which it has been subjected to date. 
 
7. Summary 
 
 While the existing paradigms of computer security 
are still very useful and serve perfectly well in their 
capacities, there has existed a gap in the computer 
security space.  Our technology and approach fills that 
gap by providing procedural based intrusion detection 
and response.  We suggest that this gives Watcher the 
unique ability to detect and halt completely novel attacks 
that have yet to be seen on the Internet, and better yet, 
we have the ability to protect the first person to see a 
new attack or exploit.  No one needs to be sacrificed to 
the new virus or worm anymore. 
 In essence, we have learned to solve the right 
problem.   Removing all software vulnerabilities is 
clearly an unsolvable problem.  Providing restrictive and 
onerous barriers to software use makes the software 
uncomfortable and difficult to use.  Monitoring and 
controlling program execution at run time through 
behavioral control is the missing piece in the security 
puzzle.  The complete puzzle has three pieces; data 
control (encryption), access control, and behavioral 
control. 
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