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Abstract

Correlating and analyzing security alerts is a critical
and challenging task in security management. Recently,
some techniques have been proposed for security alert cor-
relation. However, these approaches focus more on basic
or low-level alert correlation. In this paper, we study how
to conduct probabilistic inference to correlate and analyze
attack scenarios. Specifically, we propose an approach to
solving the following problems: 1) How to correlate iso-
lated attack scenarios resulted from low-level alert cor-
relation? 2) How to identify attacker’s high-level strate-
gies and intentions? 3) How to predict the potential attacks
based on observed attack activities? We evaluate our ap-
proaches using DARPA’s Grand Challenge Problem (GCP)
data set. The results demonstrate the capability of our ap-
proach in correlating isolated attack scenarios, identifying
attack strategies and predicting future attacks.

Keywords: Intrusion detection, alert correlation, security
management, attack scenario analysis.

1. Introduction

Many security sensors and systems can be deployed to
provide defense-in-depth for systems and networks. How-
ever, the large volume of security alerts makes it challeng-
ing for security operators to analyze the attack situation and
take an appropriate response.

Alert correlation and analysis is a critical task in se-
curity management. Recently, several techniques and ap-
proaches have been proposed to correlate and analyze se-
curity alerts, including alert similarity measurement [30],
probabilistic reasoning [16, 25], clustering algorithms [14],
pre-/post-condition matching of known attacks [21, 11, 7],
statistical-based analysis [24] and chronicles formalism ap-
proach [20]. All these approaches focus on the aggregation
and analysis of raw security alerts, and build basic or low-
level attack scenarios. However, in practice, an alert corre-
lation system should have a hierarchical architecture. The

analysis is conducted from low-level alert correlation to ab-
stract scenario analysis at high levels. In addition, there al-
ways exist isolated attack scenarios derived from low-level
alert correlation due to various reasons, e.g., IDSs miss de-
tecting critical attacks. Therefore, in addition to the low-
level correlation analysis, it is necessary to develop algo-
rithms and tools for security analysts to further analyze and
correlate attack scenarios so that they can make situation
and mission assessment accurately, and take appropriate re-
sponses to minimize the damages. In addition, threat analy-
sis and attack prediction are also helpful and important for
security operators to take actions in advance to avoid poten-
tial attacks and damages.

Recognizing attack plans is one of the goals of security
analysts. Plan recognition has been a research area in ar-
tificial intelligence (AI) for decades. In AI, plan recogni-
tion is a process of inferring the goals of an agent from ob-
servations of the agent’s activities. Plan recognition can be
characterized as keyhole recognition and intended recogni-
tion based on the role of an agent whose plan is being in-
ferred [9]. In keyhole recognition, the agent is not aware that
its action is being observed, i.e., the agent is only engaged in
the task and does not attempt to impact the recognition pro-
cess. In intended recognition, the agent attempts to perform
actions that can aid the recognition of its plan, e.g., a lan-
guage understanding system [9].

However, in attack plan recognition, traditional plan
recognition techniques cannot be applied. Unlike the tra-
ditional agent that either aids the recognition of its plan
or does not attempt to impact the recognition of the pro-
cess, attackers can perform activities to escape detection
and avoid the recognition of their attack strategies. There-
fore, this type of recognition process can be categorized as
adversary recognition that is more challenging and more
uncertain in the recognition process. In addition, some as-
sumptions of traditional plan recognition techniques are not
valid anymore. First, in plan recognition, there is always an
assumption that there exists a valid plan in the plan library
that the agent can reach. In network security, we cannot as-
sume that we have a complete attack plan library that in-



cludes all of the possible strategies of attackers. Therefore,
we have to deal with the case that the observed attacker’s
activity is beyond or partially matched with our pre-defined
attack plans. Second, plan recognition assumes a complete,
ordered set of tasks for a plan. However, in security con-
text, we cannot always observe all of the attacker’s activi-
ties, and often can only detect incomplete attack steps due
to the limitation or deployment of security sensors. There-
fore, the attack plan recognition system should have the ca-
pability of dealing with partial order and unobserved activ-
ities.

In this paper, we develop a series of techniques to solve
three problems. First, we consider how to correlate isolated
attack scenarios derived from low-level alert correlation.
Second, we address how to recognize the attacker’s attack
plan and intentions. Third, we discuss how to make predic-
tions of potential attacks based on current observations and
analysis. In our approach, we apply graph techniques to cor-
relate isolated attack scenarios and identify their relation-
ship. Based on the high-level correlation results, we further
apply probabilistic reasoning technique to recognize the at-
tack plans, evaluate the likelihood of potential attack steps
and predict upcoming attacks.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. In Section 3, we briefly
introduce two alert correlation techniques upon which we
build our new techniques. Section 4 describes our correla-
tion models and attack prediction algorithm. We report our
experiment and results in Section 5. Section 6 concludes
this paper and discusses some future research directions.

2. Related Work

2.1. Alert Correlation

Recently, there have been several proposed approaches
to alert correlation and attack scenario analysis.

Valdes and Skinner [30] used probabilistic-based reason-
ing to correlate alerts by measuring and evaluating the sim-
ilarities of alert attributes. Alert aggregation and scenario
construction were conducted by enhancing or relaxing the
similarity requirements in some attribute fields. Goldman et
al. [16] built a correlation system based on Bayesian reason-
ing. The system predefines the relationship between mission
goals and corresponding security events. Further inference
and correlation rely on the predefined association.

Porras et al. designed a “mission-impact-based” correla-
tion system [23] with focuses on the impact analysis based
on the mission goals of protected networks.

Debar and Wespi [14] applied backward and forward
reasoning techniques to correlate alerts with duplicates and
consequence relationships, and used clustering algorithms
to detect attack scenarios and situations.

Morin and Debar [20] applied chronicles formalism to
aggregate and correlate alerts. The approach is to perform
attack scenario pattern recognition based on known mali-
cious event sequences. Therefore, this approach is analo-
gous to misuse intrusion detection.

Ning et al. [21], Cuppens and Miège [11] and Cheung
et al. [7] built alert correlation systems based on the pre-
conditions and post-conditions of individual alerts. The cor-
relation engine searches alert pairs that have a consequence
and prerequisite matching. Further correlation graphs can
be built with such alert pairs [21].

Qin and Lee [24] proposed a statistical-based alert cor-
relation approach to identifying new alert relationship with-
out depending on prior knowledge of attack transition pat-
terns.

2.2. Plan Recognition

In artificial intelligence (AI), plan recognition has been
an active research area. Different types of inference tech-
niques have been applied to plan recognition, e.g., deduc-
tion and abduction. In particular, the earliest work in plan
recognition was rule-based inference system [26, 31]. A
milestone work of plan recognition was done by Kautz and
Allen in 1986 [19]. In [19], they defined the problem of
plan recognition as finding a minimal set of top-level ac-
tions, i.e., plan goals, that were sufficient to explain the
observed actions. The inference was conducted by going
through the rule sets. Charniak and McDemott [6] proposed
that the plan recognition problem can be solved by abduc-
tion, or reasoning to the best explanation. Charniak and
Goldman [4, 5] applied Bayesian networks to plan recog-
nition. Carberry [3] applied Dempster-Shafer theory [28] to
compute the combined support by multiple evidences to hy-
potheses plans. Albrecht et al. [1] proposed to construct a
plan recognition inference system based on Dynamic Be-
lief Networks [13]. In Dynamic Belief Networks, the influ-
ence of temporal aspects is represented by multiple nodes
to indicate the status of a variable at different instances of
time.

There are some challenges in applying traditional plan
recognition techniques to security applications. First, tra-
ditional plan recognition techniques are usually applied in
non-adversary situation. The recognition process can be ei-
ther aided or non-interfered by the agent being observed.
However, in the security application, the plan recognition
process is an adversary recognition where attackers are try-
ing to avoid or interfere with any recognition process on
their intrusion activities.

Second, the assumptions used in traditional plan recog-
nition are not valid in adversary recognition anymore. For
example, in non-adversary plan recognition, a single agent
and a single plan has to be determined. The observed activ-
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ities are conducted by a single agent toward a single plan.
Although there are some works on ‘multi-agent’ plan recog-
nition, they also share this assumption. However, in attack
plan recognition, it is possible that an attacker has multi-
ple dynamic attack plans. There also exist coordinated at-
tacks conducted by multiple attackers. In addition, in non-
adversary plan recognition, there is a complete, ordered and
correct set of activities. The observations available are cor-
rect and corresponding to a determined plan. Every action
that is performed is observed. In adversary plan recogni-
tion, this assumption is not valid anymore.

The most related work to ours is [15] in which Geib and
Goldman applied probabilistic reasoning to recognize the
attacker’s intentions. The approach conducts the plan recog-
nition from raw security alerts. The plan library is defined
by detailed specific attacks. This definition method has the
limitation that it can increase the computation complexity
of inference. In addition, it also requires a complete and or-
dered attack sequence (if there are missing attack steps, it
inserts hypothesized attack steps in order to have a com-
plete activity sequence) when conducting the plan recogni-
tion.

Our approach is unique in the following aspects. First,
we build our plan recognition system after a low-level alert
correlation step that includes alert aggregation, alert pri-
oritization and alert correlation. The advantage of this ap-
proach is that it can reduce the computation complexity
when performing the high-level attack scenario correlation
and probabilistic inference. Second, we do not require a
complete ordered alert sequence for inference. We have the
capability of handling partial order and unobserved activity
evidence sets. In practice, we cannot always observe all of
the attacker’s activities, and can often only detect partial or-
der of attack steps due to the limitation or deployment of
security sensors. For example, security sensors such as IDS
can miss detecting intrusions and thus result in an incom-
plete alert stream. Third, we provide an approach to pre-
dicting potential attacks based on observed intrusion evi-
dence.

3. Overview of Statistical and Probabilistic
Reasoning Techniques for Alert Correla-
tion

The new techniques of attack plan recognition and pre-
diction described in this paper are built on the alert correla-
tion approaches proposed in [24] and [25]. In this section,
we briefly introduce our approaches of alert correlation.

The first processing step is alert aggregation and clus-
tering. The goal if this step is to reduce the redundancy of
duplicated raw alerts corresponding to same attacks output
by heterogeneous security sensors. Alert aggregation is con-
ducted based on alert attributes such as time stamp, source

IP, destination IP, port(s), etc. Aggregated alerts with the
same attributes (except time stamps) are grouped into one
cluster. A hyper alert is defined as a time ordered sequence
of alerts that belong to the same cluster.

The next step is alert prioritization that prioritizes each
hyper alert based on its relevance to the mission goals. With
the alert priority rank, security analyst can select important
alerts as the target alerts for further correlation and analy-
sis. Specifically, the priority score of an alert is computed
based on the relevance of the alert to the configuration of
protected networks and hosts, as well as the severity of
the corresponding attack assessed by the security analyst.
When computing priority values, we compare the depen-
dencies of the corresponding attack represented by the hy-
per alert against the configurations of target networks and
hosts. We have a knowledge base in which each hyper alert
has been associated with a few fields that indicate its at-
tacking OS, services/ports and applications. The relevance
check downgrades the impacts of some alerts unrelated to
the protected domains on further correlation analysis, e.g.,
attackers “blindly” launch attacks against a target that has
no corresponding vulnerabilities.

We apply two techniques to alert correlation. First, we
use probabilistic-based reasoning method to correlate attack
steps that are directly related because an earlier attack en-
ables or positively affects the later one [25]. For example,
a port scan may be followed by a buffer overflow attack on
a scanned service port. We apply Bayesian-based correla-
tion mechanism to reason and correlate attack steps based
on security states of systems and networks. This approach
can incorporate prior knowledge of attack transition pat-
terns and handle uncertainty in the correlation process. Sec-
ond, we apply statistical analysis to correlate attack steps
that have temporal and statistical patterns even though they
do not have obvious or direct relationship in terms of se-
curity and performance measures [24]. In particular, we ap-
ply Granger-Causality analysis [17] and some other time se-
ries analysis techniques to detect the “causal” relationship
between this type of alert pairs. This approach does not re-
quire the prior knowledge of attack scenario patterns in the
correlation process.

Alert correlation results in a set of correlated alerts that
comprise the attack scenarios. The alert processing de-
scribed earlier is usually conducted on aggregated raw alerts
and reflects localized or low-level attack scenarios, e.g., a
series of attacks against a department network. Low-level
alert correlation can leave some correlated alert sets that are
isolated from each other. Based on the attack scenarios re-
sulted from the prior alert aggregation, alert prioritization
and correlation, we further correlate isolated alert sets and
conduct high-level attack plan recognition and prediction,
which are the topics of this paper.
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4. Models and Algorithms

In this section, we introduce our models and algorithms
for correlating isolated alert sets, attack plan recognition
and attack prediction.

4.1. Attack Tree Analysis

In security operations, security analysts usually pre-
define a set of attack plans or attack libraries that incorpo-
rate the domain knowledge of attacks or attack scenario pat-
terns, and the knowledge of the networks and systems under
protection. Attack plans or libraries are usually represented
by graphs (i.e., attack graphs) that show all paths through a
system that end in a state where an intruder can successfully
achieve his goal. Schneier [27] described attack tree anal-
ysis that quantifies the security or vulnerability of a system
based on the goals of the attacker. When defining the attack
trees, security analysts first evaluate the vulnerabilities of
the systems and networks, then pretend to be attackers and
work out attack plans to achieve the intrusion goals. In this
process, an attack tree is extended and branches are built to
identify the different subgoals of the attacker and penetra-
tion points available to the attacker. The process continues
by decomposing or expanding the means of penetration to
the lowest level of intrusion, known as the leaves. An attack
tree can represent each opportunity for an attack against a
computer system or network. Computer systems and net-
works potentially contain numerous penetration points and
vulnerabilities. An attack forest is defined as a consolida-
tion of numerous attack trees [27].

Figure 1(a) shows an example of an attack tree that in-
dicates attack methods to steal the data stored on a server
and export it to the external. In the Figure 1(a), the “OR”
node represents different ways to achieve the goals. In prac-
tice, in addition to the “OR” node, the “AND” node is also
always used in an attack tree to represent different steps to
achieve the intrusion goals.

Attack tree analysis can serve as a basis for intrusion de-
tection, defense, response and forensic analysis. However,
defining attack trees is a very challenging task. It is usu-
ally done manually and is very time consuming. Recently,
Sheyner et. al [29] proposed a model checking-based tech-
nique to automatically construct attack graphs. Although it
helps facilitate the task of defining attack graphs, the ap-
proach still has the limitation of scalability, in particular,
when defining the attack graphs for a large network and
computer systems.

In our approach, we first use attack trees to define attack
plan libraries to correlate isolated alert sets. We then convert
attack trees into causal networks on which we can assign
probability distribution by incorporating domain knowledge
to evaluate the likelihood of attack goals and predict future

attacks. Figure 1(b) shows an example of the causal net-
work converted from the attack tree as shown in Figure 1(a).
In defining attack trees, instead of using various specific at-
tacks to define the nodes of an attack tree, we use the ab-
stract attack class or type to represent an attack approach.
For example, we use Exploit Server Vulnerability instead of
a specific buffer overflow attack to indicate the method to
break into a server to get the root access. The advantage of
using attack classes to represent attack tree nodes is that it
can reduce the computation complexity of probabilistic in-
ference on the causal network that is converted from attack
trees. It is well known that querying an arbitrary causal net-
work is an NP-hard problem [10]. Therefore, in practice,
a causal network is usually defined in the form of causal
polytrees (i.e., singly-connected causal networks in which
no more than two paths exist between any two nodes) so
that the probabilistic reasoning can be conducted in polyno-
mial time [22].

4.2. The Causal Network and its Parameters

A causal network (or Bayesian network) is usually repre-
sented as a directed acyclic graph (DAG) where each node
represents a variable that has a certain set of states, and the
directed edges represent the causal or dependent relation-
ships among the variables. A Bayesian network consists of
several parameters, i.e., prior probability of parent node’s
states (i.e., P (parent state = i)), a set of conditional prob-
ability tables (CPT) associated with child nodes. CPT en-
codes the prior knowledge between child node and its parent
node. Specifically, an element of the CPT at a child node is
defined by CPTij = P (child state = j|parent state =
i).

In our study, we build the causal networks based on at-
tack trees and apply probabilistic inference. The root node
of a causal network represents the final goal of an attack
plan, non-leaf nodes represent subgoals, and leaf nodes in-
dicate the nodes receiving evidence. We define each node of
the causal network to have a binary state, i.e., 1 or 0. The
value of 1 represents the goal is achieved for goal or sub-
goal nodes, while the value of 0 indicates the failure of the
goal or subgoals. When a leaf node has a state value of 1,
it indicates that the leaf node has received evidence. Other-
wise, the leaf node has a value of 0.

When converting attack trees to a causal network, we
can map “OR” nodes from an attack tree directly to the
causal network while keeping the “OR” logical relation-
ship. As “AND” nodes in an attack tree represent differ-
ent attack steps to reach a goal (“OR” nodes indicate dif-
ferent attack ways to achieve an attack goal), there always
exists an implicit dependent and sequential relationship be-
tween “AND” nodes in an attack tree. Therefore, we should
keep such “causal” order when constructing the causal net-
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1.1 Get data from Server directly (OR)
1.1.1 Get access to server

1.1.1.1.1 Steal ID file and password file (OR)
1.1.1.1.2 Use Trojan program (OR)
1.1.1.1.3 Eavesdrop on the network
1.1.1.2 Get System Administrator’s (root) privilege
1.1.1.2.1 Exploit Server’s vulnerabilities
1.1.1.2.1.1 Identify Server’s OS and active ports (OR)
1.1.1.2.1.1.1 Inspect Server’s activeness
1.1.1.2.1.1.1.1 Identify Firewall access control policy
1.1.1.2.1.1.1.1.1 Identify Firewall IP address
1.1.1.2.2 Eavesdrop on the network (OR)
1.1.1.2.3 Brute force guess
1.2 Eavesdrop on the network

Steal_and_export_confidential_data

1. Get confidential data

2. Export_confidential_data
2.1 Transfer data via normal method (OR)
2.2 Transfer data via covert channel 
2.2.1 Setup covert channel

1.1.1.1 Get normal user privilege (OR)

(a) An example of attack tree

Steal_and_export_confidential_data

Get_confidential_data Export_confidential_data

Eavesdrop_on_the_network

Get_data_from_Server_directly Transfer_data_via_normal_method Transfer_data_via_covert_channel

Steal_ID_and_password_file

Use_Torjan_program

Get_normal_user_privilege

Get_access_to_Server

Get_root_privilege

Identify_Firewall_access_policy

Identify_Firewall_IP_address

Inspect_Server_activeness

Identify_Server_OS_and_active_ports

Exploit_system_vulnerabilitiesPassword_brute_force_guess

Setup_covert_channel

(b) An example of causal network

Figure 1. Attack tree and causal network

work. For example, we can define an attack tree for getting
access to a server with the following attack steps which have
“AND” relationship, i.e., exploit vulnerability AND iden-
tify server OS AND identify Firewall access control policy
AND Identify Firewall IP address. In the causal network,
we can keep the implicit sequential order among the nodes,
i.e., identify IP address, identify firewall access control pol-
icy, identify server’s OS, exploit vulnerability in order of the
causal sequence.

When using a causal network (or Bayesian network) for
inference, we need to set up two types of parameters, i.e.,
prior probability of parent node’s states and CPT associated
with each child node.

The prior probability of parent node’s states (e.g.,
P (parent node state = 1)) used in the inference engine is
set based on the prior knowledge estimation of the possibil-
ity. We used domain-specific knowledge based on prior ex-
perience and empirical studies to estimate appropriate prob-
ability values. In particular, we computed the probability of
parent node’s states based on historical data.

In our approach, CPT values associated with each node
are adaptive to new evidence and therefore can be updated
accordingly. We apply an adaptive algorithm originally pro-
posed by [2]. The motivation of using an adaptive Bayesian
network is that we want to fine-tune the parameters of the
model and adapt the model to the evidence to fix the ini-
tial CPTs that may be pre-defined inappropriately. The in-
tuition of the algorithms proposed by [2] is that we want
to adapt the new model by updating CPT parameters to fit

the new data cases while balancing the extent that we move
away from the current model.

Specifically, we denote X as a node in a causal network,
and let U be the parent node of X . X can take values of
xk, where k = 1, ..., r and U has state values of uj , where
j = 1, ..., q. An entry of CPT of the node X can be de-
noted as: θjk = P (X = xk|U = uj). Given a set of new
data cases, denoted as D, D = y1, ..., yn, and assuming
there is no missing data in evidence vector of yt, where evi-
dence vector yt represents the evidence at the tth time, CPT
updating rules can be simplified to the following [8]:

θt
jk = η + (1 − η)θt−1

jk , for P (uj |yt) = 1 (1)
and P (xk|yt) = 1.

θt
jk = (1 − η)θt−1

jk , for P (uj |yt) = 1 (2)
and P (xk|yt) = 0.

θt
jk = θt−1

jk , otherwise. (3)

The above updating rules are interpreted as follows.
Given the evidence vector yt, if the parent node of X is ob-
served in their jth configuration, i.e., U = uj , and X equals
to its kth value, then we regard the evidence as support-
ing evidence and we then increase the corresponding CPT
value P (X = xk|U = uj), i.e., θjk, as shown in Eq. (1). If
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node X does not equal its kth value but its parent node U
is in the jth configuration, then we regard the evidence as
non-supporting evidence and then decrease the correspond-
ing CPT value, i.e., θjk, as shown in Eq. (2). The learning
rate η controls the rate of convergence of θ. η equaling 1
yields the fastest convergence, but also yields a larger vari-
ance. When η is smaller, the convergence is slower but even-
tually yields a solution to the true CPT parameter [8]. We
built our inference model based on updating rules of Eq. (1)
to Eq. (3).

We also need to point out that the adaptive capabil-
ity of the inference model does not mean that we can ig-
nore the accuracy of initial CPT values. If the initial val-
ues are set with a large variance to an appropriate value, it
will take time for the model to converge the CPT values to
the appropriate points. Therefore, this mechanism works for
fine-tuning instead of changing CPT values dramatically. In
practice, the initial CPT values can be computed and esti-
mated using historical data.

4.3. Correlating Isolated Alert Sets

As discussed in Section 3, after processing raw alerts
with alert aggregation, prioritization and correlation, we can
reduce the large volume of raw alerts and correlate some of
related alerts into different sets (or scenarios). However, it is
possible that there exist some isolated correlated alert sets
after the raw alert correlation due to various reasons. For
example, for pattern-matching-based correlation approach,
if the security sensors fail to detect some intermediate at-
tacks in a series of coordinated attacks, the missing alerts
can result in the un-match between observed alert sequences
with known attack sequence patterns. The result is a set
of isolated attack scenarios that belong to the same attack
sequences. In addition, applying different correlation ap-
proaches together can also result in different correlation re-
sults due to the difference between correlation techniques.
In such a case, it is also necessary to integrate correlation
results output by different correlation engines and further
correlate isolated alert sets. Third, from the security ana-
lyst’s point of view, it is necessary to combine the local or
low-level correlation results, investigate and assess the at-
tack situation in order to make timely and appropriate re-
sponse or prevention.

Given two individual isolated scenarios being studied,
denoted as S1 and S2, where S1 = {e1, e2, ..., ei, ..., em},
S2 = {e′1, e′2, ..., e′i, ..., e′n} and ei represents an alert (i.e.,
evidence), and given a set of attack plans, denoted as P ,
where P = {P1, P2, ..., Pk, ..., Pf}, and Pk is denoted as a
specific attack plan that is represented by a causal network
converted from attack trees, the problem is to find the rela-
tionship between S1 and S2. Algorithm 1 shows the method
of correlating two isolated scenarios.

Algorithm 1 Correlation of isolated attack scenarios
Let TPSet1 = {Predecessor nodes of S1 in Pk}.
Let TPSet2 = {Predecessor nodes of S2 in Pk}.
Let Pk be an attack plan represented by a causal network,
where S1 ∈ Pk, and S2 ∈ Pk.
Let PSeti = {Predecessor nodes of ei in Pk}, where
ei ∈ S1.
Let PSet′i = {Predecessor nodes of e′i in Pk}, where
e′i ∈ S2.
if ∃ej ∈ S1 and ej .attackClassNode ∈ PSet′i and
e′i.time < ej .time and {e′i.target = ej .target or
e′i.target = ej .source} then

S1 is a subgoal of S2; S1 and S2 are directly related.
else if ∃e′j ∈ S2 and e′j .attackClassNode ∈ PSeti
and ei.time < e′j .time and {ei.target = e′j .target or
ei.target = ej .source} then

S2 is a subgoal of S1; S2 and S1 are directly related.
else if {TPSet1∩TPSet2} �= φ and they have the same
target then

S1 and S2 have indirect relationship with the same
goal.

end if
Group all scenarios that are related in Pk into one evi-
dence set.

The intuition of the correlation algorithm is to find out
the relationship between two isolated attack scenarios. One
relationship is that one scenario is a direct subgoal of an-
other. This is indicated by the fact that one attack step in
one scenario is a predecessor node of alerts of another sce-
nario in the plan library. In such a case, a time constraint is
applied to ensure that subgoal attack happens after the prior
attacks. Another relationship is that two scenarios have an
indirect relationship but have the same goal. For example,
they both target at a same victim.

Figure 2(a) shows an example of how we corre-
late two isolated attack scenarios derived from low-
level alert correlation. Assume scenario1 includes
alerts IP sweep, RPC Portmap request Sadmind Host B
and RPC Sadmind UDP Ping Host B, and scenario2

contains alerts RSERVICES rsh root Host B, Tel-
net access to Host B and DDoS Saft Client to Handler.
In this case, we assume the alert
RPC Sadmind UDP Overflow Host B is missed that
results in the isolation of scenario1 and scenario2. Ac-
cording to the corresponding attack plan as shown in
Figure 2(b), attacks in scenario1 have correspond-
ing attack class nodes Check host activeness and
Check port activeness in Figure 2(b). Similarly, the at-
tacks in scenario2 have corresponding abstract attack class
nodes Get access to host and Daemon installment in Fig-
ure 2(b). From Figure 2(b), we can see that scenario′2s ab-
stract class nodes are predecessors of scenario′1s. There-
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DDoS_Saft_Client
      _to_Handler

RSERVICES_
rsh_root_Host_B

RPC_Sadmind_UDP_
overflow_Host_B

IP sweep on subnet

Telnet_access_to_
       Host_B

RPC_Sadmind_UDP_
    Ping_Host_B

RPC_portmap_request
 _Sadmind_Host_B

Scenario_1

Scenario_2

(a) Two correlated scenarios

Get_access_to_Host 

Daemon_installment

 vulnerability
Exploit_Server Check_port_activeness

Check_host_activeness

(b) The corresponding attack plan

Figure 2. An example of correlation of two isolated scenarios

fore, scenario2 is actually a goal of scenario1, i.e.,
the attacker gets ready to exploit the host vulnerabil-
ity by launching attacks in scenario1 so that he can access
the host and install the DDoS daemon (as shown by at-
tack steps in scenario2). Although the alert corresponding
to Exploit host vulnerability is missed, we can hypoth-
esize the existence of such alert and apply the scenario
correlation technique to correlate the two isolated scenar-
ios, i.e., scenario1 and scenario2.

4.4. Probability Evaluation and Attack Prediction

We apply probabilistic inference to the causal network
(or Bayesian network) to compute and evaluate the likeli-
hood of goal and subgoals based on observed attack activi-
ties, and predict the potential upcoming attacks.

The inference process of a Bayesian network can be con-
ducted by a series of belief propagations via message pass-
ing [22]. Specifically, each node X first receives a prior or
causal support message from each of its parent nodes U , de-
noted as π(u), where π(u) = P (u|x). Each node X also
receives evidence or diagnostic support message λ(v) from
each of its child nodes V , where λ(v) = P (v|x). In run-
time, when a node X is activated, it first updates the be-
lief Belief(x), i.e., the probability of X’s states (P (X =
x|evidence)), based on the evaluation values and the mes-
sage π(u) communicated with its parent nodes and λ(v)
sent by its child nodes. This is called belief updating. Next,
the node X computes its own λ message based on λ mes-
sages received from its child nodes, and sends it to its par-
ent nodes. This phase is bottom-up propagation. Finally, the
node X computes its own π messages and send them to each
of its child nodes. The final step is top-down propagation.
In practice, the local belief update on node X can be exe-
cuted by these three steps in any order. More detailed infor-
mation can be found in [22].

Given a stream of evidence (i.e., alerts), and a causal net-
work (i.e., attack plan) P , the inference through iterative be-
lief updating is shown as follows:

Algorithm 2 Likelihood computation of goal and subgoal
Let P be a causal network and each node in the P has a
binary state, {0,1}.
for all node Yi ∈ P that receives evidence ei do

Mark Yi as an observed node with value of 1
Let M be a collection nodes resulted from breath-first
search starting from Yi

for all node X ∈ M do
Receive λ(v) from all X ′s child nodes, V .
Receive π(x) from all X ′s parent nodes, U .
Compute λX(u) for all X ′s parent nodes, U .
Compute πv(x) for all X ′s child nodes, V .

end for
end for
for all non-leaf node Zi ∈ P do

Compute P (Zi = 1|evidence) (i.e., the likelihood of
Zi)

end for

Algorithm 3 Potential goal(s) selection and attack predic-
tion

for all non-leaf nodes Zi ∈ P do
if P (Zi = 1|evidence) is the maximum or P (Zi =
1|evidence) > threshold then

select Zi as potential upcoming attack
end if

end for

Intuitively, given a set of correlated alerts as observed
evidence, we input the evidence into the causal network so
that we can make inference and compute the likelihood for
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each non-leaf node, denoted as Zi, as shown in Algorithm 2.
The computation result is used to infer the likelihood that
a node can be the future goal(s) or future attack step, i.e.,
P (Zi = 1|evidence). As shown in Algorithm 3, In the fi-
nal selection of possible future goal or attack steps, we can
either select the node(s) that has the maximum belief value
or the one(s) whose belief value is above a threshold.

5. Experiments

To evaluate the effectiveness of our alert correlation
mechanisms, we applied our algorithms to one of the data
sets of the Grand Challenge Problem (GCP) version 3.1 pro-
vided by DARPA’s Cyber Panel program [12, 18], Scenario
I.

GCP version 3.1 Scenario I contains an innovative worm
attack scenario designed specifically to evaluate alert corre-
lation techniques. In addition to the complicated attack sce-
narios, the GCP data sets also include many background
alerts that make alert correlation and attack strategy de-
tection more challenging. In the GCP, multiple heteroge-
neous security systems, e.g., network-based IDSs, host-
based IDSs, firewalls, and network management systems,
are deployed in several network enclaves. Therefore, the
GCP alerts are from both security systems and network
management system. We applied our correlation techniques
described in [24, 25] to aggregate, prioritize and correlate
raw alerts and resulted in correlated alert sets.

In the GCP Scenario I, there are multiple network en-
claves in which attacks are conducted separately. The at-
tack scenario in each network enclave is almost the same.
We select a network enclave as an example to show the pro-
cess of scenario correlation and attack prediction.

Figure 3(a) shows an example of two isolated attack
scenarios derived from low-level alert correlation, where
DB FTP Globbing Attack represents an buffer over flow at-
tack against the database server, DB NewClient Target in-
dicates an suspicious incoming connection to the database
server from another server, DB Illegal File Access repre-
sents the illegal access (write or read) to the database
server, DB NewClient indicates a suspicious outbound
connection from database to an external host, and
Loki means a suspicious data export via covert chan-
nel. In this case, we use the attack plan as defined
in Figure 1(a). The corresponding causal network is
shown in Figure 1(b). According to Figure 1(b), we
can see that the alert sets {DB FTP Globbing Attack,
DB NewClient Target, DB Illegal File Access} are corre-
sponding to the attack steps with goals to get access to
the server and get the data directly from the host, i.e., the
attacker first applies buffer over flow attack against the
database server, then sets up a covert channel to the host and
export malicious code that is used to access to the database

server to get the data. Alert sets {DB NewClient, Loki} are
attack steps that aim to set up covert channel and export
confidential data to the outside. Figure 1(b) also shows that
these two sets of alerts have an indirect relationship but the
same eventual goal that is to steal the data from the database
server and export it to the external. Therefore, applying the
scenario correlation technique as described in Section 4.3,
we can correlate these two scenarios as one integrated sce-
nario, i.e., they are correlated with the same eventual goal,
as shown in Figure 3(b), and group them together as one ev-
idence set.

The advantage of correlating isolated scenarios is that
we can accumulate more comprehensive evidence that can
be used for further analysis, e.g., likelihood evaluation of
each subgoal or final goal and attack prediction.

Also using database server as an example, based on the
integrated evidence set, we apply probabilistic inference
to the causal network as shown in Figure 1(b) to com-
pute the likelihood of each subgoal and final goal. Ta-
ble 1 shows the assessment of likelihood of some sub-
goals and final goal based on the evidence set. In Ta-
ble 1, we show the probability result of two subgoals,
i.e., Get confidential data and Export confidential data,
and the final goal, i.e., Steal and export confidential data.
We can see that probabilities of the success of subgoals and
the final goal increases with the support of incoming evi-
dence corresponding to the attack steps aimed to get data
from the database server and export data to the external.

The likelihood of each node at causal network based
on on-going evidence can also be used to predict
the attacks. For example, after getting the evidence of
DB FTP Globbing Attack, the probability of the subgoal
Get data from Server directly (as shown in Figure 1(b)) is
increased and equals 0.67. Therefore, we expect a future
attack that enables the attacker to access the file stored
in the database server. For another example, when we get
the evidence of DB NewClient, the likelihood of Trans-
fer data via covert channel (as shown in Figure 1(b)) is
computed as 0.71 that means it is quite likely that we will
see another attack with which the attacker can export data
via the covert channel in the future. In the GCP Scenario I,
the attacker did launch the attack to access the confiden-
tial data stored in database server (indicated by the alert
DB Illegal File Access) after getting the root access to the
database server, and also transferred the stolen data to the
external (indicated by the alert Loki) after setting up the
covert channel (indicated by alert DB NewClient).

Applying our algorithms of scenario correlation and at-
tack prediction to the GCP data set, we can correlate some
isolated attack scenarios resulted from fundamental alert
correlation at low-level, and make correct prediction on the
upcoming type of attack.

In our approach, one of the most important components
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DB_FTP_Globbing_Attack

DB_NewClient_Target

DB_Illegal_File_Access

DB_NewClient

Loki

(a) Two isolated scenarios

DB_FTP_Globbing_Attack

DB_NewClient_Target

DB_Illegal_File_Access

DB_NewClient

Loki

(b) Correlated scenarios

Figure 3. Correlation of isolated scenarios

Evidence set P (subgoal1 = 1|evidence) P (subgoal2 = 1|evidence) P (goal = 1|evidence)
e1 0.58 0.55 0.56

e1, e2 0.58 0.71 0.63
e1, e2, e3 0.78 0.71 0.74

e1, e2, e3, e4 0.78 0.81 0.77
e1, e2, e3, e4, e5 0.78 0.85 0.81

Table 1. Likelihood evaluation of sub-goals and final goal with different evidence. De-
note e1: DB FTP Globbing Attack, e2: DB NewClient Target, e3: DB Illegal File Access, e4:
DB NewClient, e5: Loki, subgoal1: Get confidential data, subgoal2: Export confidential data, goal:
Steal and export confidential data.

is the library of attack plans (defined as attack trees). It is
the basis for automatically correlating isolated attack sce-
narios at a higher level and conducting probabilistic infer-
ence for attack prediction. It is true that there exists a limi-
tation in this approach due to the (limited) library of attack
plans. If the attack strategies are beyond the definition of at-
tack plans, we cannot automatically correlate isolated sce-
narios or make an inference on the future attacks based on
existing attack plan library. Such a task requires the involve-
ment of security experts. However, we argue that, in prac-
tice, the plan library can be defined as comprehensively as
possible by security experts with their knowledge of attacks
and attack strategies, as well as the understanding of net-
works and systems under protection and the mission goals.
The attack plan library can be expanded or re-defined with
the new knowledge of attacks or attack scenarios. There-
fore, we believe that our approach is practical and has the
potential to provide security operators a way to automati-
cally correlate isolated attack scenarios and predict future
attacks based on the observed evidence and networks un-
der protection.

6. Conclusions and Future Work

In this paper, we presented an approach to identify at-
tack plans and predict upcoming attacks. We developed a

graph-based technique to correlate isolated attack scenarios
derived from low-level alert correlation based on their rela-
tionship in attack plans. We conducted probabilistic infer-
ence to evaluate the likelihood of attack goal(s) and predict
potential upcoming attacks based on causal network con-
verted from attack trees.

There are still some challenges in attack plan recogni-
tion. First, the current approach is based on predefined at-
tack plans built on security experts’ knowledge and under-
standing of networks and systems under protection. If at-
tackers’ activities are beyond the predefined scope of attack
plans, we have to face the challenge of handling and identi-
fying new attack scenarios. Another challenge is how to dis-
tinguish the deceptive plan and the real goal of the attack-
ers. That is, we need to develop a mechanism to identify
and avoid the misleading of attackers. Finally, we also need
to consider how to effectively distinguish the attacks con-
ducted by a single attacker and a group of collaborated at-
tackers. We will study these challenges in our future work.
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[11] F. Cuppens and A. Miège. Alert correlation in a cooperative
intrusion detection framework. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, pages 202–215,
Oakland, CA, May 2002.

[12] DAPRA Cyber Panel Program. DARPA cyber
panel program grand challenge problem (GCP).
http://www.grandchallengeproblem.net/, 2003.

[13] T. Dean and T. Wellman. Planning and Control. Morgan
Kaufmann, 1991.

[14] H. Debar and A. Wespi. The intrusion-detection console cor-
relation mechanism. In 4th International Symposium on Re-
cent Advances in Intrusion Detection (RAID), October 2001.

[15] C. W. Geib and R. P. Goldman. Plan recognition in intru-
sion detection system. In DARPA Information Survivability
Conference and Exposition (DISCEX II), June 2001.

[16] R. P. Goldman, W. Heimerdinger, and S. A. Harp. Informa-
tion modleing for intrusion report aggregation. In DARPA
Information Survivability Conference and Exposition (DIS-
CEX II), June 2001.

[17] C. W. J. Granger. Investigating causal relations by econo-
metric methods and cross-spectral methods. Econometrica,
34:424–428, 1969.

[18] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor. Validation
of sensor alert correlators. IEEE Security & Privacy Maga-
zine, January/February, 2003.

[19] H. Kautz and J. F. Allen. Generalized plan recognition. In
Proceedings of the Fifth National Conference on Artificia l
Intelligence, pages 32–38, September 1986.

[20] B. Morin and H. Debar. Correlation of intrusion symptoms:
an application of chronicles. In Proceedings of the 6th Inter-
national Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2003), Pittsburgh, PA, September 2003.

[21] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack
scenarios through correlation of intrusion alerts. In 9th
ACM Conference on Computer and Communications Secu-
rity, November 2002.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers,
Inc, 1988.

[23] P. A. Porras, M. W. Fong, and A. Valdes. A Mission-Impact-
Based approach to INFOSEC alarm correlation. In Proceed-
ings of the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID), October 2002.

[24] X. Qin and W. Lee. Statistical causality analysis of IN-
FOSEC alert data. In Proceedings of the 6th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2003), Pittsburgh, PA, September 2003.

[25] X. Qin and W. Lee. Discovering novel attack strategies from
INFOSEC alerts. In Proceedings of the 9th European Sym-
posium on Research in Computer Security, Sophia Antipolis,
France, September 2004.

[26] C. Schmidt, N. Sridharan, and J. Goodson. The plan recog-
nition problem: an intersection of psychology and artificial
intelligence. Artificial Intelligence, 11:45–83, 1978.

[27] B. Schneier. Secrets and Lies: Digital Security in a Net-
worked World. John Wiley & Sons, August 2000.

[28] G. Shafer. A Mathematical Theory of Evidence. Princeton
University Press, 1976.

[29] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing.
Automated generation and analysis of attack graphs. In Pro-
ceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, Oakland, CA, May 2002.

[30] A. Valdes and K. Skinner. Probabilistic alert correlation. In
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID), October 2001.

[31] R. Wilensky. Planning and Understanding. Addison Wes-
ley, 1983.

10


