
Correlating Intrusion Events and Building Attack Scenarios
Through Attack Graph Distances

Steven Noel, Eric Robertson, Sushil Jajodia
Center for Secure Information Systems, George Mason University

{snoel, erobert2, jajodia}@gmu.edu

Abstract

We map intrusion events to known exploits in the
network attack graph, and correlate the events through
the corresponding attack graph distances. From this, we
construct attack scenarios, and provide scores for the
degree of causal correlation between their constituent
events, as well as an overall relevancy score for each
scenario. While intrusion event correlation and attack
scenario construction have been previously studied, this is
the first treatment based on association with network
attack graphs. We handle missed detections through the
analysis of network vulnerability dependencies, unlike
previous approaches that infer hypothetical attacks. In
particular, we quantify lack of knowledge through attack
graph distance. We show that low-pass signal filtering of
event correlation sequences improves results in the face
of erroneous detections. We also show how a correlation
threshold can be applied for creating strongly correlated
attack scenarios. Our model is highly efficient, with
attack graphs and their exploit distances being computed
offline. Online event processing requires only a database
lookup and a small number of arithmetic operations,
making the approach feasible for real-time applications.

1. Introduction

Since intrusion detection systems generally focus on
low-level events and report them independently, network
administrators are often overwhelmed by large volumes
of alerts. This has motivated recent work in alarm
aggregation, to reduce administrator workload and
provide higher-level situational awareness. Ideally, alarm
aggregates should help one distinguish coordinated,
multi-step attacks from isolated events. It is also critical
to know if one’s network is actually vulnerable to
detected attacks, and not just from the standpoint of
individual machines but also in the context of the overall
network and its most critical resources.

Various approaches have been proposed to correlate
intrusion alarms and build attack scenarios from them.
For building attack scenarios, a particularly effective form
of correlation is causal correlation, which is based on
analyzing dependencies among intrusion events.

One approach to causal event correlation is to apply
logical rules that chain together events based on their
relevant attributes. But there are several problems with
rule-based approaches to event correlation. It can be
difficult for complex rule systems to keep pace with
online streams of events, and maintaining the rule sets
needed for constructing attack scenarios from disparate
events can be difficult. Also, missing events can prevent
rules from assembling a proper attack scenario, and
attempts at inferring hypothetical missing attacks can lead
to irrelevant results.

Another approach to causal correlation is to represent
relationships among events with graphs instead of logical
rules. However, because this is still based on intrusion
detection information only, it can potentially give
irrelevant results when hypothesizing missing events.
Also, because the attack scenario graphs are constructed
as events occur, it may be difficult for to keep pace with
online event streams.

In existing approaches, the implicit assumption is that
intrusion events are caused by the execution of attacker
exploits. These approaches then model intrusion events
in terms of rules (preconditions/postconditions) for the
implicit exploits. But the fundamental problem with these
approaches is they do not include network vulnerabilities
in their model, which would provide the proper context
for their implied exploits. This is the source of potentially
irrelevant scenarios or ambiguity for hypothesized
missing events.

In this paper, we extend previous approaches to
building attack scenarios by explicitly including network
vulnerability/exploit relationships (i.e., the attack graph)
in the model. In other words, the network attack graph is
precisely the model component that adds the necessary
context to the exploits implied by intrusion events. A
crucial design criterion is to maintain low overhead for
online event processing. Our online processing depends
solely on a manageable set of pre-computed attack graph
distances. To process an online intrusion event, only a
distance lookup and a small number of arithmetic
operations are required.

We first build a joint model of attacker exploits and
network vulnerabilities. The network vulnerability model
is created either manually or automatically from the

output of the Nessus vulnerability scanner. From the joint
exploit/vulnerability model, we then compute distances
(number of steps in the shortest path) between each pair
of exploits in the attack graph (for all possible network
attacks). These distances provide a concise measure of
exploit relatedness, which we use for subsequent online
causal correlation of intrusion detection events.

As detection events occur, we map them to attack
graph exploits, and look up the distances between pairs of
corresponding exploits. This allows us to correlate events
through attack graph information, without the online
overhead of rule execution or graph building. We
iteratively build event paths, with a numeric correlation
score for each event. Missing events are handled in a
natural way, i.e., we quantify gaps in attack scenarios
through attack graph distances. Events that cannot be
mapped to the attack graph initially can be considered in
post-analysis and possibly merged with existing attack
scenarios.

Sequences of correlation scores over event paths
indicate likely attack scenarios. We apply a low-pass
signal filter (the exponentially weighted moving average
filter) to correlation sequences, which improves quality in
the face of detection errors. We apply a threshold to
filtered correlations to separate event paths into attack
scenarios, i.e., only paths with sufficient correlation
(sufficiently small attack graph gaps) are placed in the
same attack scenario. We also compute an overall
relevancy score for each resulting attack scenario, which
measures the extent that it populates a path in the attack
graph.

In the next section, we review related work in this
area. Section 3 then describes our underlying model, and
Section 4 gives details of our implementation of this
model. In Section 5, we provide experimental evidence in
support of our approach, and in Section 6 we summarize
this work and draw conclusions.

2. Related Work

Our approach extends recent work in causal
correlation of intrusion events. But rather than correlating
based on dependencies among events only, we take the
novel direction of including the interdependent network
vulnerabilities (i.e., network attack graph) in the
correlation model.

In [1], the approach to causal correlation is to define
logical rules that relate generic (network independent)
events through preconditions/postconditions. As events
occur, the generic rules are instantiated with attributes
such as time, source/destination machine, and
vulnerability type, and evaluated via Prolog to chain
events together. This approach does include additional
implication rules for handling missed attacks. However,
because it lacks knowledge of the network vulnerabilities,

it is unable to narrow down hypothesized attacks to ones
that are truly relevant. Also, while this approach
generates rules offline (from a set of generic exploit
specifications), in online mode it still needs to evaluate
the rules. The approach in [1] does include merging of
identical events, which is complementary to our approach.
The event merging is accomplished through clustering
correlation, a form of correlation that has been described
by other authors, e.g., [2][3][4].

The approach in [5] is to represent relationships
among events as a graph rather than through rules. Such
graphs are less complex than rule systems, and indeed we
apply a similar graph representation in our approach. But
the approach in [5] does not correlate events with
vulnerability information, as we do. It can therefore give
irrelevant results when hypothesizing missing events,
because events are not grounded in real network
vulnerabilities. Also, the attack scenario graphs are
constructed as events occur, making it more difficult to
keep pace with online event streams. In contrast, we
capture relationships among attack graph elements in
concise distance measurements, so that no graph
manipulation is done online.

Work has been done in integrating intrusion detection
with vulnerabilities information, notably [6]. However,
this work considers vulnerabilities in isolation, without
considering the overall impact of combined vulnerabilities
on a network. Also, it does not address the critical
problem of building attack scenarios from individual
events. There are actually 2 vendors (Tenable Network
Security and Internet Security Systems) that integrate
their respective intrusion detection and vulnerability
scanning tools, but again this considers vulnerabilities
only in isolation.

On a related research front, work has been done in
automatic construction of attack graphs from network
vulnerability models. Our attack graph construction is
based on such prior work [7][8][9]. Other approaches to
attack graph construction have been proposed, including
logic-based [10][11] and graph-based [12][13][14]
approaches. These have been generally effective for
assessing overall network security posture or hardening
networks, although not all the proposed approaches are
scalable. Our attack graph representation is based on
exploit dependencies rather than security state
enumeration, so that we avoid combinatorial explosion.
The basic representation was first described in [14], and
later modified in [8][15].

3. Underlying Model

Construction of network attack graphs is based on the
application of attacker exploit rules. These rules map the
conditions for exploit success (preconditions) to
conditions induced by the exploit (postconditions). For

example, an exploit may require user privilege on the
attacker machine and yield root privilege on the victim
machine. An attack graph is constructed by finding the
interdependencies of exploits with respect to machines on
a network.

While we employ a scalable (low-order polynomial)
attack graph representation, the cost of attack graph
computation still prohibits online calculation per intrusion
event. The attack graph needs to be fully realized before
events occur. Once an alarm is raised, its event is mapped
to an exploit in the attack graph. Multiple
precondition/postcondition dependencies between
exploits are represented with a single graph edge,
meaning that the “to” exploit depends on at least one
postcondition of the “from” exploit.

A typical scenario for network vulnerability analysis
includes an initial attacking machine (either outside or
inside the administered network) and a set of attack goal
conditions (e.g., root) on one or more machines. Given
that an exploit’s preconditions are met, the state of the
victim machine changes per the exploit’s postconditions.
Upon success of an exploit, the conditions of the victim
machine may meet other exploits launched from that
machine. Successful exploits launched from the victim
machine are linked to the exploits that provide its
preconditions. By executing and linking exploits in this
fashion, an attack graph is formed.

For constructing attack scenarios, we do not base the
attack graph on a fixed attacker/goal scenario as is
typically done in network vulnerability analysis. Neither
the goal nor the attacker is known when the attack graph
is computed, before intrusion events are actually
considered. The assumption is that attacks can come from
any machine inside or outside an administered network.
The attacker may have infiltrated the network through
stealth attacks, or the attack may have come from an
insider who abuses his granted privileges. Similarly, the
attack goal is open, since it could be any adverse
condition (such as denial of service, root privilege, or
unauthorized data access) on any machine. In short, our
model considers the full scope of possible attack paths.

Two events that fall on a connected path in an attack
graph are considered correlated (at least to some extent).
Clearly, events should be fully correlated if they map to
adjacent exploits in the attack graph, since this is the
strongest relationship possible. Conversely, events
mapped to non-adjacent exploits are only partially
correlated, as shown in Figure 1. In this case, we
determine the degree of event correlation through graph
distance between corresponding exploits.

The graph distance between a pair of exploits is the
minimum length of the paths connecting them. If no such
path exists, then the distance is infinite. Graph distance
measures the most direct path an attacker can take
between two exploits. While longer paths might be

possible between exploits, the shortest path is the best
assumption for event correlation, and is the most efficient
to compute. The use of minimum path length does not
hinder the ability to analyze longer paths, since these
paths are constructed by assembling shorter paths. Using
minimum path length also resolves cycles in the attack
graph, which would otherwise indicate redundant attack
steps. Our graph distances are unweighted, i.e., no
weights are applied to graph edges between exploits.

Exploit 1
machine1->machine2

vuln1

Exploit 2
machine2->machine3

vuln2

Exploit 3
machine3->machine2

vuln3

Event 1
machine1->machine2

idsRule1=vuln1

Event 2
machine3->machine2

idsRule2=vuln3

Distance = 2

Exploit 1
machine1->machine2

vuln1

Exploit 2
machine2->machine3

vuln2

Exploit 3
machine3->machine2

vuln3

Event 1
machine1->machine2

idsRule1=vuln1

Event 2
machine3->machine2

idsRule2=vuln3

Distance = 2

Figure 1: Partially correlated events.

The exploit distances are pre-computed once for an
attack graph, and then applied continuously for a real-
time stream of intrusion events. The exploit distances
supply the necessary information to form event paths. An
event is added to the end of a path if it maps to an exploit
that has a finite distance from the exploit mapped to the
last event in the path. Event time is naturally accounted
for, because events are added at the ends of paths, which
were constructed from prior events. If a new event is
unreachable from all existing event paths (i.e., if the
corresponding attack graph distances are infinite), then
the event forms the beginning of a new path.

In Figure 2, suppose an initial event path exists as
Event 1, corresponding to Exploit 1. A new Event 2
arrives, corresponding to Exploit 3. Since Exploit 3 is
reachable from Event 1 with a graph distance of 2,
Event 2 is added to the event path. A new event may
trigger the creation of additional independent event paths.
Continuing with our example, suppose a new Event 3
arrives, which corresponds to Exploit 4. Exploit 4 is
reachable from both Exploit 1 and Exploit 3. Therefore,
Event 3 can be correlated to Event 1 independently of
Event 2. Since Event 2 might have nothing to do with
Event 1, a new path is created as a record of another
potential attack scenario. Thus we have the 2 paths
Event 1 → Event 2 → Event 3 and Event 1 → Event 3. In
the figure, these 2 paths are drawn with solid lines and
dashed lines, respectively, in the event graph.

In our model, cycles in the event graph are unrolled.
For example, in Figure 2, Exploit 4 can reach back to
Exploit 1 through a distance of 3. Event 4 occurs after
Event 3, and is identical to Event 1, i.e., it also maps to
Exploit 1. For example, Exploit 4 might yield new

privileges based on trust gained from the intervening 3
exploits. Thus two new paths are formed:

1. Event 1 → Event 2 → Event 3 → Event 4 (solid lines)
2. Event 1 → Event 3 → Event 4 (dashed lines)

These are shown with solid and dashed lines, respectively,
in Figure 2.

Event 1
machine1->machine2

idsRule1=vuln1

Event 2
machine3->machine2

idsRule2=vuln3

Event 3
machine2->machine4

idsRule3=vuln4

Distance = 2

Distance = 1 Distance = 1

Event 4
machine1->machine2

idsRule1=vuln1

Distance = 3 Distance = 3

Exploit 1
machine1->machine2

vuln1

Exploit 2
machine2->machine3

vuln2

Exploit 3
machine3->machine2

vuln3

Exploit 4
machine2->machine4

vuln4

Attack Graph

Event Graph

Exploit

Exploit

Event 1
machine1->machine2

idsRule1=vuln1

Event 2
machine3->machine2

idsRule2=vuln3

Event 3
machine2->machine4

idsRule3=vuln4

Distance = 2

Distance = 1 Distance = 1

Event 4
machine1->machine2

idsRule1=vuln1

Event 4
machine1->machine2

idsRule1=vuln1

Distance = 3 Distance = 3

Exploit 1
machine1->machine2

vuln1

Exploit 2
machine2->machine3

vuln2

Exploit 3
machine3->machine2

vuln3

Exploit 4
machine2->machine4

vuln4

Attack Graph

Event Graph

Exploit

Exploit

Figure 2: Creating event paths.

For the example in Figure 2, the events correspond to
exploits that lie within relatively close distances to each
other. But this may often not be the case. Indeed, it is
reasonable to assign events whose exploits are widely
separated in the attack graph to separate attack scenarios.
Since event distances greater than unity represent missed
detection events (according to the attack graph), it is
possible that such distances sometimes occur within a set
of coordinated attacks, since real attacks are sometimes
missed. But when event distances become larger, larger
numbers of attacks would need to be missed if they were
really coming from a coordinated attack.

Thus, we apply a correlation threshold that segments
event paths into highly correlated attack scenarios. In
other words, a consecutive sequence of events that lies
above the threshold defines an attack scenario. When
individual event paths are formed from the incoming
stream of events, new event paths are created when a new
event is not reachable (infinite distance) from the
currently existing set of event paths. In this way, event
paths have an obvious beginning based on (non-)
reachability. The correlation threshold provides a way to
end an event path when the distance to the next event is
too large, but is still finite.

The distances between events in an event path are
crucial information. But because of possible false
detections (positive and negative), the individual distance

values are somewhat suspect. We could gain more
confidence in our estimate by averaging the individual
distance values. While this would capture the global
trend of the event path, local trends would be lost. Also,
it is convenient to invert the event distances (use their
reciprocals), so that they lie in the range [0,1], with larger
values representing stronger correlation. Thus the inverse
distances represent similarities rather than dissimilarities.

But rather than computing the global average of
inverse event distances, we compute a moving average,
which has the ability to capture local trends while still
providing error resiliency. An unweighted moving
average defines a data window, and treats each data point
in the window equally when calculating the average.
However, it is reasonable to assume the most current
events tend to better reflect the current security state. We
therefore apply the exponentially weighted moving
average, which places more emphasis on more recent
events by discounting older events in an exponential
manner. It is known to be identical to the discrete first-
order low-pass signal filter.

Let kd be the attack graph distance between a pair of
intrusion events. Then the inverse event distance is

kk dx 1= . We then apply the exponentially weighted
moving average filter to a sequence of these kx :

 () kkk xxx αα −+= − 11 . (1)

The sequence of values of kx is the filtered version of the

original sequence of inverse event distances kx , for some
filter constant 10 ≤≤ α . The filtered inverse event
distances kx are the basic measure of event correlation in
our model. For convenience, we define a correlation of
unity for the first event in a path (i.e., it is fully correlated
with itself), even though there is no previous event to
compare it to.

The inverse intrusion event distances are filtered very
efficiently through the recursive formulation in
Equation (1). Computation requires no storage of past
values of x, and only one addition and 2 multiplications
per data point are required.

In the exponentially weighted moving average filter,
the filter constant 10 ≤≤ α dictates the degree of
filtering. As 1→α , the degree of filtering is so great that
individual event (inverse) distances do not even
contribute to the calculation of the average. On the other
extreme, as 0→α , virtually no filtering is performed, so
that kk xx → . Values in the range of 4.03.0 ≤≤ α
generally work well in practice.

The filtered inverse distances in Equation (1) provide
a good local measure of event correlation. In particular,
they perform well for the application of the score
threshold for segmenting event paths into attack

scenarios. But once an attack scenario is formed, the
individual filtered inverse distances do not provide an
overall measure of correlation for it. We introduce
another score that provides a measure of relevancy for the
entire scenario, based on attack path occupancy by events.

For attack scenario ks , ks is the number of events
in the scenario. Next, let kl be the cumulative distance
between pairs of events in the scenario. Then the attack
scenario relevancy score kr is

 kkk lsr = . (2)

Because the cumulative distance kl is the length of the
attack path that the scenario maps to, this relevance score

kr is the proportion of the attack path actually occupied
by an attack scenario’s intrusion events.

Our model is robust with respect to inconsistencies
between events and vulnerabilities. Events that cannot be
mapped to an exploit in the attack graph simply remain as
isolated events. This might occur because there is no
known mapping from a particular event to a vulnerability,
or because a certain vulnerability was not known when
constructing the attack graph. The converse is that there
are certain vulnerabilities in the attack graph that have no
corresponding intrusion detection signature. In this case,
distances between events (in event paths) can be
normalized by the expected distance between
corresponding exploits in the attack graph.

4. Implementation Details

Figure 3 shows the system architecture for our
implantation of the model described in the previous
section. The Attack Graph Analyzer requires a joint
model of the network and attacker exploits. Exploit
Modeling is done through manual analysis of reported
vulnerabilities and known exploits. We have researched
almost 2000 Nessus vulnerabilities, from which we have
modeled about 650 exploits (a significant portion of
Nessus vulnerabilities are irrelevant for this kind of
modeling). Because we usually model exploits at a
relatively high level of abstraction (e.g., in terms of access
type, privilege level, and network connection), this
manual process generally proceeds quickly.

Accurate modeling depends on sufficient information
about vulnerabilities and exploits. Our exploit modeling
is supported by an extensive database, which includes
37,000 vulnerabilities and 7,400 exploits, taken from 24
information sources including X-Force, Bugtraq, CVE,
CERT, Nessus, and Snort. Network Modeling can be
done manually, or generated automatically from Nessus
vulnerability scanner output. In the case of network
models created manually, we support model specification
in terms of vulnerable software components (OS, patch

level, web servers, configuration files, etc.), with rules to
map these to Nessus vulnerabilities.

Exploit
Modeling

Attack Graph
Analyzer

Network
Modeling

Event
Analyzer

Exploit
Distances

Attack
Graph

Vulnerability
Database

Attack
Graph

Visualization

Attack
Scenario

Visualization

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Off Line

Exploit
Modeling
Exploit

Modeling

Attack Graph
Analyzer

Network
Modeling

Event
Analyzer

Exploit
Distances

Attack
Graph

Vulnerability
Database

Attack
Graph

Visualization

Attack
Scenario

Visualization

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Network

Off Line

Figure 3: System architecture.

From the combined network and exploit models, we
analyze attack paths and load the resulting exploit
distances into an Oracle database. For efficiency, infinite
distances (caused by some exploits not being reachable to
others) are not recorded in the database. Rather, they are
represented by their absence. In practice, a value can be
chosen as an effective infinity, giving the distance
computation algorithm a reasonable stopping point in
declaring an exploit unreachable. Once exploit distances
are calculated, they become a static image of the attack
graph to be correlated with intrusion events. We can also
store the attack graph itself for future offline attack graph
visualization and post-analysis. All of this processing is
done offline, as shown by the shaded region in Figure 3.

When Snort intrusion detection events are logged in
the database, this triggers Oracle stored procedures in the
Event Analyzer to process them. For each Snort event, we
map the Snort identifier to the corresponding Nessus
vulnerability identifier. In the case that a Snort identifier
maps to multiple Nessus identifiers, we report all the
identifiers, and conservatively select the shortest distance
from among the candidate exploits for computing the
correlation score. The lookup of pre-computed attack
graph distances is based on source and destination IP
addresses and Nessus vulnerability identifier. Note that
only the distances between exploits are looked up, and no
processing of the actual attack graph occurs online.

Event paths are formed in the manner described in
the previous section, i.e., by adding new events to the
ends of paths if the new event is reachable from the last
event in the path, etc. For each path of intrusion events,
the Event Analyzer inverts the distances between events
(converts them from dissimilarities to similarities), then

applies the exponentially weighted moving average filter
in Equation (1) to the inverse distances. The correlation
threshold is then applied, as described in the previous
section, which segments event paths into highly correlated
attack scenarios. In practice, proper values of correlation
threshold should be based on expected rates of missed
detections.

5. Experiments

In this section, we demonstrate our approach through
various experiments. The first experiment focuses on the
application of correlation threshold for separating event
paths into highly-correlated attack scenarios and the
interaction between threshold value and low-pass filter
constant. To instill a deeper understanding of this, we
examine a small number of attacks in greater detail, as
opposed to showing statistical results for large number of
attacks. In the second experiment, we show more clearly
how low-pass filtering makes it easier to distinguish
regions of similar attack behavior in the presence of
intrusion detection errors. The third experiment is a
larger-scale scenario to demonstrate overall performance.

5.1 Scenario Building via Correlation
Threshold

Figure 4 is a concise summary of the attack graph for
this experiment. The network model in this experiment is
generated from Nessus scans of real machines. In the
figure, an oval between a pair of machines represents the
set of exploits between that machine pair. In most cases,
there are 2 numbers for exploit sets, reflecting the fact
that some exploits are in one direction (from one machine
to another), and other exploits are in the opposite
direction. Unidirectional sets of exploits are drawn with
directional arrowheads; for sets of exploits in both
directions, arrowheads are omitted. This is a variation of
the aggregated attack graph representation described in
[15].

In this experiment, only remote-to-root exploits are
included, to make results easier to interpret. That is, each
exploit has preconditions of (1) execute access on the
attacking machine and (2) a connection from the attacking
machine to a vulnerable service on the victim machine,
and postconditions of (1) execute access and (2) superuser
privilege on the victim machine. Since connections to
vulnerable services exist in the initial network conditions,
and each exploit directly yields superuser access on the
victim machine, the shortest exploit distance between
machines is always one. In interpreting these distances
from the figure, the actual numbers of exploits between
pairs of machines are therefore irrelevant.

The important information from Figure 4 is the attack
graph distances between the 8 intrusion events, which we

can determine directly from the figure. The arrow beside
“Event x” indicates the direction (source and destination
machine) of the event. So the distance from Event 1 (an
exploit from machine m23 to m80) to Event 2 (an exploit
from machine m80 to m52) is one, the distance from
Event 2 to Event 3 is 2, etc.

Event 1

Event 7

Event 3

Event 4

Event 5

Event 6Event 2

Event 8

Event 1

Event 7

Event 3

Event 4

Event 5

Event 6Event 2

Event 8

Figure 4: Aggregated attack graph.

Counting the distance from Event 4 to Event 5 is a bit
more subtle. Here one must realize that “3/2 exploits”
means there 3 exploits from m30 to m28, one of which is
associated with Event 4. Then from the Event-4 exploit,
in counting the shortest path to Event 5, there is one
exploit from m28 to m30, one from m30 to m42, etc., for
a total distance of 5. Figure 5 shows the full attack graph
for this experiment, although it is cumbersome to use this
complex graph for visually counting event distances.

Figure 5: Non-aggregated attack graph.

Figure 6 shows the sequence of distances for the
events in this experiment. Because every event is
reachable from the previous event, only a single event
path is generated.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Event In Path

A
tta

ck
 G

ra
ph

 D
is

ta
nc

e

23 -> 80 80 -> 52

42 -> 30

30 -> 28

58 -> 56

56 -> 23

80 -> 52

52 -> 42

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Event In Path

A
tta

ck
 G

ra
ph

 D
is

ta
nc

e

23 -> 80 80 -> 52

42 -> 30

30 -> 28

58 -> 56

56 -> 23

80 -> 52

52 -> 42

Figure 6: Attack graph distances for events.

Figure 7(a) shows the inverse of the attack graph
distances from Figure 6, filtered via Equation (1), for
different values of filter constant α . The vertical axis is
the filtered inverse distance (i.e., the correlation score),
the horizontal axis is the event number, and the axis into
the page is 9.01.0 ≤≤ α . We apply a correlation
threshold value of T = 0.6, shown as a horizontal plane.

For 1.0=α (front of page), very little filtering is
applied, so that the filtered sequence looks very similar to
the original sequence of inverse distances. In this region
of α values, for the threshold T = 0.6, the event path is
separated into 4 short attack scenarios:

1. Event 1 → Event 2
2. Event 4
3. Event 6
4. Event 8

The remaining events (3, 5, and 7) fall below the
threshold and are considered isolated. However, the more
likely scenario is that the distances=2 for Event 3 and
Event 7 represent missed detections, since they are in the
region of fully-correlated events. The distance=5 for
Event 5 would require an unlikely high number of missed
detections, so it is probably really is the start of a separate
(multi-step) attack.

The problem is that, without adequate filtering, event
distances are not being considered in the context of the
recent history. One could lower the threshold to below T
= 0.5 in this case, which would yield these most likely
attack scenarios:

1. Event 1 → Event 2 → Event 3 → Event 4
2. Event 6 → Event 7 → Event 8

However, in general values below T = 0.5 are not
particularly strong correlations, so this is not advisable.

1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

0.8

0.9

1

Attack Scenario 1 Attack Scenario 2

Correlation Threshold

Below
Threshold

IDS Event In Path

C
or

re
la

tio
n

(b)

IDS Event In Path

4 Scenarios

2 Scenarios

1 Scenario

Below
Threshold

α
=

0.
4

α = 0.4 ∩ T = 0.6

Filter
Constant α

9.0=α
1.0=α

Correlation
Threshold
T = 0.6

C
or

re
la

tio
n

(a)

1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

0.8

0.9

1

Attack Scenario 1 Attack Scenario 2

Correlation Threshold

Below
Threshold

IDS Event In Path

C
or

re
la

tio
n

(b)

IDS Event In Path

4 Scenarios

2 Scenarios

1 Scenario

Below
Threshold

α
=

0.
4

α = 0.4 ∩ T = 0.6

Filter
Constant α

9.0=α
1.0=α

Correlation
Threshold
T = 0.6

C
or

re
la

tio
n

(a)

Figure 7: Distance filtering and threshold.

For larger values of α (going into the page), more
filtering is applied, so that distance recent history is
considered more strongly. In this case, the threshold does
separate the path into the 2 most likely attack scenarios.
A cross section for 4.0=α is shown in Figure 7(b). For
overly large values of α (e.g., in the region of 9.0=α),
so much filtering is applied that the entire path is
considered a single attack scenario. In other words, it
misses Event 5 as the start of a new attack scenario.

5.2 Signal Filtering for Detection Errors

Next, we describe an experiment that more clearly
shows the need for low-pass signal filtering for handling
intrusion detection errors. In particular, this experiment
demonstrates how low-pass filtering makes it easier to
distinguish regions of similar attack behavior through the
application of a correlation score threshold.

The results of this experiment are shown in Figure 8.
Here, the horizontal axis is the event in an event path.
The vertical axes of the 4 plots are (respectively) raw
attack graph distance between events, global average of
inverse event distance, filtered inverse event distance, and
unfiltered inverse event distance.

As a ground truth, the event path is divided into 7
regions. Region 1 (Events 1-7) is an uncoordinated series
of events, i.e., one in which the events are unrelated and
scattered across the network, so that distances between
events are relatively long. Region 2 (Event 8) is a pair of
events that occur immediately together in the attack graph
(i.e., event distance=1, fully correlated). Region 3
(Events 9-14) is an uncoordinated series of events.
Region 4 (Events 15-17) is a series of fully correlated
events, and Region 5 (Events 18-24) is an uncoordinated
series of events.

5 10 15 20 25 30 35 40 45
0

5

5 10 15 20 25 30 35 40 45
0.35
0.4

0.45
0.5

0.55

5 10 15 20 25 30 35 40 45
0.2
0.4
0.6
0.8

5 10 15 20 25 30 35 40 45

0.5

1

Global Average

Unfiltered

Event Distances

One
scenario

One
scenario

Filtered: one scenario
Unfiltered: multiple scenarios

Filtered

5 10 15 20 25 30 35 40 45
0

5

5 10 15 20 25 30 35 40 45
0.35
0.4

0.45
0.5

0.55

5 10 15 20 25 30 35 40 45
0.2
0.4
0.6
0.8

5 10 15 20 25 30 35 40 45
0.2
0.4
0.6
0.8

5 10 15 20 25 30 35 40 45

0.5

1

Global Average

Unfiltered

Event Distances

One
scenario

One
scenario

Filtered: one scenario
Unfiltered: multiple scenarios

Filtered

Figure 8: Filtering inverse event distances.

Regions 6 and 7 (Events 25-36 and Events 37-48,
respectively) are a bit more subtle. In Region 6, the
attack graph distances between events fluctuate between
one and two. This represents a series of events for a
single (multi-step) attack, or at least the work of a fairly
consistently successful attacker. We could assume the
distance=2 event pairs are from missed detections. In
Region 6, the attack graph distances between events

fluctuate between 2 and 3. In this case, it seems more
likely to be an uncoordinated series of events that happen
to occur more closely on the attack graph than say
Region 1.

In Figure 8, we include global average (2nd from top
in the figure) as a comparison to moving average. While
each value captures the overall average inverse distance
up to a given event, that does not allow us to make local
decisions (e.g., through a correlation threshold) for
separating the path into individual attack scenarios. Even
the occurrence of fully-correlated Region 4 events cannot
be distinguished through the application of a threshold.

For the unfiltered inverse distances (bottom of Figure
8), we can correctly distinguish the isolated pair of fully
correlated events in Region 2, as well as the unbroken
path of fully correlated events in Region 4. But there are
problems for Region 6. This is the region in which fully
correlated events are mixed with distance=2 events. This
could be expected in a real sequence of attacks, when
some of the attacks go undetected. Here, the unfiltered
correlations fluctuate strongly, causing problems for
setting a threshold for segmenting event paths into likely
scenarios. At the threshold shown of 0.55, this region is
segmented into multiple very small attack scenarios. The
threshold could be lowered (to below 05), but that would
cause problems for Region 7. Here, distance=2 and
distance=3 event pairs are occurring. In this case, it is
much less likely a coordinated attack is occurring. It
would mean one or 2 attacks are repeatedly being missed,
with no fully correlated events occurring. Lowering the
threshold to handle Region 6 would cause Region 7 to be
segmented into multiple very small scenarios.

In contrast, when the threshold is applied to the
filtered version of the inverse event distances (2nd from
bottom in Figure 8), this correctly forms attack scenarios
corresponding to Regions 1 through 7. When filtering is
applied, the distance for a new event takes into account
the recent history of events, so that distances occurring
after shorter distances tend to become shorter and
distances occurring after longer distances tend to become
longer. The degree of this effect is controlled by the filter
constant α .

5.3 Performance

This experiment demonstrates overall performance
for the implementation of our approach (see Section 4 for
implementation details), using a large number of network
attacks. In particular, we apply our implementation to a
network of 9 victim machines, separated into 3 subnets, as
shown in Figure 9.

In this experiment, subnet x.x.100.0 services internet
traffic with a web server and an FTP server. Subnet
x.x.128.0 supports administrative servers and an Oracle
database server. Subnet x.x.200.0 is for administrative

purposes. Traffic between subnets is filtered as shown in
Figure 9. Traffic within each subnet is unfiltered, so that
there is full connectivity to vulnerable services among
machines in a subnet.

100.20

100.10

100.11

200 .1

200 .2

200 .3

128 .1
128.2

128 .3

x.x.100.0

x.x.128.0

x.x.200.0

Router

HTTP

FTP

ORACLE

SSH

SSH SSH
SSH

RPC

Internet
HTTP

Figure 9: Network connectivity for third

experiment.

The attack graph in this experiment contains 105
(machine-dependent) exploits. While there are
1052=11025 possible distances between 105 exploits, the
exploits leading from the internet are not reachable from
the remaining exploits, and such infinite distances are not
recorded (using an adjacency list representation). In
particular, there are 10,395 recorded exploit distances.

We then injected 10,000 intrusion events, mixed with
random traffic. We included isolated events as well as
multi-step attacks. Using a filter constant of 4.0=α and
a correlation threshold of 0.55, we correctly distinguished
the multi-step attacks from the isolated events.

In online mode, it takes less than 4 minutes to process
10,000 events (about 24 milliseconds per event). This is
on a machine with a 2-GHz processor, 1 megabyte of
main memory, and two 100-gigabyte 15,000 RPM SCSI
disk drives. Neither memory nor disk traffic showed
more than 30% load.

6. Summary and Conclusions

In this paper, we extend previous approaches to
attack scenario building by explicitly including the
network attack graph in the model. The attack graph
provides the necessary context for intrusion events, and
provides the graph distances upon which our correlations
are based. Our online event processing depends on pre-

computed attack graph distances only, and requires only a
lookup and 4 arithmetic operations.

To compute attack graph distances (offline), we build
a model of attacker exploits and network vulnerabilities.
We can create the network vulnerability model
automatically from output of the Nessus vulnerability
scanner. We then compute the distance of the shortest
path between each pair of exploits in the attack graph.
These distances are a concise measure of exploit
relatedness, which we use for subsequent online causal
correlation of intrusion detection events.

From the online stream of intrusion events, we build
individual event paths based on attack graph reachability.
The inverse distance between each event in a path is a
measure of correlation. We apply a low-pass filter to
sequences of inverse distances to provide resiliency
against detection errors. The application of a threshold to
the filtered distances separates event paths into highly
correlated attack scenarios. We also compute an overall
relevancy score for each resulting attack scenario.

We demonstrate our approach through several
experiments. The results show that the approach
generates attack scenarios with a high degree of causal
correlation. We demonstrate the effectiveness of
correlation thresholding, and well as its relationship to
degree of applied filtering. We demonstrate real-time
performance, processing an event every 24 milliseconds.

7. Acknowledgements

The work of Sushil Jajodia was partially supported
by the Air Force Research Laboratory, Rome under the
contract F30602-00-2-0512, the Army Research Office
under the grant DAAD19-03-1-0257, and the Army
Research Laboratory under the contract W911QX-04-C-
0101.

8. References

[1] F. Cuppens, A. Miege, “Alert Correlation in a Cooperative
Intrusion Detection Framework,” in Proceedings of the 2002
IEEE Symposium on Security and Privacy, May 2002.

[2] Y.-S. Wu, B. Foo, Y. Mei, S. Bagchi, “Collaborative
Intrusion Detection System (CIDS): A Framework for Accurate
and Efficient IDS,” in Proceedings of the 19th Annual Computer
Security Applications Conference, Las Vegas, Nevada,
December 2003.

[3] A. Valdes, K. Skinner, “Probabilistic Alert Correlation,” in
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, Davis, California, 2001.

[4] O. Dain, R. Cunningham, “Building Scenarios from a
Heterogenous Alert Stream,” in Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security, West Point,
New York, June 2001.

[5] P. Ning, D. Xu, C. Healey, R. St. Amant, “Building Attack
Scenarios through Integration of Complementary Alert
Correlation Methods,” in Proceedings of the 11th Annual
Network and Distributed System Security Symposium, February,
2004.

[6] B. Morin, L. Mé, H. Debar, M. Ducassé, “M2D2 : A Formal
Data Model for IDS Alert Correlation,” in Proceedings of the 5th
Symposium on Recent Advances in Intrusion Detection, Zurich,
Switzerland, October 2002.

[7] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP
Connectivity for Topological Analysis of Network Security,” in
Proceedings of 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, December 2002.

[8] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient
Minimum-Cost Network Hardening via Exploit Dependency
Graphs,” Proceedings of 19th Annual Computer Security
Applications Conference, Las Vegas, Nevada, December 2003.

[9] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of
Network Attack Vulnerability,” in Managing Cyber Threats:
Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2004.

[10] R. Ritchey, P. Ammann, “Using Model Checking to
Analyze Network Vulnerabilities,” in Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, California, 2000.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing,
“Automated Generation and Analysis of Attack Graphs,” in
Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, California, 2002.

[12] L. Swiler, C. Phillips, D. Ellis, S. Chakerian, “Computer-
Attack Graph Generation Tool,” in Proceedings of DARPA
Information Survivability Conference & Exposition II, June
2001.

[13] J. Dawkins, C. Campbell, J. Hale, “Modeling Network
Attacks: Extending the Attack Tree Paradigm,” in Proceedings
of Workshop on Statistical and Machine Learning Techniques in
Computer Intrusion Detection, Johns Hopkins University, June
2002.

[14] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-
Based Network Vulnerability Analysis,” in Proceedings of 9th
ACM Conference on Computer and Communications Security
(CCS), Washington, DC, November 2002.

[15] S. Noel, S. Jajodia, “Managing Attack Graph Complexity
through Visual Hierarchical Aggregation,” in Proceedings of the
ACM CCS Workshop on Visualization and Data Mining for
Computer Security, Fairfax, Virginia, 2004.

