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Abstract

Intrusions pose a serious security threat in a network environment,
and therefore need to be promptly detected and dealt with. New in-
trusion types, of which detection systems may not even be aware, are
the most difficult to detect. Current signature based methods and
learning algorithms which rely on labeled data to train, generally can
not detect these new intrusions. We present a framework for auto-
matically detecting intrusions, new or otherwise, even if they are yet
unknown to the system. In our system, no manually or otherwise
classified data is necessary for training. Our method is able to de-
tect many different types of intrusions, while maintaining a low false
positive rate.

1 Introduction

A network intrusion attack can be any use of a network that compromises its
stability or the security of information that is stored on computers connected
to it. A very wide range of activity falls under this definition, including at-
tempts to de-stabilize the network as a whole, gain unauthorized access to
files or priviledges, or simply mishandling and misuse of software. Added
security measures can not stop all such attacks. The goal of intrusion detec-
tion is to build a system which would automatically scan network activity



and detect such intrusion attacks. Once an attack is detected, the system
administrator could be informed and thus take corrective action.

Traditionally, signature based automatic detection methods have been
used for this task. These methods extract features from the network data,
and detect intrusions using a preset hard-coded algorithm provided by hu-
man experts. Obviously, such methods can not adapt to new types of in-
trusions quickly, and the preset algorithm has to be manually revised for
each new type of attack that is invented. Other approaches use data min-
ing and machine learning algorithms to train on labeled (i.e. with instances
pre-classified as being an attack or not) network data. An example of this
would be a program called RIPPER, which when given a set of feature vec-
tors with labels, will create generalized rules that best seem to classify the
data using those features. These approaches have the advantage of being
able to automatically retrain intrusion detection models on different input
data when we need new types of attacks to be detected. We would have to
insert many labeled instances of these new attacks into the dataset, and the
method would readjust its rule sets to detect them as well.

However, more often than not, we do not have labeled data readily avail-
able. Generally we must deal with very large volumes of network data, and
thus it is difficult and tiresome to classify it manually. We can obtain la-
beled data by simulating intrusions, but then we would be limited to the
set of known attacks that we were able to simulate and new types of attacks
occuring in the future will not be reflected in the training data. Therefore, in
the end our intrusion detection system will not be able to detect new attacks.
Even with manual classification, we are still limited to identifying only the
known (at classification time) types of attacks, thus restricting our detection
system to identifying only those types.

To solve these difficulties, we need a technique for detecting intrusions
when our training data is unlabeled, as well as for detecting new and un-
known types of intrusions. A method that offers promise in this task is
anomaly detection. Anomaly detection detects anomalies in the data (i.e.
data instances in the data that deviate from normal or regular ones). It also
allows us to detect new types of intrusions, because these new types will, by
assumption, be deviations from the normal network usage, just like the other
types of intrusions.

There are several approaches to anomaly detection. Some use data known
to be normal and use it as as a reference for detecting anomalous data [12].
This approach is an example of supervised anomaly detection, since the clas-



sification of the data must be known prior to training on it. Methods for
unsupervised anomaly detection do not assume that the data is labeled or
somehow otherwise sorted according to classification. One method involves
building probabilistic models from the training data and then using them to
determine whether a given network data instance is an anomaly or not [5].
The approach we used and describe below, clusters similar data instances to-
gether into clusters and uses distance metrics on clusters to determine what
is an anomaly. This clustering can be performed on unlabeled data, requiring
only feature vectors without labels to be presented. There are several primary
assumptions that this method relies upon. First, data instances having the
same classification (type of attack or normal) should be close to each other
in feature space under some reasonable metric, while instances with different
classifications will be far apart. Also, the amount of instances in the train-
ing set that represent normal network activity will be overwhelmingly larger
than the amount of intrusion instances.

It is very difficult, if not impossible, to detect malicious intent of someone
who is authorized to use the network and who uses it in a seemingly legitimate
way. For example, there is probably no highly reliable way to know whether
someone who correctly logged into a system is the intended user of that
system, or if the password was stolen. Our focus then is to be able to detect a
particular subset of intrusion attacks - ones that can be objectively identified
on the basis of network flow data alone. For instance, a ’denial of service
(DOS)’ attack can be argued to have a distinct set of features and patterns
that manifest themselves when examining packets on the network.

Under these assumptions we built a system which created clusters from its
input data, then automatically labeled clusters as containing either normal or
anomalous data instances, and finally used these clusters to classify unseen
network data instances as either normal or anomalous. Both the training
and testing was done using (different subsets of) KDD CUP 99 data [13],
which is a very popular and widely used intrusion attack dataset. Various
combinations of subsets of this dataset were used for training and testing, us-
ing standard cross validation techniques, each combination yielding slightly
different results. On average, the detection rate was around 40%-55% with
a 1.3%-2.3% false positive rate. Given the advantages of our method over
traditional approaches, and that the data was unlabeled, these results are
indicate good performance.



1.1 Related work

Clustering is a well known and studied problem. It has been studied in
many fields including statistics [18], machine learning [17], databases [10],
and visualization. Basic methods for clustering include the Linkage based
[3] and K-means [7] techniques. K-means makes several passes through the
training data and on each pass shifts cluster centers to the mean of the data
points assigned to that cluster. It then re-assigns data points to the near-
est prototype, and continues iterating in this manner until no significant
changes in cluster center positions occur. The K-means method generally
produces a more accurate clustering than linkage based methods, but it has
a greater time complexity and this becomes an extremely important factor in
network intrusion detection due to very large dataset sizes. Although some
optimizations of K-means for very large datasets exist , they still do not
perform sufficiently fast for datasets with high dimensionality. Some other
techniques for clustering include Clarans [16], Birch[20], density based meth-
ods such as Dbscan [6], and Al methods like Self-Organizing Maps [17]and
Growing Networks [1].

Anomaly detection is a widely used method in the field of computer se-
curity, and there are approaches that utilize it for detecting intrusions [4].

Various techniques for modeling anomalous and normal data have been
developed for intrusion detection. A survey of these techniques is given in
[19]. A method that is closely related to ours, assumes a data set containing
large number of normal elements and relatively few anomalies [5]. A mixture
model for explaining the presence of anomalies is presented, and machine
learning techniques are used to estimate the probability distribution. An
approach for modeling normal sequences using look ahead pairs and con-
tiguous sequences is presented in [11], and a statistical method to determine
sequences which occur more frequently in intrusion data as opposed to nor-
mal data is presented in [9]. One approach use a prediction model obtained
by training on a decision tree applied over normal data [15], while another
one uses neural networks to obtain the model [8]. Lane and Brodley [14]
evaluated unlabeled data for anomaly detection by looking at user profiles
and comparing the activity during an intrusion to the activity during normal
use.

A technique developed at SRI in the Emerald system [12] uses historical
records as its normal training data. It then compares distributions of new
data to the distributions obtained from those historical records and differ-



ences between the distributions indicate an intrusion. The problem with this
approach, however, is that if the historical distributions contain intrusions,
the system may not be able to detect similar intrusions in the new instances.

A problem related to anomaly detection is the study of outliers in the field
of statistics. Various techniques have been developed for detecting outliers
in univariate, multivariate and structured data, using a given probability
distribution. A survey of outliers in statistics is given by [2].

2 Methodology

In this section we describe the dataset and how it is used to build clusters
and detect intrusions.

We first examine what type of data was present in the dataset, what
features were extracted, and what intrusion types were represented. Then,
we discuss how the data was normalized based on the standard deviation of
the training set, so that the system would be able to create clusters with
data coming from different distributions. A description of the metric and
the clustering algorithm follows, and finally the methods for labeling clusters
and classifying unseen instances are discussed.

2.1 Dataset Description

The dataset used was the KDD Cup 1999 Data [13], which contained a
wide variety of intrusions simulated in a military network environment. It
consisted of approximately 4,900,000 data instances, each of which is a vector
of extracted feature values from a connection record obtained from the raw
network data gathered during the simulated intrusions. A connection is a
sequence of TCP packets to and from some IP addresses, starting and ending
at some well defined times. Each connection was labeled as either normal or
as exactly one specific kind of attack. All labels are assumed to be correct.

The simulated attacks fell in one of the following four categories : DOS -
Denial of Service (e.g. a syn flood), R2L - Unauthorized access from a remote
machine (e.g. password guessing), U2R - unauthorized access to superuser
or root functions (e.g. a buffer overflow attack), and Probing - surveillance
and other probing for vulnerabilities (e.g. port scanning). There were a total
of 24 attack types.



The extracted features included the basic features of an individual TCP
connection such as its duration, protocol type, number of bytes transferred,
and the flag indicating the normal or error status of the connection. Other
features of an individual connection were obtained using some domain knowl-
edge, and included the number of file creation operations, number of failed
login attempts, whether root shell was obtained, and others. Finally, there
were a number of features computed using a two-second time window. These
included - the number of connections to the same host as the current connec-
tion within the past two seconds, percent of connections that have "SYN”
and "REJ” errors, and the number of connections to the same service as
the current connection within the past two seconds. In total, there were 41
features, with most of them taking on continuous values.

2.2 Normalization

Since the system was designed to be general, it must be able to create clus-
ters given a dataset from an arbitrary distribution. However, if we assign
data instances to a cluster if they are closer than some constant distance
(cluster width) to that cluster’s center, a difficulty will arise. If this width is
hardcoded into the algorithm, then it will be used for all datasets, possibly
from different distributions. They will then have widely varying distances
between instances (depending on the distribution they come from) and a
constant hard-coded width for all distributions will not correctly determine
when two instances are close enough to be put inside the same cluster.

As an example, consider two sets of two 3-feature vectors, each set coming
from different distributions :

1. {(1,3,2),(1,4,3)}

2. {(900,1000,700),(1000,1100,800)}

Under an Euclidean metric, the squared distance between feature vectors
in the first set will be (1 — 1)? + (3 — 4)? + (2 — 3)2 = 1, while it will be
30, 000 for the second set. If our cluster width is a hard-coded constant (e.g.
1.5), it will not take into account the distribution that the input dataset is
taken from, and will put instances in the first set into the same cluster, and
the instances in the second set into different clusters.



One possible solution to this is to determine the width dynamically based
on the training dataset. We take a different approach however, and make
the width a hard-coded constant, but convert the data instances to a stan-
dard form based on the training dataset’s distribution. That is, we make
the assumption that the training dataset accurately reflects the range and
deviation of feature values of the entire distribution. Then, we can normalize
all data instances to a fixed range of our choosing, and hard code the cluster
width based on this fixed range.

Given a training dataset, the average and standard deviation feature vec-
tors are calculated :

N
avg_vector(j] = I > instance;|j]
i=1
1 N
std_vector[j] = (———= > _(instance;[j] — avg_vector[j])*)"/?

N -1

=1

where vector[j] is the jth element (feature) of the vector.
Then each instance (feature vector) in the training set is converted as
follows :

instance[j] — avg_vector[j]

new_instance[j] = std_vector[j]

In other words, for every feature value we calculate how many standard
deviations it is away from the average, and that result becomes the new
value for that feature. Only continuous features were converted; symbolic
ones were preserved as they were.

In effect this is a transformation of an instance from its own space to
our standardized space, based on statistical information retrieved from the
training set.

2.3 Metric

One of the main assumptions made was that data instances having the same
attack type (or if both of them are normal) will be close together under some
metric. Therefore, finding or constructing an appropriate metric is essential
for clustering.



The particular choice of metric is likely to be dictated by the domain. In
detecting network intrusions, it seemed at first that some features of the data
instances would be important (have greater weight) than others, and thus
differences in the values of those features should have a greater contribution
to the overall distance. Therefore, several weighted metrics were tried, with
higher weights assigned to different subsets of features.

However, in the end it was decided to use a standard Euclidean met-
ric, with equally weighted features. One reason for this was that while the
weighted metric did show some increase in performance, it was not a sig-
nificant amount. But more importantly, tuning the metric’s parameters to
achieve maximum performance for a particular domain, data distribution,
and feature set would undermine the system’s generality and would con-
tribute to overfitting. Finally, an additional assumption made was that the
feature set was selected such as to keep the degree of independence between
features high. Because of this, and also since the data was transformed into
a standardized space, an Euclidean metric was chosen for computing the
distance between instances.

Some features took on discrete values, and so there was an issue of how to
factor them into the metric. The metric we used added a constant value to
the squared distance between two instances for every discrete feature where
they had two distinct values.

2.4 Clustering

To create clusters from the input data instances, we used a simple variant of
single-linkage clustering. The algorithm starts with an empty set of clusters,
and updates it as it proceeds. For each new data instance retrieved from
the normalized training set, it computes the distance between it and each of
the centroids of the clusters in the cluster set so far. The cluster with the
shortest distance is selected, and if that distance is less than some constant
W (cluster width) then the instance is assigned to that cluster. Otherwise,
the instance is farther away than W from any cluster in the set, and therefore
a new cluster is created with the instance as its center. More formally, the
algorithm proceeds as follows :

Assume we have fixed a metric M, and a constant cluster width W. Let
dist(C,d) where C is a cluster and d is an instance, be the distance under
the metric M, between C’s defining instance and d. The defining instance
of a cluster is the feature vector that defines the center (in feature space) of



that cluster. We refer to this defining instance as the centroid.

1. Initialize the set of clusters, S, to the empty set.

2. Obtain a data instance (feature vector) d from the training set. If S
is empty, then create a cluster with d as the defining instance, and
add it to S. Otherwise, find the cluster in S that is closest to this
instance. In other words, find a cluster C' in S, such that for all C} in
S, dist(C,d) <= dist(C,d).

3. If dist(C,d) <= W, then associate d with the cluster C. Otherwise, d
is more than W away from any cluster in .S, and so a new cluster must
be created for it : S < S U {C,} where C, is a cluster with d as its
defining instance.

4. Repeat steps 2 and 3, until no instances are left in the training set.

2.5 Labeling clusters

If, under our metric, instances with the same classification are close together,
those with different classifications are far apart. If an appropriate cluster
width W was chosen, then after clustering we obtain a set of clusters with
instances of a single type in each of them. (Of course, in reality, these
assumptions will rarely be fully satisfied).

Since we are dealing with unlabeled data, we do not have access to labels
during training. Therefore, it is necessary to find some other way to de-
termine which clusters contain normal instances and which contain attacks
(anomalies). If our second major assumption about normal instances con-
stituting an overwhelmingly large portion (> 98%) of the training dataset is
satisfied, then it is highly probable that clusters containing normal data will
have a much larger number of instances associated with them then would
clusters containing anomalies. We therefore label some percentage N of the
clusters containing the largest number of instances associated with them as
‘'normal’. The rest of the clusters are labeled as ’anomalous’.

A problem might arise with this approach, however, depending on how
many sub-types of normal instances there are in the training set. For exam-
ple, there may be many different kinds of normal network activity, such as
using different protocols - ftp, telnet, www, etc. Each of these uses might have
its own distinct point in feature space where network data instances for that



use will tend to cluster around. This, in turn, might produce a large number
of such 'normal’ clusters, one for each type of normal use of the network.
Each of these clusters will then have a relatively small number of instances
associated with it - less than some clusters containing attack instances. Then
these normal clusters will be incorrectly labeled as anomalous. To prevent
this problem, we need to insure that the percentage of normal instances in
the training set is indeed extremely large in relation to attacks. Then, it is
very likely that each type of normal network use will have adequate (and
larger) representation than each type or sub-type of attack.

2.6 Detection

Once the clusters are created from a training set, the system is ready to
perform detection of intrusions. Given an instance d, classification proceeds
as follows :

1. Convert d based on the statistical information of the training set from
which the clusters were created. Let d’' be the instance after conversion.

2. Find a cluster which is closest to d’ under the metric M (i.e. a cluster C
in the cluster set, such that for all C' in S, dist(C,d') <= dist(C’, d').

3. Classify d’ according to the label of C' (either normal or an anomaly).

In other words, we simply find the cluster that is closest to d (converted)
and give it that cluster’s classification. Note that in the first step we are
effectively transforming d into the space of the training set. This is done so
that it would be meaningful to use the metric and find the cluster closest
to the instance. According to an assumption stated earlier, the distribution
of the training set should adequately represent the distribution and data
of the entire domain, and therefore we can use its statistical information
to transform new data into a standardized space. If that assumption is not
satisfied and d comes from an entirely different distribution than the training
set or is of a classification type that is not represented in it, then it would
not follow that its closest cluster will contain instances of the same type as
d.
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3 System evaluation and results

In this section we detail how the various free parameters to the system were
fixed, and the approach to evaluating its performance. The main free param-
eters that needed to be set before performance could be evaluated were the
cluster width set during clustering, and the percentage of biggest clusters that
were labeled normal during detection. Other parameters included details of
the clustering and detection methods themselves. Several small variations
of them were tried and we determined the ineffectiveness of these variations
on improving performance. An additional parameter was the training data
set, itself, in the sense of deciding which part of and how to use it so that
it would satisfy our assumption about the input data. Finally, once the pa-
rameters values were set, we used cross-validation testing to measure system
performance.

3.1 Performance measures

To evaluate our system we were interested in two major indicators of per-
formance : the Detection Rate and the False Positive rate. The Detection
Rate is defined as the number of intrusion instances detected by the system
divided by the total number of intrusion instances present in the test set.
The False Positive rate is defined as the total number of normal instances
that were (incorrectly) classified as intrusions divided by the total number
of normal instances. These are good indicators of performance, since they
measure what percentage of intrusions the system is able to detect and how
many incorrect classifications it makes in the process. To calculate these val-
ues, access to labels (classifications) of instances in the test set was required.
This was used for measuring performance only, however, and in practical uses
of the system the existence of labeled data is not assumed.

3.2 Filtering the training dataset

The KDD dataset was obtained by simulating a large number of different
types of attacks, with normal activity in the background. The goal was to
produce a good training set for learning methods that use labeled data. As a
result, the proportion of attack instances to normal ones in the KDD training
dataset is very large.
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Our second major assumption, however, states that the training set should
represent normal network activity, where attacks are very rare and most of
the data represents normal operation. Therefore, the raw KDD dataset ob-
viously does not satisfy this condition. We trained the system with this raw
set and obtained very poor performance, as was to be expected. To meet
the requirement, we generated training sets from KDD data by filtering it
for attacks. It was filtered such that the resulting training set consisted of 1
to 1.5% attack and 98.5 to 99% normal instances.

3.3 Fixing free parameters

There were two main parameters whose values needed to be fixed before
performance could be measured. The first one is the cluster width for do-
ing clustering, which determines how close two instances have to be to be
assigned to the same cluster. The second is the percentage of the largest
clusters (PLC) that would be labeled 'normal’ during the detection phase.
The goal was to set values for these two variables such that the performance
over the entire domain would be maximized.

We used a single subset (around 10%) of the KDD data to run a series
of tests with different values for these two variables, measuring the resulting
performance. Both training and testing was done on that same subset. This
is justified because no information about the data’s classification was used
during training and therefore using the training set for testing is essentially
the same as using a different set. The only hazard of overfitting is that the
training set might represent a narrow spectrum of the domain and we might
overfit the values of the two variables to that spectrum. However, the subset
that we chose was representative of the entire KDD dataset, as it contained
many instances of each type of attack.

Once we found the values for cluster width and the PLC that maximized
results for that set, those values were fixed for all the subsequent experiments.
It can be argued that such tuning of free variables will result in overfitting
to the particular dataset used to train and measure performance. However,
we believe that if that dataset represents the entire domain well, then values
found for the free parameters will maximize performance for other datasets as
well, and we would only be overfitting to the domain itself. Cluster width is a
measure indicating the average radius in feature space of a cluster containing
instances of the same type. This is a particular property of the domain -
network connection records. The PLC is also a property of the network - it
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Width | P.L.C. | Detection rate | False positive rate
20 15% 35.7% 1.44%

20 7% 66.2% 2.7%

20 2% 88.% 8.14%

Table 1: These are the results of some tests to obtain the value of P.L.C.
(percentage of largest clusters to label as normal during detection). The
cluster width was fixed for these tests.

Width | P.L.C. | Detection rate | False positive rate
40 15% 30.77% 0.84%

30 15% 28.1% 1.07%

60 15% 31.9.% 0.7%

80 15% 22.84% 0.6%

Table 2: These are the results of some tests to obtain the value of the cluster
width variable. Cluster width of 40 was chosen for subsequent tests.

attempts to measure the ratio of the number of sub-types of normal instances
to the total number of different sub-types.

When fixing the values of the cluster width and percentage of largest
clusters variables, and measuring performance on the single training/test
set, the results are shown in Table 3.3.

We decided to use 15% as the value for P.L.C. in subsequent tests (except
cross validation), since it produced an acceptable false positive rate, without
sacrificing too much detection rate. To find the value for cluster width we
conducted several tests on the same training/test set combination, and with
a fixed value for P.L.C. The results of some of these tests are shown in Table
2.

Cluster width of 40 was chosen even though width=60 produced a slightly
higher detection rate and a false positive rate. The difference was minor
however, and tests on different datasets indicated that with width=60 per-
formance was worse than with width=40. Since there were approximately 40
feature values in each feature vector, a width of 40 indicates that on average
each feature value of an instance could differ by no more than 1 standard
deviation from the defining instance of a cluster, in order for the instance to
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be assigned to that cluster.

Figure 1 shows an ROC (Receiver Operating Characteristic) (Receiver
Operating Characteristic) curve depicting the relationship between false pos-
itive and detection rates for one fixed training/test set combination. ROC
curves are a way of visualizing the trade-offs between detection and false
positive rates.

100
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Figure 1. The ROC curve of false positive vs. detection rate, for a fixed
training and test set combination.

3.4 Variations to clustering and detection

After the cluster width and the constant indicating the percent of largest
clusters to be labeled normal were fixed, some variations on the clustering
and detection methods were tried, and the change in performance over the
single training and test subset was measured for each variation.

The clustering method was altered by allowing multiple (two in the ver-
sion we used) passes for the creation and assignment of instances to clusters.
Previously, only one pass was made, during which for every instance a clus-
ter nearest to it was found in the set of currently existing clusters, and the
instance was assigned to that cluster if it was less than cluster width away
(under the metric). If it was farther away, a new cluster was created for that
instance. In this scheme the instances which appeared earlier in the training
dataset had a smaller set of existing clusters to compare distance to. It was
thought that this might have possibly resulted in a non-optimal assignment
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N | Detection rate | False positive rate
2 | 28.5% .56%

3 |51.3% 1.21%

4 | 47.2% .93%

5 1 53.3% 1.61%

6 | 50.9% 1.36%

7 | 65.7% 1.78%

Table 3: Results for the labeling by majority variation to the detection
method.

of an instance to a cluster, in the sense that if it was closest to some type or
sub-type of instances and the cluster representing them was not yet present
in the set, it would have been assigned (if it was within cluster width) to the
closest cluster that was in the set at the time that instance was considered.
That cluster would be a non-optimal choice, as it might represent a differ-
ent type or sub-type than that of the instance which was assigned to it. To
prevent this from occuring, we implemented a double pass method where we
would first only create the clusters without assigning instances to them, and
then during a second pass through the training set assign instances based on
the closest cluster in this complete set.

The performance of the system with this change is shown in Table 3.4.
Another variation was changing the clustering method. The performance
obtained from changing the clustering method to use two passes was the
same or worse than the performance of clustering with one pass.

The second variation was applied to the detection method, where instead
of choosing the closest cluster to the presented instance and assigning it
that cluster’s classification (either normal or anomalous), we chose N closest
clusters to that instance and assigned it the majority’s classification (i.e. if a
larger number of those N clusters were labeled anomalous then the instance
was classified correspondingly, and as normal otherwise).

After implementing these changes and evaluating their performance on
a test set, we concluded that they did not improve detection accuracy by a
considerable amount and in some cases were even detrimental. Therefore,
these changes were taken out, and we used the original system for cross
validation testing.
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3.5 Cross validation testing

Finally, after all parameters were specified, we evaluated the system by using
a variant of the cross validation method. Cross validation is the standard
technique used to obtain an estimation of a method’s performance over un-
seen data.We partitioned the entire KDD dataset into ten 10% percent sub-
sets, each containing approximately 490,000 instances. Many of these subsets
contained instances of only a single type. For example, the 4th, 5th, 6th, and
7th 10% portions of the full dataset contained only SMURF attacks, and the
data instances in the 8th were almost entirely NEPTUNE intrusions. Since
we require that all intrusion (and normal) sub-types should be represented
at least to some degree in the training dataset, we did not use these sub-
sets because they failed to meet this requirement. Training on such subsets
would fail to produce clusters for regions of feature space representing intru-
sions that were not present in the training set. Therefore, for cross validation
training only four of the ten subsets were selected. These four subsets con-
tained a good mix of various intrusion types, and were therefore likely to
produce a clustering that would be representative of many intrusions.

Each of these four subsets was then selected, and filtered such that the
intrusion would constitute 1% of the resulting dataset. The system was
trained on this filtered data, and the cluster set that resulted was saved. We
then evaluated system performance of this cluster set over each of these four
subsets, this time used as test sets. This process was repeated several times,
with a different subset selected for training each time. The results are shown
in Table 3.4.

The test sets were also filtered to contain approximately equal number
of instances of each type of attack. This was necessary in order to have a
meaningful measure of performance, since for example if 80% of intrusions
in the test set were of a single type, then a detection rate of 81% would
indicate that the system is well suited for detecting only this particular type
of attack. If, however, the test sets contain an equal percentage of different
types of instances, then an 81% detection rate would show the system as
capable of detecting several different types of intrusions.
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Training set | Test set | Detection rate | False positive rate
P10 P1 55.7% 99%
P10 P2 51.04% 1.58%
P10 P3 53.01% 1.67%
P10 P10 53.39% 1.04%
P2 P1 46.3% 46%
P2 P2 22.0% 70%
P2 P3 29.3% 2.35%
P2 P10 23.0% 9.83%
P1 P1 28.3% 4.5%
P1 P2 50.5% 1.26%
P1 P3 38.5% 3.45%
P1 P10 50.4% 11.37%
P3 P1 56.25% 3%

P3 P2 18.56% 6%

P3 P3 18.75% 4%
P3 P10 23.0% 1.31%

Table 4: Performance of the system under various training and test set com-
binations. P1, P2, P3, and P10 represent the first, second, third, and the
tenth 10% partitions of the 4,000,000 KDD CUP 99 dataset, respectively.
Cluster width was set to 40, and 20% of largest clusters were marked as
normal. Both the training and test sets were filtered prior to their use.
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4 Analysis

The results from cross validation show that performance of our system de-
pends heavily on which training set was used. In fact, it depends on how
well the training set meets the requirement of representing a wide variety of
intrusion and normal sub-types. As Table 4 shows, training on sets P2 or
P1 resulted in a very high false positive rate compared to the other sets. A
closer examination of those datasets revealed that they contained a smaller
number of different normal sub-types than the other two sets. This resulted
in the failure to create clusters for many normal regions of the feature space,
and therefore data instances from those regions were assigned to incorrect
clusters, possibly to those marked as anomalous. This may have caused the
high false positive rate.

The training set P10 showed the best performance across all four of the
test sets, with a high detection and a low false positive rate. When training
on P10 and testing on the P3 sets, 53.01% detection and 1.67% false positive
rates were obtained. On the other hand, when we reversed the situation by
training on P3 and testing on P10, only a 23% detection rate was obtained
(with a similar false positive rate). This can again be explained by the fact
that in the P10 dataset more different types of intrusions were represented
than in the P3 set, and therefore training on P10 resulted in a better cluster
set than training on P3, which in turn manifested itself in the increased
detection rate.

In an actual application of the system, as more intrusions are introduced
into the network and are trained on, the cluster set and detection rate will
tend to become better. The results from training on the P10 dataset can be
used as an approximation of the system’s performance when presented with
training sets that adequately represent currently existing intrusions.

4.1 Detection vs. false positive rates

The trade-off between the false positive and detection rates is inherently
present in many machine learning methods. If some method would classify
instances as attacks or normal by simply choosing one of these classifications
at random with a 50% probability for each one (i.e. it would guess), then the
detection and false positive rates would be roughly 50% as well. Heuristics
subsequently added to the method to increase the detection rate, would tend
to make it classify more instances as attacks, thereby increasing the chance
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of incorrectly misclassifying normal instances and therefore increasing false
positive rate. In the other direction, if we make the method more biased to-
wards classifying instances as normal, the potential is increased for detection
rate to suffer. To keep the false positive rate low while increasing detection
rate, requires making the detection method more accurate and making it
more informed about the domain.

In our system, the false positive vs. detection rate trade-off was very ap-
parent. As the percent of largest clusters to be labeled normal was decreased,
detection rate increased substantially since a larger number of clusters were
now labeled anomalous. The intrusion instances which were assigned to those
clusters but were previously classified as normal (because those clusters were
labeled normal), now were classified correctly as intrusions. However, at the
same time the false positive rate also increased because all the normal in-
stances assigned to clusters that were previously labeled normal and that now
were labeled anomalous, were classified as intrusions as well. If those clus-
ters indeed represented anomalous regions in the feature space, then those
normal instances were assigned to them incorrectly, perhaps due to an un-
optimal metric or because the assumption that instances of the same type
or sub-type (and only them) will cluster together was not satisfied. How-
ever, the negative effect of this misassignment on performance could have
been avoided if the percent of largest clusters to be labeled normal was not
decreased.

To successfully utilize the system, then, a suitable value for that percent-
age must be found, one that would yield a high detection rate while keeping
the false positive rate within a tolerable low value. If we assume that no
misassignment of instances to clusters occurs, then this essentially amounts
to measuring a property of the domain - the ratio of the number of sub-types
of normal instances to the total number of different sub-types. This ratio
will be reflected in the number of clusters representing normal regions of the
feature space relative to the number of clusters representing all regions. In
reality, when our assumptions are not met and misassignment occur, that
ratio can be estimated indirectly, by noting the value for the percentage of
largest clusters to be labeled normal which makes the false positive and de-
tection rate combination most favorable. For example, we could choose a
value which minimizes their sum (possibly weighted).
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4.2 Variations

It was concluded that the changes made to the clustering algorithm and to the
detection method did not increase performance for several reasons. Changing
the detection method to perform classification based on the majority of N
nearest clusters’ labels showed improved results for the single training and
test set that were used to measure performance. The detection rate was
generally higher for values of NV > 1 than when N was equal to 1, while still
keeping the false positive rate relatively low. However, the results varied
greatly with N, with no apparent pattern as N increased. This lead us to
suspect that the value of N which produced the best results was related to
the particular training/test set that was used, and that it did not represent
a value that increased performance over the entire domain. In other words,
the number (N) of nearest clusters to be considered that yielded the best
results, was in reality dependent on the training/test set combination and
the portion of the domain it represented. Using this value for training on
different sets might give different, less favorable, results. This suspicion of
overfitting to the single training/test set was confirmed when we tested the
labeling by majority method on other training and test set combinations.
Results for those tests indicated that the method did not improve, and in
some cases lowered, the performance.

The idea of changing clustering to use the double pass method was dis-
carded immediately, after the results with that variation used were obtained.
They showed that detection rate was about the same with false positive
rate remaining the same or even slightly higher when using the double pass
method than without using it. One possible explanation for the increased
false positive rate is that with the double pass method less instances were
being assigned to each cluster on average (because instances were now more
evenly distributed across clusters). This could have led to the inability to
differentiate between anomalous and normal clusters during the detection
phase, since due to the more even distribution some truly normal clusters
now had less instances assigned to them than previously. Therefore they
might have been labeled as anomalous, and this increased the false positive
rate.
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4.3 Satisfaction of assumptions by real world data

Ideally, we would like both of our assumptions about the domain to be satis-
fied. In particular, we would like data instances of the same type or sub-type
to cluster together under our metric, and those of different types to be as-
signed into distinct clusters. In reality, of course, this assumption is not fully
satisfied and this is one of the primary reasons for the failure of our method
to detect 100% of all attacks. Improving the metric can help increase the
accuracy of assignment of instances to proper clusters. However, sometimes
several such improvements might not be possible because they would reduce
the performance of the overall method. An example of this manifested itself
in the course of our research.

In trying to analyze why assignments of instances to clusters of non proper
(i.e. non corresponding to the instances’) types occured, we discovered that
there were several intrusion types which were nearly identical in all feature
values except for some minor variations in a few of features. One example of
this are the following fragments of two instances :

Instl : —0.086031udpprivateSF — 0.019133 — 0.0860130 — 0.036963 — 0.010252
Inst2 : —0.086031udpprivateSF — 0.019369 — 0.0906550 — 0.036965 — 0.010249

The feature values shown are ones after the statistical conversion, so that
-0.086031, for example, means that the feature value of that instance was
approximately .086 standard deviations below the mean for that feature in
the entire training dataset. As can be seen, all of these feature values are
identical except for a few with very minor differences. For example, the
difference in the 8th feature is only two hundred thousandth of a standard
deviation. However, Instl was classified as normal in the (labeled) training
set, while Inst2 was classified as an attack (snmpguess). It is of no surprise
then, that under our metric which was tuned to tolerate differences much
larger than this, these two instances clustered into the same cluster, even
though they were of different types. To solve this problem, we might try to
improve the metric by making it much more sensitive so that small differences
like the ones above would be reflected in the distance returned by the metric.
However, if we would do this the number of clusters created would be greatly
increased, as a cluster would be created for each small sub-region in the
feature space. This in turn would lead to an extremely even distribution of
instances among these clusters. Only a handful of them (representing only
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the ones would in each small sub-region) would be assigned to each cluster,
and during detection it would be nearly impossible to differentiate between
anomalous and normal clusters and thus label them correspondingly. It seems
that a rule based classification method (e.g. decision tree, if-then rule sets,
etc.) trained with labeled instances, would be more appropriate to handle
these slight variations in the almost identical instances, and would be able
to separate them into different classes. With unlabeled data and clustering,
however, we are faced with the tradeoff of cluster granularity vs. the ability
to distinguish normal from anomalous clusters.

5 Conclusion

The contribution that we presented in this paper was a method for detecting
intrusions based on feature vectors collected from the network, without being
given any information about classifications of these vectors. We designed a
system that implemented this method, and it was able to detect a large num-
ber of intrusions while keeping the false positive rate reasonably low. There
are two primary advantages of this system over signature based classifiers
or learning algorithms that require labeled data in their training sets. The
first is that no manual classification of training data needs to be done. The
second is that we do not have to be aware of new types of intrusions in order
for the system to be able to detect them. All that is required is that the new
type is represented by its sufficient presence in the training set, whether the
administrators of the network are aware of that presence or not. The system
then will try to automatically determine which data instances fall into the
normal class and which ones are intrusions.

The methods discussed in this paper can be implemented as part of a
larger system for detecting intrusions, which will automatically collect data
from the network and ask several intrusion detection methods to evaluate
that data. A vote could then be taken among these methods regarding each
data instance, and the majority’s opinion used. If our system is used within
such a context, higher weight should be given to its opinion when it classifies
an instance as an intrusion. This is necessary because new types of attacks
may be detected by our system, of which other (possibly based on labeled
data) methods in the voting pool will know nothing about and which they will
not be able to detect. In this scenario, only our system will have the opinion
that some instance is an intrusion, while all the other ones will consider it
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normal, and so such instances will never receive a majority of the votes for
labeling it as an intrusion. Since the false positive rate in our system is low,
giving higher weight to positive decisions (i.e. when something is classified
as an intrusion) will not hurt the overall false positive rate of the voting pool,
but it will help the detection rate. When our system classifies something as
normal, however, then its weight should be equal or less than the weights of
other systems in the pool, because of the possibly lower detection rate relative
to that of other systems. Of course, our method can also be implemented as
a standalone system.

Even though the detection rate of the system we implemented is not
as high as of those using algorithms relying on labeled data, our system
is still very useful. Since no prior classification is required on the training
data, and no knowledge is needed about new attacks, we can automate the
process of training and creating new cluster sets. In practice, this would
mean periodically (every 2 weeks for example) collecting raw data from the
network, extracting feature values from it, and training on the resulting set
of feature vectors. This will help detect new and yet unknown attacks.

5.1 Future work

Future work involves possible extentions or modifications to our method to
achieve better performance and a better degree of automation. Currently,
during detection clusters are labeled as either anomalous or normal according
to the relative number of instances they contain. Another possibility would
be to label clusters which are outliers in the feature space as anomalous, and
all others as normal. This involves making the assumption that normal data
of different sub-types will be clustered together, while sub-types of intrusion
data will not be near that (normal) region of feature space.

To achieve a greater degree of automation, we can also determine the
value for the percentage of largest clusters labeled normal (PLC) variable
automatically, perhaps based on the standard deviation and average values
of the number of instances in clusters. In that scheme, clusters containing
only a ’small’ (some fixed standard deviations lower than the mean) number
of instances will be labeled anomalous. The advantage to this method is that
in the current system as more new and unknown attacks are introduced into
the network environment, the ratio of the number of normal sub-types to
the total number of sub-types will decrease. Having a fixed value for PLC
which does not reflect the decreased ratio will therefore cause the algorithm
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to label more clusters as normal, some of which should have really been
labeled as anomalous. As a result, detection rate will decrease as more new
intrusion types are introduced, and therefore periodic manual updates of the
value for PLC will be required. If the system determines the value for PLC
automatically, however, then no manual intervention will be required even
over long periods of time.
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