
Specification-based Anomaly Detection:
A New Approach for Detecting Network Intrusions

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou
Department of Computer Science

Stony Brook University, Stony Brook, NY 11794.

ABSTRACT
Unlike signature or misuse based intrusion detection techniques,
anomaly detection is capable of detecting novel attacks. How-
ever, the use of anomaly detection in practice is hampered by a
high rate of false alarms. Specification-based techniques have been
shown to produce a low rate of false alarms, but are not as effective
as anomaly detection in detecting novel attacks, especially when
it comes to network probing and denial-of-service attacks. This
paper presents a new approach that combines specification-based
and anomaly-based intrusion detection, mitigating the weaknesses
of the two approaches while magnifying their strengths. Our ap-
proach begins with state-machine specifications of network proto-
cols, and augments these state machines with information about
statistics that need to be maintained to detect anomalies. We present
a specification language in which all of this information can be cap-
tured in a succinct manner. We demonstrate the effectiveness of the
approach on the 1999 Lincoln Labs intrusion detection evaluation
data, where we are able to detect all of the probing and denial-of-
service attacks with a low rate of false alarms (less than 10 per day).
Whereas feature selection was a crucial step that required a great
deal of expertise and insight in the case of previous anomaly de-
tection approaches, we show that the use of protocol specifications
in our approach simplifies this problem. Moreover, the machine
learning component of our approach is robust enough to operate
without human supervision, and fast enough that no sampling tech-
niques need to be employed. As further evidence of effectiveness,
we present results of applying our approach to detect stealthy email
viruses in an intranet environment.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access;
C.2.3 [Network Operations]: Network monitoring
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1. INTRODUCTION
Intrusion detection approaches can be divided into misuse de-

tection, anomaly detection and specification-based detection. Mis-
use detection techniques detect attacks as instances of attack sig-
natures. This approach can detect known attacks accurately, but is
ineffective against previously unseen attacks, as no signatures are
available for such attacks.

Anomaly detection overcomes the limitation of misuse detec-
tion by focusing on normal system behaviors, rather than attack
behaviors. This approach is characterized by two phases: in the
training phase, the behavior of the system is observed in the ab-
sence of attacks, and machine learning techniques used to create a
profile of such normal behavior. In the detection phase, this pro-
file is compared against the current behavior of the system, and
any deviations are flagged as potential attacks. Unfortunately, sys-
tems often exhibit legitimate but previously unseen behavior, which
leads anomaly detection techniques to produce a high degree of
false alarms. Moreover, the effectiveness of anomaly detection is
affected greatly by what aspects (also called “features”) of the sys-
tem behavior are learnt. The problem of selecting an appropriate
set of features has proved to be a hard problem.

Specification-based techniques are similar to anomaly detection
in that they also detect attacks as deviations from a norm. However,
instead of relying on machine learning techniques, specification-
based approaches are based on manually developed specifications
that capture legitimate (rather than previously seen) system behav-
iors. They avoid the high rate of false alarms caused by legitimate-
but-unseen-behavior in the anomaly detection approach. Their down-
side, however, is that development of detailed specifications can be
time-consuming. Thus, one has to trade off specification develop-
ment effort for increased false negatives (i.e., likelihood that some
attacks may be missed).

Given the complementary nature of the strengths and weaknesses
of anomaly and specification-based approaches, a natural question
is whether the two approaches can be combined in such a way that
we can realize the combination of their strengths, while avoiding
the weaknesses of either one. We answer this question affirma-
tively in this paper by developing a new and effective network in-
trusion detection technique that combines these two approaches.
We demonstrate the effectiveness of our approach using experi-
ments involving the 1999 Lincoln Labs Intrusion detection data
[7]. As further evidence, we also summarize the results of using
our approach in a very different context, namely, detection of email
flooding attacks due to viruses.

1.1 Overview of Approach
The first step in our approach is to develop specifications of hosts

and routers in terms of network packets received or transmitted by
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Figure 1: Simplified IP Protocol State Machine

them. These specifications are derived from RFCs or other descrip-
tions of protocols such as the IP, ARP, TCP and UDP. Consider a
gateway node that connects an organization’s local network to the
Internet. Figure 1 is a pictorial representation of a specification
characterizing the gateway’s behavior, as observed at the IP pro-
tocol layer. The figure incorporates the following simplifications:
no IP fragmentation is modeled, and only packets from the Inter-
net (but not those sent to the Internet) are captured. These packets
may be destined for the gateway itself, in which case the state ma-
chine makes a transition from the INIT to DONE state. Otherwise, a
packet may be destined for an internal machine, in which case the
gateway will first receive it on its external network interface, and
make a transition from the INIT to PKT RCVD state. Next, it will
relay the packet on its internal network interface, making a transi-
tion to the DONE state. Occasionally, the relay may not take place.
This may be due to a variety of reasons, including (a) the gateway
could not resolve the MAC address corresponding to the IP address
of the target machine, (b) the gateway machine is malfunctioning,
etc. We model such situations with a timeout transition from the
PKT RCVD state to the DONE state.

As shown in Figure 1, specifications are based on extended finite
state automata (EFSA). An EFSA is similar to a finite-state automa-
ton, with the following differences: (a) an EFSA makes transitions
on events that may have arguments, and (b) it can use a finite set
of state variables in which values can be stored. In the figure, we
see two events, namely, pkt and timeout. The former event de-
notes the reception or transmission of a packet. Its first argument
identifies the network interface on which the packet was received
or transmitted. Its second argument captures the packet contents.
The timeout denotes a time out transition, which will be taken if
no other transitions are taken out of a state for a predefined period
of time. The IP state machine uses two state variables src and
dst. These variables are used to store the source and destination
IP addresses seen in a packet arriving on the gateway’s external in-
terface. By using these state variables, the state machine is able to
match a packet received on the external interface with the corre-
sponding packet (when it is relayed) on the internal interface.

To understand how such EFSA specifications can be used for
monitoring protocol behavior, consider the IP state machine again.
For each IP packet received on the external network interface, we
create an instance of the IP state machine that is in the INIT state,
and add this instance to the list of active IP machine instances.
Next, the packet is given to every IP state machine instance in this
list, and each of them that can make a transition on this packet is
permitted to do so. Any state machine that reaches the DONE state is
deleted from the list. Thus, when monitoring protocol behavior, we
create many instances of the state machine, each of which traces a
path in the EFSA from the INIT to the DONE state. (A trace is char-
acterized by a sequence of states, where “state” includes not only
the control state of the automata (e.g., DONE, PKT RCVD and DONE)
but also the values of state variables.)

Now, we superimpose statistical machine learning over this spec-
ification as follows. Note that the EFSA specifications map the

statistical properties of the IP packet stream to properties of traces
accepted by the EFSA specifications. Thus, we can characterize
the statistical properties of the IP packet stream in terms of:

� the frequency (across traces) with which a particular transi-
tion in the EFSA is taken, e.g., the frequency with which the
timeout transition is taken

� the most commonly encountered value of a state variable at a
particular control state of the EFSA, e.g., the most common
value for the dst state variable at the PKT RCVD state. (This
value would correspond to the IP address to which maximum
number of IP packets are received from the Internet.)

� the distribution of values of a state variable, e.g., how fre-
quently does the protocol field (in the IP header) have the
value TCP, UDP, etc.

In addition, we may be interested in statistical properties across a
subset of traces, rather than all traces. The traces of interest can
be specified on the basis of state variable values. For instance, we
may be interested in the number of IP-packets being relayed by
the gateway to a particular local machine

�
. We will do this by

selecting traces that have dst equal to
�

in their PKT RCVD state,
and identifying the number of times the transition from PKT RCVD
to DONE was taken in these traces1. A second, orthogonal way to
select a subset of traces is based on time: we may be interested in
traces that were observed within the last � seconds.

Based on learning statistical properties associated with the IP-
state machine, we could detect several kinds of attacks. We de-
scribe the detection of IP sweep attack in particular, as the detection
mechanism is quite interesting. Typically, detection of IPsweep at-
tack requires an IDS to incorporate knowledge about IPsweeps at
some level. Often, a particular statistic is designed that specifi-
cally targets IPsweep, e.g., the number of different IP addresses for
which packets were received in the last � seconds for some suitably
small value of � . Once this is done, there is no surprise that the
attacks can be detected fairly accurately, based on anomalies in this
statistic. In contrast, we do not encode any knowledge about IP-
sweeps in our approach. Nevertheless, we are able to detect them
as follows. Since an IPsweep attack is designed to identify the IP
addresses in use on a target network, the attacker does not know
legitimate IP addresses in the target domain at the time of attack.
This implies that several packets will be sent by the attacker to
nonexistent hosts. This would result in a sudden spurt of timeout
transitions being taken in the IP state machine. Thus, the statistics
on the frequency of timeout transitions from the PKT RCVD state
can serve as a reliable indicator of the IPsweep attack.

�
More powerful primitives for trace selection are possible, but not

necessary — a complex selection condition can be directly incorpo-
rated into the EFSA as follows: introduce a new state variable that
records the outcome of testing this condition. Now, the complex
selection criteria reduces to that of selecting those traces where this
new state variable has the value �����
	 .



1.2 Benefits of Approach
Our approach:
� provides accurate attack detection. Our experimental results

illustrate that our approach provides:
– excellent detection of known and unknown attacks. Al-

though there have been questions about the realism with
the 1999 Lincoln Labs evaluation data, it is neverthe-
less remarkable that our approach can identify all of
the attacks that were within the scope of our system.
The detected attacks include very stealthy attacks, e.g.,
port sweeps that involve 3 packets from two different
hosts. As further evidence of effectiveness, we provide
preliminary results in a very different context, namely,
for detecting anomalies caused by email viruses.

– low false alarm rates. Our system generated, on the
average, 5.5 false alarms per day. This is at the low
end of the false alarm rates reported in the 1999 eval-
uation, even when misuse detection based approaches
(which traditionally have had much lower false alarm
rates compared to anomaly detection) are taken into ac-
count.

� simplifies feature selection. One of the difficulties in anomaly
detection is the choice of parameters that should be learnt.
With network packet data, there is a large number of parame-
ters, with many parameters assuming values from very large
sets. Moreover, attack detection often requires one to con-
sider sequences of packets. Note that the number of pos-
sible parameter combinations across packet sequences in-
creases rapidly with sequence length — for instance, if a
single packet has 10 parameters of interest, a sequence of
3 packets has a total of ��� �

possible parameters. Select-
ing a small set of parameters from such an extremely large
space of parameters is a challenging problem. In our ap-
proach, properties of sequences are mapped into properties
associated with individual transitions in the state machines.
This enables us to detect most attacks by simply monitoring
the distribution of frequencies with which each transition is
taken.

� employs redundancy to improve attack detection. Our ap-
proach tends to learn very detailed information about many
different characteristics of network protocols. Although most
attacks can be detected by looking at a fraction of these char-
acteristics, the redundant characteristics benefit in two ways:

– An attack would likely change at least a subset of the
large set of characteristics being monitored. Thus, the
redundancy provides a “safety cushion” against making
a poor choice of characteristics to monitor, or inadequa-
cies in the learning algorithms.

– It becomes much harder to craft evasive attacks, wherein
an attacker attempts to carry out an attack without per-
turbing the parameters and features being monitored.
Clearly, it is much harder to craft attacks that preserve
many different characteristics and features of the sys-
tem, as opposed to just a few.

� supports unsupervised learning. Our approach is robust enough
to accommodate unsupervised learning, i.e., the information
learnt at the end of the training phase does not need to be
inspected or modified by a human before it is used for detec-
tion2.

�
Given the volume of information learnt by our approach, manual

In summary, our approach enables seamless combination of anomaly
detection and specification-based detection. The combination pro-
vides significantly more value than the “sum of its parts,” as many
attacks undetectable by either of those approaches become detectable
using our approach. At the same time, the false alarm rate is con-
tained at a low level. Preliminary performance measurements (which
are preliminary in the sense that no systematic attempt to improve
performance has been undertaken so far) indicates that our im-
plementation provides adequate performance, processing an entire
day’s data (about 0.7GB) in under ten minutes.

1.3 Organization of the Paper
In Section 2, we present a summary of our specification lan-

guage. The language is designed to enable concise specifications
of protocols. We illustrate the language with a complete specifica-
tion of the IP state machine shown in Figure 1. Further discussion
of specification development process appears in Section 3, together
with a discussion of our TCP state machine specification. Section 4
describes how anomaly detection is mapped onto these specifica-
tions. Section 5 describes our experimental results with the 1999
Lincoln Labs data. We used state machine models of IP and TCP
protocols in this experiment. Section 5.2 provides a short descrip-
tion of a second experiment where our approach was used to detect
email viruses. Comparison with related work appears in Section 6.
Finally, concluding remarks appear in Section 7.

2. STATE-MACHINE LANGUAGE
As mentioned earlier, network protocols are modeled using ex-

tended finite state automata (EFSA), which augment traditional FSA
with a set of state variables. Formally, an EFSA

�
is a septuple���	��
���
������������������

, where:
� �

is the alphabet of the EFSA. It is an event alphabet, i.e.,
elements of

�
are characterized by an event name as well as

event arguments.
� 


is a finite set of states (also called as control states) of the
EFSA

� 
���

is the start state of the EFSA

� ����

is the final state. In our models,

�
is a sink state, i.e.,

a state that has no outward transitions.
� �

is a finite tuple
��� � ��� �!� ���#"$�

of state variables
� �

is a finite tuple
�&% � ��� � � �'%(")�

, where
%(*

denotes the do-
main of values for the variable

� *
.

� �,+-
/.0�1.2�435�&
����6�
is the transition relation.

Below, we describe our language for specifying EFSA that model
network protocols.

2.1 State Machine Specification
State machines specifications follow the EFSA definition given

above. The set
�

(events) are specified as part of an interface dec-
laration, which lists the events and their argument types. (Interface
declarations are omitted in this paper to conserve space.) Instead
of

�
, the specifications define the set V, as well as the types of

each member of
�

. Specifically, the following declarations specify
���
����
and

�
.

� The (control) states of a state machine may be declared using
states 7 
 � ��� � �!�'
 "$8

.
� The start state of the state machine can be specified using the

declaration startstate


.

� The final state of the state machine can be specified using the
declaration finalstate

�
.

inspection would not even be practical.



event tx(int interfaceId, ether_hdr data);
event rx(int interfaceId, ether_hdr data);

StateMachine ip_in(int in, int ext,
IPaddr in_ip, IPaddr ext_ip) {

/* in and ext refer to internal and external
interfaces. The corresponding IP addresses
are in_ip and ext_ip */

states {INIT, PKT_RCVD, DONE};
startstate INIT;
finalstate DONE;

IPaddr src, dst; /* state variables */

timeout 60 seconds {PKT_RCVD};

map rx(ifc, pkt) when (ifc == ext);
map tx(ifc, pkt) when (ifc == in) &&
(pkt.ipsrc == src) && (pkt.ipdst == dst);

rx(ifc, pkt)|(ifc == ext) && (state == INIT)
&& (pkt.ipdst != in_ip) && (pkt.ipdst != ext_ip)

--> state=PKT_RCVD; src=pkt.ipsrc; dst=pkt.ipdst;
rx(ifc, pkt)|(ifc == ext) && (state == INIT)

&& ((pkt.ipdst==in_ip) || (pkt.ipdst==ext_ip))
--> state = DONE;
tx(ifc, pkt)|(ifc == in) && (state == PKT_RCVD)
--> state = DONE;
timeout|(state == PKT_RCVD) --> state = DONE;

}

Figure 2: IP machine specification.

� The variables in
�

are declared using syntax similar to vari-
able declarations in typical programming languages.

The transition relation
�

is specified using rules of the form:

	
��� � ��� � � ��� "���� ���	��
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���
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Here 	 is an event name, and the variables
� � ��� � � ��� "

denote the
arguments of this event. The expression

������

should evaluate to a

boolean value, and can make use of common arithmetic and rela-
tional operators. It involves the variables in

�
, the event arguments,

and the distinguished variable


�
�
� 	 that refers to the current con-

trol state of the EFSA. The
���
��� ��� component consists of actions

that will be taken when the event 	 occurs, and
������


evaluates to
true. Allowable actions include assignments to state variables (i.e.,
variables in

�
) and invocations of external functions. The action

must also include an assignment to


�
�
� 	 .

In general, protocol state machines are non-deterministic. We
simulate non-determinism by cloning � copies of the state machine
whenever it can make one of � different transitions. (The cloning
operation duplicates not only the control state, but also all of the
variables in

�
.) Clearly, we cannot have a situation where the num-

ber of state machine instances increases forever. To deal with this
problem, we automatically delete state machine instances that reach
their final state. Note that final states are some what different from
“accepting states” of an FSA – they are similar to “sink” states from
which no progress can be made.

In general, there can be many instances of a state machine at
runtime. Thus, for each incoming event, we may have to search
through all of these state machine instances to discover those that
can make a transition. This operation can be very expensive, so
we use a mechanism that speeds up this operation in a situation
that arises frequently: often, we use one state machine instance to
track a “session,” and the session to which an event applies can
be computed efficiently from the event parameters. The following
language construct is used to specify such mapping:

map 	
�
	
�
�
�
	
�
	
�
��� ��� 
 �

when
���	��
 � ��� ���

Here 	
�
	
�
� can be a primitive or an abstract event that is defined

without the use of any conditions. The
���	��
 � ��� ��� component must

be of a special form: it should be a conjunction of equality tests,
where the left-hand side of the test is an expression on 	

�
	
�
��� ��� 


and the right-hand side is a state variable. This restriction is im-
posed so that the identification of the right state machine instance
can be implemented using a hash-table lookup.

Our language also permits timeout transitions to be described.
Timeouts values can be declared using one or more declarations of
the form:

timeout � in 7 
 � ��� � � �'
�� 8
This declaration states that a state machine will stay in one of the
states


 � ��� � � �'
��
for at most � seconds. At the end of this period, a

transition associated with the special event timeoutwill be taken.
Figure 2 shows the complete specification of the IP state machine

shown in Figure 1.

3. SPECIFICATION DEVELOPMENT
Unlike software in general, network protocols are designed through

a careful and deliberate process. The design is captured in a pre-
cise fashion in standards documents. Such documents provide an
obvious starting point for our state machine specifications.

In our work, we have tended to abstract from this specification
to capture only the essential details of most protocols. Such in-
formation may be readily obtained from standard texts on network
protocols rather than (the much longer) Internet RFCs. While strict
adherence to protocol standards documents is possible, this may
not be desirable for two reasons. First, developing precise specifi-
cations would entail more effort than that required for more abstract
specifications. Second, with strict specifications, there is always the
possibility that due to minor difference in interpretation, some traf-
fic may be classified as invalid by the state machine, and hence not
processed properly. Furthermore, such incorrect processing may
happen with some TCP implementations and not others. Using a
more abstract specification, where the state machines accept a su-
perset of what is permitted by the standards, provides a satisfactory
solution to these problem.

We conclude this section with a specification of the TCP state
machine, as observed on a gateway connecting an organization’s
internal network to the Internet. Our specification is depicted pic-
torially in Figure 3. A new session starts in the LISTEN state. Data
transfer takes place in the connection ESTABLISHED state. If the
TCP connection is initiated from an external site, then the state ma-
chine goes through SYN RECD and ACK WAIT states to reach the
ESTABLISHED state. If the connection is initiated from an inter-
nal machine, then the ESTABLISHED state is reached through the
SYN SENT state.

In order to tear down the connection, either side can send a TCP
segment with the FIN bit set. If the FIN packet is sent by an internal
host, the state machine waits for an ACK of FIN to come in from
the outside. Data may continue to be received till this ACK to the
FIN is received. It is also possible that the external site may initiate
a closing of the TCP connection. In this case we may receive a FIN,
or a FIN + ACK from the external site. This scenario is represented
by the states FIN WAIT 1, FIN WAIT 2, CLOSING, CLOSING 1
and CLOSING 2 states. Our state machine characterizes receive
and transmit events separately, and this necessitates additional in-
termediate states that are not identified in the TCP RFCs.

If the connection termination is initiated by an external host,
note that the TCP RFCs do not have the states CLOSE WAIT 1,
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Figure 3: TCP Protocol State Machine

CLOSE WAIT 2, LAST ACK 1, and LAST ACK 2 since they deal
with packets observed at one of the ends of the connection. In that
case, it is reasonable to assume that no packets will be sent by a
TCP stack implementation after it receives a FIN from the other
end. In our case, we are observing traffic at an intermediate node
(gateway), so the tear down process is similar regardless of which
end initiated the tear down.

To reduce clutter, the following classes of abnormal transitions
are not shown: (a) abnormal conditions under which a TCP con-
nection may be terminated, including when an RST packet (with
correct sequence number) is sent by either end of the connection,
as well as timeouts, (b) conditions where an abnormal packet is
discarded without a state transition, e.g., packets received with-
out correct sequence numbers (after connection establishment) and
packets with incorrect flag settings.

4. ANOMALY DETECTION
Information sources such as network packets pose a significant

challenge for anomaly detection techniques for two reasons. First,
the volume of data, and consequently, the space of possible statisti-
cal properties of interest, is extremely large. Second, raw network
packet data tends to be unstructured, making it difficult to distin-
guish meaningful information from “background noise.” To deal
with this problem, the raw packet data is usually processed to ex-
tract important “features” that are deemed to be of interest. This
process greatly reduces the amount of data to be processed by an
anomaly detection system. Moreover, it identifies important infor-
mation from the packet streams, while discarding less useful infor-
mation.

The importance of good feature selection is acknowledged by
most researchers in anomaly detection. Currently, feature selection
is driven by human expert’s knowledge and judgment regarding
what constitutes “useful information” for detecting attacks. While
human experts are often in a position to identify some useful fea-
tures, it is far from clear that they can do a comprehensive job.
Often, their notion of a useful feature is influenced by their knowl-
edge of known attacks. Consequently, they may not necessarily
select features that are useful in detecting unknown attacks.

In our approach, a higher degree of automation is brought to the
process of feature selection. Specifically, (statistical) properties of
packet sequences are mapped into (statistical) properties associated
with the transitions of the state machine. Since the number of tran-
sitions is relatively small as compared to the number of possible
combinations of network packets, this mapping reduces the space
of possible features. At the same time, our experiments provide
evidence that this reduction does not decrease detection efficacy.

4.1 Mapping packet sequence properties to
properties of state-machine transitions

As mentioned earlier, specifications divide up packet sequences
into traces, where each trace corresponds to a path in the state ma-
chine. For instance, the IP state machine described above parti-
tions the sequence of packets received at the external interface of
the gateway or transmitted at the internal interface into one of the
following kinds of traces:

� rx(ext, pkt) where pkt is destined for the gateway
� rx(ext, pkt1) tx(int, pkt2) where pkt2 is a packet

that is relayed by the gateway in response to receiving pkt1



� rx(ext, pkt1) timeout, where a packet is received by
the gateway with destination address other than that of the
gateway, but the packet is not relayed by the gateway (usually
due to a packet error, such as invalid IP address, or a gateway
error/failure)

This partitioning brings a lot of structure into what would otherwise
be a long, unstructured sequence of packets. It also reduces the
space of possible properties of interest, since a trace, being fairly
short, has much fewer properties than that of extremely long packet
sequences. In addition to reducing the space of possible properties,
the transitions in the state machine specifications provide concrete
clues on what properties may be of interest. For instance, some
transitions represent unexpected packets, which usually occur due
to network failures or an attack. Similarly, absence of expected
packets, and the consequent transition on a timeout event, suggests
a failure or an attack. For this reason, our approach is focused on
properties related to individual transitions. We identify two cate-
gories of properties:

� Type 1: whether a particular transition on the state machine
is taken by a trace. (Example: is the timeout transition taken
by a trace?)

� Type 2: the value of a particular state variable or a packet
field when a transition is traversed by a trace. (Example:
what is the size of IP packet when the transition from INIT
to PKT RCVD state is taken?)

More complex properties that involve multiple transitions, e.g.,
whether a trace traverses a particular combination of transitions,
can also be captured in our approach. This would be accomplished
by augmenting the original specification with an auxiliary state
variable that would be set if a trace traversed the desired combi-
nation of transitions. Now the original property reduces to a simple
state transition property – specifically, that of taking the last of the
transitions under the condition that the auxiliary state variable is
set. In our experience to date, however, we have not found it nec-
essary to introduce such auxiliary variables.

4.2 Learning statistical properties
Anomaly detection is concerned with detecting “unusual behav-

iors.” With our state machine models, we are ultimately mapping
behaviors to transitions of the state machine. Thus, unusual behav-
iors can be detected if our approach learns how frequently a transi-
tion is taken (for type 1 properties), or the commonly encountered
values of state variables on a transition (for type 2 properties). One
obvious way to represent this information is as an average, e.g.,
the average frequency with which a transition is taken. However,
it is well-known that network phenomena tend to be highly bursty,
and hence averages do not provide an adequate way to characterize
such phenomena. Therefore, in our approach, we focus on captur-
ing distributions rather than averages. For type 1 properties, we
maintain frequency distributions, whereas for type 2 property, we
maintain the distribution of values for the state variable of interest.

The representation of distributions differs, depending on the na-
ture of the values in the distribution. If the values are categorical
(e.g., an IP address), then a distribution simply counts the number
of times each distinct value occurs in the distribution. Often, the
number of possible categories may be too large, so the distribution
may represent only those categories that occur most frequently. If
the values represent a scalar quantity such as a packet size, then the
distribution can be represented compactly using a histogram. Since
frequencies represent a scalar quantity, frequency distributions can
also be represented using histograms.

Often, we are interested in properties that hold across a subset of
traces. One way to select traces of interest is based on recency, e.g.,
traces witnessed during the last � seconds. This would enable us to
focus on recent behavior, as opposed to behaviors observed a long
time in the past. A second way to select traces is based on values of
state variables or packet fields. For instance, we may be interested
in:

� traces corresponding to fragmented packets
� traces involving packets from a particular host and/or to a

particular host
Statistical properties to be learnt can be specified conveniently in

our specification language as follows. To illustrate such specifica-
tions, consider the statement:
on all frequency

timescale (0.001, 0.02, 0.5, 10, 100, 1000)

This statement indicates that frequency distribution information
should be learnt on all transitions, and that six different distribu-
tions should be maintained, corresponding to six different
timescales. A timescale specifies the period over which we count
the number of times a transition is taken. Use of short time scales
enables faster attack detection. However, since network phenom-
ena tend to be more bursty at shorter time scales, slow attacks tend
to be missed at shorter time scales. They can be detected by observ-
ing statistics over larger time scales, but those time scales imply
longer latencies before attack detection. By using six time scales
that range from a millisecond to a thousand seconds, we combine
the benefits of fast detection of rapidly progressing attacks, with
delayed (but more certain) detection of slower attacks.

As a second example, consider the following statement:
on all frequency wrt (src) size 100

timescale (0.001, 0.02, 0.5, 10, 100, 1000)

This statement indicates that we wish to maintain frequency dis-
tribution on a per-source-host basis. Since the number of possible
source hosts can be large, the language allows the use of size dec-
larations to bound the storage requirements. For instance, a bound
of 100 is declared in the above statement. If more than this many
source hosts are active at any time, then only the most active 100
of these hosts will be retained in the table, and the others would
be purged. Our notion of “most active” incorporates aging, so that
hosts that were active in the past but have become inactive for a
long period since, will be discarded from the table. (Recall that src
is the name of a state variable in the IP state machine specification.)

The keyword value is used in place of frequency to indicate
value distributions, as opposed to frequency distributions. This al-
lows us to monitor specific ranges of values a state variable can
take. In a similar way, we can restrict our monitoring to a specific
subset of transitions by listing their labels, instead of the key word
all.

4.3 Detecting Anomalies
During the detection phase, the statistics specified for learning

are computed again, and compared with the values learnt during
the training phase. If the statistics vary substantially from what
was learnt, then an anomaly is raised.

We are currently investigating ways to precisely control what is
considered “substantial difference.” Meanwhile, our implementa-
tion uses a simple thresholding scheme that applies to distribution
data maintained as histograms (i.e., frequency distributions and dis-
tribution of values of scalar parameters). For a parameter � , let
��� denote the highest histogram bin with nonzero count during
training, and



� denotes the corresponding number during detec-

tion phase, then an anomaly will be flagged if ����� � � exceeds
a threshold. While the threshold could be explicitly specified, to



simplify things further as follows. First, we use geometric ranges
for histogram bins, e.g., successive bins may correspond to values� � � ��� ��� � ����� ��� � ���	� ��� � ��
�� � � �!� . Then we set the threshold to a
fixed value such as 1 or 2. Our experiments use a threshold of 1.

5. EXPERIMENTAL RESULTS

5.1 Experiments with 1999 Lincoln Labs Eval-
uation Data

We studied the effectiveness of our approach by testing our ap-
proach using 1999 DARPA/Lincoln Labs evaluation [7]. The eval-
uation organizers set up a dedicated network to conduct a variety
of attacks. Care was taken to ensure that the distribution of traffic
in terms of different protocols and services was similar to that seen
at a large organization. All of the network traffic was recorded in
tcpdump format and provided to the participants of the evaluation.
The data provided consisted of training data, plus two weeks of
test data. The uncompressed size of the tcpdump files was approx-
imately 700MB per day.

Our experiments have focused on attacks on lower layers of pro-
tocols such as IP and TCP, due to the fact that we have so far de-
veloped state machine models of only these two protocols. Such
attacks correspond to the probing and denial-of-service (DoS) at-
tacks in the Lincoln Labs data, with one exception: Since our ap-
proach recognizes anomalies based on repetition, at least two pack-
ets must be involved in an attack before the attack can be expected
to be detected by our approach3 . This eliminates the following at-
tacks from consideration: arppoison (poisoning of an ARP cache
by providing wrong address resolution information), crashiis (a
malformed packet that causes Microsoft IIS server to crash), dos-
nuke (another malformed packet that crashes Microsoft Windows),
syslogd (single packet to syslogd that causes it to crash), land (sin-
gle TCP syn packet with source and destination being equal), and
teardrop (overlapping IP fragment with bad offset value — requires
two packets, but the attack itself is present only in the second one).
Note, however, that other short-sequence attacks such as ping-of-
death and 3-packet portsweeps are still within our scope. Also
eliminated from consideration are certain attack instances (but not
attack types) that are present exclusively on the “inside tcpdump”
data, since our TCP state machine model was developed for the
“outside tcpdump” data that records the traffic observed on the ex-
ternal network interface of the gateway host. Finally, we have not
shown a couple of other attack instances where the tcpdump data
provided by Lincoln Labs was corrupted around the time of attack.
Figure 4 summarizes our result on the rest of the attacks. The high-
lights of our experimental results are as follows:

� Excellent attack detection. All of the attacks within the scope
of our prototype were detected. Particularly note worthy was
the detection of some stealthy portsweep attacks, some of
which involved just 3 probe packets, each from a different
source host!
Another interesting aspect is that we were able to detect sweeps
at all. Many anomaly detection systems incorporate knowl-
edge into their system about such sweeps, and are explic-
itly programmed to look for anomalies such as “accessing so
many ports within a certain period of time.” In contrast, our
approach has no knowledge about sweeps encoded into it.
Nevertheless, it is able to detect sweeps, typically because of
increased frequency of occurrence of certain abnormal tran-�

Indeed, it would be very difficult, if not impossible, to detect such
single-packet attacks using anomaly detection, unless a high degree
of false alarms can be tolerated.

sitions in the protocol state machines (e.g., the timeout tran-
sition in the IP state machine.)

� Low false positives. Our system generated, on the average,
5.5 false alarms per day. This is at the low end of the false
alarm rates reported in the 1999 evaluation, even when mis-
use based approaches are taken into consideration.

� Adequate processing capacity. No systematic performance
tuning has been attempted in our prototype implementation,
and hence our performance results are to be treated as pre-
liminary. Currently, our system can process an entire day’s
data within ten minutes (excluding I/O time) while running
on a 700MHz Pentium III processor with 1GB memory.

A more detailed discussion of the attacks and the manner in which
they are detected in our system is provided below.

5.1.1 Attacks detected by IP machine
A simplified version of our IP state machine was presented ear-

lier in this paper. The version used in the experiment differs from
this version in two ways. First, it handles packets originating from
internal hosts in addition to packets originating from external hosts.
Second, it handles IP fragmentation. Specifically, it treats a se-
quence of IP fragments that are part of the same IP packet as a sin-
gle trace. (In contrast, the simplified version treats each fragment
as if it is independent of other fragments.)

The statistics learnt by the IP state machine is captured by the fol-
lowing specification:
ts = (0.001, 0.01, 0.1, 1, 10, 100 and 1000)
(1) on all frequency timescale ts
(2) on all frequency wrt (src) size 100 timescale ts
(3) on all frequency wrt (dst) size 100 timescale ts
(4) on all frequency wrt (src, dst) size 100 timescale ts

Not all of these statistics were necessary for detecting the attacks
in the Lincoln Labs data. However, one cannot easily predict in ad-
vance which of these parameters were necessary. Since we wanted
to study the effectiveness of our approach in the absence of careful
feature selection, we simply selected the most obvious parameters
using which the traffic can be subdivided.

Based on these statistics, the following attacks are detected by
the IP state machine.
IP Sweep: As mentioned earlier, IP sweeps manifest as a spurt in

the frequency with which timeout transitions are taken in the
IP state machine. Since the sweep is usually conducted by
a single source machine, it is most obvious with statistic (2)
above. Sweeps that involve a reasonable number of destina-
tion hosts also raise an anomaly in statistic (1).

Ping of Death: A ping of death attack typically involves a large
number of fragmented IP packets. Thus, it manifests a spurt
in the frequency of transitions that are taken when fragmented
packets are received. The spurt is most noticeable when we
consider a single destination, i.e., statistic (3). It is also no-
ticeable when source destination pairs are consider, as with
statistic (4), and also with statistic (2).

Smurf: This is a flooding attack involving the reception of a very
large number of packets. As expected with such attacks, we
witness an anomaly with almost every statistic mentioned
above, but the most anomalous statistics correspond to (1)
and (3).

We note that our approach, at this point, is not identifying attacks.
It is only capable of producing alarm reports on each packet that
results in an anomaly. A higher level system merges alarms that
are temporally close together into a single alarm. While a sophis-
ticated approach for such alarm aggregation is possible, that is not



Attack Attacks Attacks Description
Name Present Detected
Apache2 2 2 Dos attack on Apache web server
Back 3 3 Dos attack on Apache web server
IP Sweep 6 6 Probe to identify potential victims
Mailbomb 3 3 Large volume of mail to a server
Mscan 1 1 Attack tool
Neptune 3 3 SYN-flood attack
Ping-of-Death 4 4 Over-sized ping packets
Smurf 3 3 ICMP echo-reply flood
Queso 3 3 Stealthy probe to identify victim OS
Satan 2 2 Attack tool
Portsweep 13 13 Probing to identify exploitable servers
Total 43 43

Figure 4: Attacks detected in 1999 Lincoln Labs IDS Evaluation Data

the focus of this paper. Thus, we use a simple strategy that is ade-
quate for this data: combine alarm reports that are spaced less than
a few minutes apart.

5.1.2 Attacks Detected by the TCP Machine

The statistics monitored by the TCP state machine is given by
the following statements. Note again that we have avoided putting
any great effort into feature selection. First, we have indiscrimi-
nately selected every transition in the state machine for statistics
computation. Second, we have chosen to specialize this statistics
collection with respect to the most obvious parameters that iden-
tify tcp sessions, namely, the source and destination addresses (or
components thereof).
(5) on all frequency timescale ts
(6) on all frequency wrt (ext_ip) size 1000 timescale ts
(7) on all frequency wrt (int_ip) size 1000 timescale ts
(8) on all frequency wrt (ext_ip, int_ip)

size 1000 timescale ts
(9) on all frequency wrt (int_ip, int_port)

size 1000 timescale ts
(10) on all frequency wrt (ext_ip, int_ip, int_port)

size 1000 timescale ts
(11) on all frequency

wrt (ext_ip, ext_port, int_ip, int_port)
size 1000 timescale ts

Here ext ip and ext port refer to IP address and port information
on the external network (Internet), while int ip and int port
refer to address and port information on the internal network. Some
combinations such as (ext ip, ext port, int ip) are left out
since we were most interested in traffic destined for local servers,
in which case the remote port information is not useful.

Portsweep: In this attack, an attacker attempts to probe for ser-
vices running on a victim host by systematically attempting
to access all ports. This leads to a large number of connection
attempts seen at a victim host. Thus, anomalies are detected
on statistics given by (7) and (8) above, if the connection at-
tempt is a normal attempt. If the scan involves reset packets
or other unusual packets, then anomalies occur in the transi-
tion from the LISTEN state to itself, which is T49 (not shown
in the diagram). It is interesting to note that our approach is
able to detect portsweeps that consist of 3 packets originating
from 2 or 3 different hosts.

Queso: Queso is a utility program which is used to determine which
operating system that is running at a certain IP address. Queso
sends a series of 7 TCP packets to any one port of a machine
and uses the return packets it receives to lookup the machine

in a database of responses. These packets usually have un-
usual combinations of the TCP flags, and arrive when unex-
pected. Thus, we see a spurt in packets in the transition from
LISTEN state to itself.

Neptune (SYN Flood): In this attack, an external host, usually
using a spoofed address, sends a SYN packet to a server,
thereby initiating a connection. But the attacker never re-
sponds to the SYN-ACK packet from the server. This leads
to a situation known as “half-open” TCP connections on the
server. Since such connections use up resources, TCP imple-
mentations limit the number of half-open connections. If this
limit is exceeded, the server refuses subsequent connection
requests. In our approach, we see a spurt in the frequency
of timeout transitions from the half-open state. This happens
on statistics (6), (7), (8), (9), (10) and (11). (If the attacker
changes the (spoofed) source address quickly, then the attack
can be obscured on any statistics that includes the external IP
address, but it will still be detected by (7) and (9).)

Satan/Saint: SAINT is the Security Administrator’s Integrated Net-
work Tool, which probes for common vulnerabilities in ser-
vices that are used most frequently. The probes generate
anomalies similar to those seen with port sweeps.

Mscan: Mscan is a tool used to enumerate the systems on a net-
work via DNS zone transfer requests, IP address scanning,
etc. This attack too generates anomalies similar to port sweeps.

Mailbomb: A Mailbomb is an attack where the victim’s resources
are overloaded by sending exorbitant number of emails to
a server, overflowing that server’s mail queue and possibly
causing system failure. Excessive traffic to the mail server
leads to anomalies in (7), (8), (9), (10) and (11).

Apache2: This is a DOS attack that can cause an Apache web
server to use disproportionate amounts of memory and CPU
time by sending a large number of MIME headers with the
same name. The large size of the http headers causes an in-
crease in the frequency with which packets are received in
the ESTABLISHED state of the TCP machine. The anomaly
is most pronounced in the case of (10) and (9).

Back: In this denial of service attack against the Apache web server,
an attacker submits requests with URL’s containing many
slashes. As the server tries to process these requests it will
slow down. Due to its similarity with Apache2, it is detected
in the same manner.



send (from, msgID, to1, to2,...,toN)

sender = from, ID = msgID

timeout()

deliver (from, msgID, to)
RCVDINIT

| (msgID == ID)
DONE

Figure 5: Email Virus Detection State Machine

5.2 Experiments with Email Virus Detection
In order to further test our approach, we applied it to a very dif-

ferent problem: that of detecting email virus propagation in an in-
tranet. The state machine model, as observed at the mail server
for the intranet, is shown in Figure 5. The state machine has three
states. It moves from the INIT state to RCVD state on the event

	
��


. This event models the action of an email client, which con-
nects to the mail server and deposits mail. Arguments to this event
are the sender, a message identifier, and the recipients. The mail is
subsequently delivered to all the recipients, and this action is mod-
eled by the event



	�� � � 	 � . Note that since there is one copy of mail

delivered to each recipient, and hence the


	�� � � 	 � event has only

one recipient argument, unlike the


	
��


event.

The statistical properties can again be specified in our language as
follows.
ts = (10, 30, 120, 500, 2000, 8000, 25000)
(1) on all frequency timescale ts
(2) on all frequency wrt (sender) timescale ts

Our study was part of DARPA’s SARA experiment, which was
concerned with determining the effectiveness of automated responses
in containing intrusions. In this experiment, a test network was set
up with 400 email clients and one sendmail server. Normal email
traffic was simulated using “bots” that capture typical user behav-
ior that relates to email reading/replying/deleting etc. A variety of
simple to highly sophisticated viruses were introduced, and var-
ious defense mechanisms were tested in terms of their ability to
stop virus propagation. The experiment used a variety of detectors,
many of which are misuse detectors that capture such aspects as
excessive rate of email generation etc. Since “sneaky” viruses can
evade such detectors, we also deployed an anomaly detector that
was based on the approach described in this paper.

Due to the way the experiment was structured, no good response
actions could be launched in response to attack reports from the
anomaly detectors. The only possible option was to shut down
a large number of clients and/or the email server. Since this is a
drastic response, a large delay was introduced into the detection by
anomaly detector, so that other detectors were able to try to control
the virus before drastic actions were attempted. Specifically, the
anomaly detector was tuned to detect attacks only at a point where
other defensive mechanisms were unable to stop the virus, and thus,
the virus was out of control.

The experiments involved hundreds of runs involving about ten
different virus types, ranging from very simple viruses to very so-
phisticated ones. Of these, there were only seven runs where the
virus was not checked by other defense mechanisms. Since our
anomaly detector was tuned to detect only such cases, its perfor-
mance in those seven runs is shown in Figure 6. Note again that
our approach was able to detect the virus in each one of these seven
runs. In addition, there were no false alarms. (Very low false alarm
rate is to be expected, given that the anomaly detector was tuned to
delay detection.)

6. RELATED WORK
Intrusion detection techniques can be broadly classified into mis-

use detection, anomaly detection and specification based detection.
Misuse detection [20, 12], which detects known misuses accurately,

is not very effective against unknown attacks. Anomaly detection
[1, 5, 6] copes better with unknown attacks, but can generate a lot of
false positives, and hence not deployed widely. Specification-based
approach [11, 23] is a recently developed technique that can detect
novel attacks, while maintaining a low degree of false alarms.

Most network intrusion detection systems [8, 19, 9, 13, 17, 25]
reconstruct higher level interactions between end hosts and remote
users, and identify anomalous or attack behaviors. Other approaches
operate mainly on the basis of packet header contents [21, 24, 22].
These techniques provide a way to define signatures not only on
the basis of textual data in the reconstructed TCP sessions, but also
on packet fields. These approaches can provide better detection of
certain classes of attacks (especially, probing attacks) that do not
result in valid TCP sessions. Our approach also relies primarily
on inspecting network packer fields, but can use data in the recon-
structed sessions if necessary.

Data mining is concerned with the extraction of useful informa-
tion from large volumes of data, thus it is natural to ask if this
technique can be used to extract attack detection rules from large
volumes of network traffic data. [13] was one of the first works to
propose the use of data mining techniques for intrusion detection.
Since then, this topic has received substantial research interest, with
a lot of ongoing activity. As compared to our approach, the main
difference is that these works still rely much more on expert iden-
tification of useful features for network intrusion detection. For
instance, [13] selects a long list of features that include, among
many others, the following: successful TCP connection, connec-
tion rejection, failure to receive SYN-ACK, spurious SYN-ACKs,
duplicate ACK rate, wrong size rate, bytes sent in each direction,
normal connection termination, half-closed connections, and fail-
ure to send all data packets. In our approach, we do not rely on
such expert judgment to identify features, but on the protocol state
machine specifications.

The NATE (Network Analysis of Anomalous Traffic Events) sys-
tem [24] uses statistical clustering techniques to learn normal be-
havior patterns in network data. Training data is used in the for-
mation of clusters, or groups, of similar data. During detection,
data points that do not fall into some cluster are seen as anoma-
lous. Clustering requires the use of some similarity measure and,
for network data, sampling techniques are also necessary. NATE
was able to detect most network probes and DOS attacks in the MIT
Lincoln Labs data. No comprehensive information on false posi-
tives/negatives is provided in [24]. The technique used by NATE
is sensitive to the the sampling methodology and distance measure
used, so continuing research is involved in trying to develop more
accurate methods. Unlike our approach, NATE requires the use
of sampling to select a small subset of packet data for training.
Moreover, the information learnt by NATE requires checking by a
human before it is used for detection. Perhaps most important, at-
tack detection in [24] is based on identifying anomalous data values
in individual packets, whereas our approach is focused mainly on
properties of packet sequences.

The EMERALD system [19] contains a statistical component
called eStat described partly in [18]. This statistical component
maintains short and long-term distribution information for several
types of “measures”, using a decay mechanism to age out less re-
cent events. While the techniques do not require prior knowledge



Virus type Time of Traffic due
detection to virus

Simple virus 3.7 min � 5 %
Polymorphic virus 36.4 min � 5 %
Persistent Polymorphic 3.0 min � 5 %
Persistent Polymorphic variant I (fast propagation) 2.2 min � 5 %
Persistent Polymorphic variant II (slow propagation) 22.7 min � 5 %
Persistent Polymorphic variant III (medium propagation) 3.3 min � 5 %
Persistent Polymorphic variant IV (multiple attachment types) 3.1 min � 5 %

Figure 6: Email Virus Detection Performance

of attack activity, such knowledge is used in the choice of attributes
that constitute measures and time ranges used for intensity mea-
sures.

EMERALD also has a component that combines signature and
anomaly-based approaches called eBayes. EBayes uses a belief
network to determine from a number of features whether the values
of those features fits with some normal behavior (http, ftp, etc.),
some predefined bad behavior (mailbomb, ipsweep, etc.), or neither
of these (other).

7. CONCLUSIONS
In this paper, we presented a new approach for network intrusion

detection called specification-based anomaly detection. Through
our experiments, we showed that the new approach combines the
primary benefits of anomaly detection and specification-based de-
tection, namely, good detection of unknown attacks and low false
alarm rates. At the same, the new approach alleviates the principal
problems associated with either approach — specification develop-
ment is guided by protocol specifications, and is hence simplified.
Moreover, only a handful of protocols need to be specified in order
to detect most attacks.

We showed that protocol specifications simplify manual feature
selection process that often plays a major role in other anomaly
detection approaches. In particular, most attacks discussed in the
experimentation section could be detected by simply monitoring
frequency distribution information associated with state machine
transitions. Detection of other attacks required further partitioning
of frequency information based on sources and destinations of net-
work packets. Thus, in these experiments, our approach enables
features to be selected without any significant degree of analysis or
insight.

Another contribution of this paper is the specification language
for modeling state machines and for succinctly stating the anomaly
detection information to be learnt. This language makes it easy to
apply our approach to deal with other higher layer (such as HTTP)
or lower layer (e.g., ARP) protocols.
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