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Abstract. New features of the PAYL anomalous payload detection sensor are 
presented and demonstrated to accurately detect and generate signatures for 
zero-day worm exploits. Experimental evidence is presented to demonstrate that 
“site-specific models” trained and used for testing by PAYL are capable of 
detecting new worms with high accuracy in a collaborative security system.  A 
new approach is proposed that correlates ingress/egress payload alerts to 
identify the worm’s initial propagation. The method also enables automatic 
signature generation very early in the worm’s propagation stage. These 
signatures can be deployed immediately to network firewalls and content filters 
to proactively protect other hosts. Finally, we also propose a collaborative 
security strategy whereby different hosts can themselves exchange PAYL 
signatures to increase accuracy and mitigate against false positives. The method 
used to represent these signatures is also privacy-preserving to enable cross-
domain sharing. The important principle demonstrated is that the reduction of 
false positive alerts from an anomaly detector is not the central problem. 
Rather, correlating multiple alerts identifies true positives from the set of 
anomaly alerts and reduces incorrect decisions producing accurate mitigation. 

1. Introduction 

Zero-day worms are a serious wide-scale threat due to the monoculture problem. 
Large numbers of replicated vulnerable systems allow wide-spread infection. 
Furthermore, if any standard signature-based detector is blind to a zero-day attack, it 
is safe to say that all installations of that same detector are also blind to the same 
attack. The time from worm launch to wide-spread infestation is now very short, far 
shorter than the time to generate signatures for filtering, and certainly far shorter than 
the time to patch vulnerable systems. We consider the problem of detecting these 
“zero-day” attacks quickly and accurately upon their very first appearance, or very 
soon thereafter.  

Some attacks exploit the vulnerabilities of a protocol; others seek to survey a site 
by scanning and probing. These attacks can often be detected by analyzing the 
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network packet headers, or monitoring the connection attempts and traffic volume. 
But some other attacks display normal protocol behavior except that they may carry 
malicious content in an otherwise normal connection. For example, slow-propagating 
worms and viruses targeting specific sites may not exhibit any unusual volumes of 
connection attempts, and hence may go unnoticed by worm detection sensors based 
upon scan or probe behavior.  

We posit that analyzing the packet payload provides a reliable way to detect these 
attacks. State-of-the-art content-based detectors depend on “signatures” or 
“thumbprints” developed from known attacks, or a possibly error-prone specification 
of expected content, and hence may not be capable of detecting new attacks that were 
not covered by known examples or incomplete specifications. We focus this research 
on payload-based anomaly detection and seek to develop algorithms and systems for 
network intrusion detection that are light-weight and real-time and. The approach we 
take is to automatically learn the expected content flow in packets to hosts under 
normal operation of a system.  

The PAYL anomaly detection sensor previously reported in [19] accurately models 
normal payload flowing to and from a site using unsupervised machine learning 
techniques. PAYL uses the models it computes to detect anomalous content that may 
indicate a new attack. The first principle behind PAYL is that a new zero-day attack 
will have content data never before seen by the victim host, and will likely appear 
quite different from normal data and be deemed anomalous. One of PAYL’s 
innovations is the efficient means of modeling “normal data” effectively, as we 
describe shortly. Thus, PAYL is designed to detect the very first occurrences of an 
attack that exhibits anomalous content to stop the propagation of the new attack to 
many other potential victims. 

Key features of worms include their self-propagation strategy and the means by 
which they seek new victims. A considerable amount of prior work depends upon the 
detection of worm-like scan/probe behavior to catch the worm propagation. We 
propose a new approach which is based on ingress/egress anomalous payload 
correlation, and uses no scan or probe information. The key idea is that a newly 
infected host will begin sending outbound traffic that is substantially similar (if not 
exactly the same) as the original content that attacked the victim (even if it is 
fragmented differently across multiple packets). Correlating ingress/egress anomalous 
payload can detect a worm propagation and stop the worm spread from the very 
moment it first attempts to propagate itself, instead of waiting until the volume of 
outgoing scans suggests full-blown propagation attempts. The important principle 
demonstrated is that the reduction of false positive alerts from an anomaly detector is 
not the central problem. Rather, correlating multiple alerts identifies true positives 
from the set of alerts and reduces incorrect decisions producing accurate mitigation. 
Furthermore, since this strategy is not dependent upon detecting scanning patterns, the 
approach may be applied to a broader class of worms. For example, worms like 
“Witty” target a specific set of IP addresses and exhibit no scanning behavior. 

We do not propose to store and correlate all incoming packet content with 
outbound packets; that would be enormously expensive in space and time and may 
lead to many false alarms. Rather, we automatically identify a set of “suspect inbound 
packets”, considered to contain anomalous content, and inspect them for anomalous 
outbound content directed to the same ports. The number of suspect packets is a 



 

function of the anomaly detector in PAYL and the particular traffic characteristics in 
which it is placed and the amount of training to compute stable models. In many of 
the environments in which PAYL has been tested, the number of anomalies is a very 
small percentage of the network traffic. Another important aspect of this strategy is 
that the correlated ingress/egress content anomalies are used to automatically generate 
content-filtering signatures. The overlapping content of the similar outgoing and 
incoming anomalous payloads are a natural set of candidate worm signatures. PAYL 
generates worm signatures from this shared content, which can be distributed over the 
network to other collaborating hosts to prevent any further worm infections. 

In this paper, we will show that PAYL can successfully detect inbound worm 
packets with high accuracy and a low false positive rate. We will then show that if the 
worm has already infected a machine and starts to infect others, PAYL can quickly 
detect the propagation with an automatically generated signature that can be 
distributed to other machines in the local LAN or across domains. This signature is 
accurate, and won’t block normal traffic (thus exhibiting a low false positive rate).  

New and successful wide-scale infections occur on the internet with relative 
frequency. The monoculture problem applies not only to a high density of common 
vulnerable services and applications on the Internet, but it also applies to deployed 
security systems. If one standard commonly used open-source or COTS security 
system is blind to a new zero-day attack, then it is safe to say that all are blind to the 
same attack.  

Some researchers have studied a solution to the monoculture problem by 
considering methods to diversify common application software, making each distinct 
site invulnerable to the same exact attack exploit [1]. We conjecture that systems that 
run the same services and software applications already exhibit diversity through their 
content flows. This provides the means of creating “site-specific” anomaly detectors 
capable of detecting new exploits, especially if many sites collaborate with each other 
and exchange alert information about suspicious packet content.  

The core mindset of most security architectures dictates that each site or domain is 
an enclave, and any external site is regarded as the enemy. Worm writers and 
attackers, on the other hand, do collaborate and share information amongst themselves 
about vulnerabilities and tools to rapidly create new attack exploits, launch them, and 
form shared drone sites, often simultaneously worldwide. Defenders still depend on 
centralized management to update detection signatures and deploy patches on time 
scales that are no longer tenable.  

We posit that a collaborative security system [16, 17], a distributed detection 
system that automatically shares information in real-time about anomalous behavior 
experienced at the moment of attack among collaborating sites, will substantially 
improve protection against wide-scale infections. Indeed, most collaborating systems 
can be protected against new exploits by limiting propagations to a small set of initial 
victims. By integrating the PAYL anomalous payload sensor into a collaborative 
security system, and exchanging information about suspect packet content, the 
resulting system not only can detect new zero-day exploits but can also automatically 
generate new zero-day attack signatures on-site for content filtering. In this paper, we 
demonstrate this strategy and show that a collaborative detection system using 
multiple PAYL sensors, each trained on a distinct site, can accurately detect an 



     

emerging worm outbreak very fast, and reduce the incidence of false positives to 
nearly zero. 

PAYL has been under development for over a year and was first reported in the 
RAID 2004 conference [19], where many of the details about the underlying 
algorithms are fully described. 

The rest of the paper is organized as follows. Section 2 discusses related work in 
worm detection and automatic signature generation. In Section 3, we give an 
overview of the PAYL detection sensor and demonstrate how well it can detect real-
world worms. Section 4 presents an evaluation of the ingress/egress traffic correlation 
techniques, and the automatic worm signature generation. In Section 5 we introduce 
the idea of collaborative security among sites, and demonstrate its effectiveness using 
anomalous payload collaboration. Section 6 concludes the paper. 

2    Related Work 

Rule-based network intrusion detection systems such as Snort and Bro can do little 
to stop zero-day worms. They depend upon signatures only known after the worm has 
been launched successfully, essentially disclosing their new content and method of 
infection for later deployment. Shield [18] provides vulnerability signatures instead of 
string-oriented content signatures, and blocks attacks that exploit that vulnerability. 
The vulnerability signatures specify in general what an exploit would look like in the 
datagram of packets and a host-based “shield” agent would drop any connections that 
match this specification. A shield is manually specified for a vulnerability identified 
in some network available code, and is distributed to all desktops to provide 
protection against attacks. Once again, the time lag to specify, test and deploy shields 
from the moment the vulnerability is identified favors the worm writer, not the 
defenders.  

Several researchers have considered the use of packet flows, and in some cases 
content, to attack the zero-day worm problem. Honeycomb [6] is a host-based 
intrusion detection system that automatically creates signatures. It uses a honeypot to 
capture malicious traffic targeting dark space, and then applies the longest common 
substring (LCS) algorithm on the N connections going to the same services. The 
computed substring is used as candidate worm signature.   

Another system, Autograph [5] uses heuristics to classify the traffic into two 
categories: a flow pool with suspicious scanning activity and a non-suspicious flow 
pool. TCP flow reassembly is applied to the suspicious flow pool and they employ 
Rabin fingerprints to partition the payload into small blocks. These blocks are then 
counted to determine their prevalence, and the most frequent substrings from these 
blocks form the signatures. The signature generator uses blacklisting in order to 
decrease the number of false positives. They also describe collaboration between 
multiple sensors, but the sensors exchange only suspicious IPs and destination ports. 
This approach to sharing scan alerts is similar to other projects including the 
Worminator project [9] at Columbia University.  

Earlybird [14] is another system that can automatically detect unknown worms and 
generate signatures for them.  For each packet, the substrings computed by Rabin 
fingerprints are inserted into a frequency count table, incrementing a count field each 



 

time the substrings are encountered. The information about source and destination IPs 
is recorded. The table is stored in rank order by the frequency counts so that it 
produces the set of likely worm traffic. This system measures the prevalence of all 
common content in the network and then applies IP address dispersion, counting 
distinct source and destination IPs for each suspicious content, in order to keep the 
false positive rate small. This system is not used in collaboration between multiple 
sensors; it has been developed as a centralized system. 

Each of the aforementioned projects are based on detecting frequently occurring 
payloads delivered by a source IP that is “suspicious”, either because the connection 
targeted dark IP space or the source IP address exhibited pre-scanning behavior. 
These approaches imply that the detection occurs some time after the propagation of 
the worm has executed.  Unlike these approaches, PAYL does not depend on 
scanning behavior and payload prevalence. PAYL detects anomalous payloads 
immediately, and detects the first propagation attempt of the worms by correlating 
ingress/egress packet content alerts. PAYL has also been put to use in a system that 
automatically generates patches in a sandbox version of vulnerable software systems. 
See [13] for complete details. A more general discussion of related work in the area of 
anomaly detection can be found in [19]. 

 

3   Payload Based Anomaly Detection 

3.1. Overview of the PAYL Sensor 

The PAYL anomaly detection system is based on the principle that zero-day attacks 
are delivered in packets whose data is usual and distinct from all prior “normal 
content” flowing to or from the victim site. We assume that the packet content is 
available to the sensor for modeling. (Encrypted channels can be treated separately in 
various ways, such as the use of a host-sensor that captures content at the point of 
decryption, or by using a decryption/re-encryption proxy server. For the present 
paper, we simply assume the data is available for modeling.) 

 We compute a “normal profile” of a site’s unique content flow, and use this 
information to detect anomalous data. A “profile” is a model or a set of models that 
represent the set of data seen during training. Since we are profiling content data 
flows, the method must be general to work across all sites and all services, and it must 
be efficient and accurate.  Our initial design of PAYL uses a “language independent” 
methodology, the statistical distribution of n-gram [2] values extracted from network 
packet datagrams. This methodology requires no parsing, no interpretation and no 
emulation of the content. 

 An n-gram is the sequence of n adjacent byte values in a packet payload. A sliding 
window with width n is passed over the whole payload one byte at a time and the 
frequency of each n-gram is computed. This frequency count distribution represents a 
“statistical centroid” or model of the content flow. The normalized average frequency 
and the variance of each gram are computed. The first implementation of PAYL uses 
the byte value distribution when n=1. The statistical means and variances of the 1-



     

grams are stored in two 256-element vectors. However, we condition a distinct model 
on the port (or service) and on packet length, producing a set of statistical centroids 
that in total provides a fine-grained, compact and effective model of a site’s actual 
content flow. Full details of this method and its effectiveness are described in [19]. 

The first packet of CodeRed II illustrates the 1-gram data representation 
implemented in PAYL. Figure 1 shows a portion of the CRII packet, and its computed 
byte value distribution along with the rank ordered distribution is displayed in Figure 
2, from which we extract the Z-string. The  Z-string  is a the string of distinct bytes 
whose frequency in the data is ordered from most frequent to least, serving as 
representative of the entire distribution, ignoring those byte values that do not appear 
in the data. The rank ordered distribution appears similar to the “Zipf distribution”, 
and hence the name Z-string. The Z-string representation provides a privacy-
preserving summary of payload that may be exchanged between domains without 
revealing the true content. Z-strings are not used for detection, but rather for message 
exchange and cross domain correlation of alerts. We describe this further in section 5.   

 
GET./default.ida?XXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXX%u9090%u6858%ucbd3%u7
801%u9090%u6858%ucbd3%u7801%u
9090%u6858%ucbd3%u7801%u9090%
u9090%u8190%u00c3%u0003%u8b00
%u531b%u53ff%u0078%u0000%u0  
 

Fig. 1. A portion of the first packet of 
CodeRed II 

Fig. 2. The CRII payload distribution (top 
plot) and its ranked order distribution 
(bottom plot) 

 
To compare the similarity between test data at detection time and the trained 

models computed during the training period, PAYL uses Mahalanobis distance. 
Mahalanobis distance weights each variable, the mean frequency of a 1-gram, by its 
standard deviation and covariance. The distance values produced by the models are 
then subjected to a threshold test. If the distance of a test datum is greater than the 
threshold, PAYL issues an alert for the packet. There is a distinct threshold setting for 
each centroid computed automatically by PAYL during a calibration step. To 
calibrate the sensor, a sample of test data is measured against the centroids and an 
initial threshold setting is chosen. A subsequent round of testing of new data updates 
the threshold settings to calibrate the sensor to the operating environment. Once this 
step converges, PAYL is ready to enter detection mode. Although the very initial 
results of testing PAYL looked quite promising, we devised several improvements to 
the modeling technique to reduce the percentage of false positives.  



 

3. 2. New PAYL Features: Multiple Centroids 

PAYL is a fully automatic, “hands-free” online anomaly detection sensor. It trains 
models and determines when they are stable; it is self-calibrating, automatically 
observes itself, and updates its models as warranted.  

The most important new feature implemented in PAYL over our prior work is the 
use of multiple centroids, and ingress/egress correlation. In the first implementation, 
PAYL computes one centroid per length bin, followed by a stage of clustering similar 
centroids across neighboring bins. We previously computed a model Mij for each 
specific observed packet payload length i of each port j. In this newer version, we 
compute a set of models Mk

ij , k≥1. Hence, within each length bin, multiple models are 
computed prior to a final clustering stage. The clustering is now executed across 
centroids within a length bin, and then again across neighboring length bins. This two 
stage clustering strategy also substantially reduces the memory requirements for 
models that represent normal content flow more accurately, revealing anomalous data 
with greater clarity (and higher distance values).   

Since there might be different types of payload sent to the same service, e.g., pure 
text, .pdf, or .jpg, we used an incremental online clustering algorithm to create 
multiple centroids to model the traffic with finer granularity. This modeling idea can 
be extended to include centroids for different media that may be transmitted in packet 
flows. We note with interest that each of the different standard file and media types 
follow their own characteristic 1-gram distribution, so including models for standard 
file types can help reduce false positives. (The reader is encouraged to see [7] for a 
detailed analysis of this approach.)   

The multi-centroid strategy requires a different test methodology. During testing, 
an alert will be generated by PAYL if a test packet matches none of the centroids 
within its length bin. The multi-centroid technique gives more accurate payload 
models and separates the anomalous payloads in a more precise manner.  

For the present paper, a crucial issue we study is whether or not payload models 
are truly distinct across multiple sites. This is an important question in a collaborative 
security context. We have claimed that the monoculture problem applies not only to 
common services and applications, but also to security technologies. Hence, if a site is 
blind to a zero-day attack this implies that many other sites are blind to the same 
attack. Researchers are considering solutions to the monoculture problem by various 
techniques that “diversify” implementations. We conjecture that the content data flow 
among different sites is already diverse even when running the exact same services. 
Hence, each site’s profile will be substantially different from all others. A zero-day 
attack that may appear as normal data at one site, will likely not appear as normal data 
at other sites since the normal profiles are different. We test whether or not this 
conjecture is true by several experiments reported next.  

3. 3 Data Diversity across Sites  

In our previous work of PAYL [19], we have shown that byte distributions differ for 
each port and length. We also conjecture that it should be different for each host. For 
example, each web server contains different URLs, implements different functionality 



     

like web email or media uploads, and the population of service requests and responses 
sent to and from each site may differ, producing a diverse set of content profiles 
across all collaborating hosts and sites.  

One of the most difficult aspects of doing research in this area is the lack of real-
world datasets available to researchers that have full packet content for formal 
scientific study2. Privacy policies typically prevent sites from sharing their content 
data. However, we were able to use data from three sources, and show the distribution 
for each. The first one is an external commercial organization that wishes to remain 
anonymous, which we call EX. The others are the two web servers of the Computer 
Science Department of Columbia University, www.cs.columbia.edu and 
www1.cs.columbia.edu; we call these two datasets W and W1, respectively. The 
following plots show the profiles of the traffic content flow of each site. 

                                                            
2 Fortunately, HS ARPA is working to provide data to researchers through the PREDICT 

project; see www.predict.org.  

  

Fig. 3. Example byte distribution for 
payload length 249 of port 80 for the three 
sites EX, W, W1, in order from top to 
bottom  

Fig. 4. Example byte distribution for 
payload length of 1380 of port 80 for the 
three sites EX, W, W1 

 
The plots display the payload distributions for different packet payload lengths i.e. 

249 bytes and 1380 bytes, spanning the whole range of possible payload lengths in 
order to give a general view of the diversity of the data coming from the three sites. 
Each byte distribution corresponds to the first centroid that is built for the respective 
payload lengths. We consider the analysis of the byte distribution of the three sites for 
different lengths because PAYL constructs models for each possible packet payload 
length.  

We observe from the above plots that there is a visible difference in the byte 
distributions among the sites for the same length bin. This is confirmed by the values 
of Manhattan distances computed between the distributions, with results displayed in 
Table 1. 



 

Table 1. The Manhattan distance between the byte distributions of the profiles computed for 
the three sites, for each length bin.  

 249 bytes 940 bytes 1380 bytes 
MD(EX, W) 0.4841 0.6723 0.2533 
MD(EX,W1) 0.3710 0.8120 0.4962 
MD(W,W1) 0.3689 0.5972 0.6116 

 
The content traffic among the sites is quite different. For example, the EX dataset 

is more complex containing file uploads of different media types (pdf, jpg, ppt, etc. ) 
and webmail traffic; the W dataset contain less of this type of traffic while W1 is the 
simplest, containing almost no file uploads. Hence, each of the site-specific payload 
models is diverse, increasing the likelihood that a worm payload will be detected by at 
least one of these sites. To avoid detection, the worm exploit would have to be padded 
in such a way that its content description would appear to be normal concurrently for 
all of these sites.  

Mimicry attacks are possible if the attacker has access to the same information as 
the victim. In the case of application payloads, attackers (including worms) would not 
know the distribution of the normal flow to their intended victim. The attacker would 
need to sniff each site for a long period of time and analyze the traffic in the same 
fashion as the detector described herein, and would also then need to figure out how 
to pad their poison payload to mimic the normal model. This is a daunting task. The 
attacker would have to be clever indeed to guess the exact distribution (the frequency 
and variances) as well as the threshold logic to deliver attack data that would go 
unnoticed. Additionally, any attempt to do this via probing, crawling or other means 
is very likely to be detected.  

3. 4  Worm Detection Evaluation 

In this section, we provide experimental evidence of the effectiveness of PAYL to 
detect incoming worms, using the three different datasets mentioned above. In our 
previous RAID paper [19], we showed PAYL’s accuracy for the DARPA99 dataset, 
which contains a lot of artifacts that make the data too regular [8]. Here we report 
how PAYL performs over the three real-world datasets using known worms available 
for our research.  

First, we describe the experimental setting. Since all three datasets were captured 
from real traffic, there is no ground truth, and measuring accuracy was not 
immediately possible. We thus needed to create test sets with ground truth, and we 
applied Snort for this purpose.  

Each dataset was split into two distinct chronologically-ordered parts, one for 
training and the other for testing, following the 80%-20% rule. For each test dataset, 
we first created a clean set of packets free of any known worms still flowing on the 
Internet as background radiation. We then inserted the same set of worm traffic into 
the cleaned test set using tcpslice. Thus, we created ground truth in order to compute 
the accuracy and false positive rates. 

The worm set includes CodeRed, CodeRed II, WebDAV, and a worm that exploits 
the IIS Windows media service, the nsiislog.dll buffer overflow vulnerability (MS03-



     

022). These worm samples were collected from real traffic as they appeared in the 
wild, from both our own dataset and from a third-party. Because PAYL only 
considers the packet payload, the worm set is inserted at random places in the test 
data. The ROC plots in Figure 5 show the result of the detection rate versus false 
positive rate over varying threshold settings of the PAYL sensor.   

 
Fig. 5. ROC of PAYL detecting incoming worms, false positive rate restricted to less than 0.5% 

The detection rate and false positive are both based on the number of packets. The 
test set contains 40 worm packets although there are only 4 actual worms in our zoo. 
The plots show the results for each data set, where each graphed line is the detection 
rate of the sensor where all 4 worms were detected. (This means more than half of 
each the worm’s packets were detected as anomalous content.)  

From the plot we can see that although the three sites are quite different in payload 
distribution, PAYL can successfully detect all the worms at a very low false positive 
rate. To provide a concrete example about how many alerts are generated at such low 
false positive rate, we measure the average false alerts per hour for these three sites. 
For 0.1% false positive rate, the EX dataset has 5.8 alerts per hour, W1 has 6 alerts 
per hour and W has 8 alerts per hour. 

We manually checked the packets that were deemed false positives. Indeed, most 
of these are actually quite anomalous containing very odd abnormal payload. For 
example, in the EX dataset, there are weird file uploads, in one case a whole packet 
containing nothing but a repetition of a character with byte value E7 as part of a word 
file. Other packets included unusual HTTP Get requests, with the referrer field 
padded with many “Y” characters (via a product providing anonymization). 

We also tested the detection rate of the W32.Blaster worm (MS03-026) on TCP 
port 135 port using real RPC traffic inside Columbia’s CS department. Despite being 
much more regular compared to HTTP traffic, the worm packets in each case were 
easily detected with zero false positives. Although at first blush, 5-8 alerts per hour 
may seem too high, a key contribution of this paper is a method to correlate multiple 
alerts to extract from the stream of alerts true worm events.  



 

4 Worm Propagation Detection and Signature Generation by 
Correlation 

In the previous section, we described the results using PAYL to detect anomalous 
packet content. To try and mitigate the scenario where a worm successfully evades 
detection and infects a protected host, we extended the detection strategy to model 
both inbound and outbound traffic from a protected host, computing models of 
content flows for ingress and egress packets. The strategy thus implies that within a 
protected LAN, some initial host victimized by a worm attack will begin a 
propagation sending outbound anomalous packets. When this occurs for any host in 
the LAN, we wish to inoculate all other hosts by generating and distributing worm 
packet signatures and their distribution to other hosts for content filtering. 

We leverage the fact that self-propagating worms will start attacking other 
machines automatically by replicating itself, or at least the exploit portion of its 
content, shortly after a host is infected. (Polymorphic worms may randomly pad their 
content, but the exploit should remain intact.) For example, a machine gets infected 
by the Code Red II worm from some request received at port 80, and then this 
machine starts to send the same request to port 80 to other intended victims. This 
propagation pattern appears in every worm. So if we detect these anomalous egress 
packets to port i very similar to those anomalous ingress traffic to port i, there is a 
high probability that a worm that exploits the service at port i has started its 
propagation.   

Note that these are the very first packets of the propagation, unlike the other 
approaches which have to wait until the host has already shown substantial amounts 
of unusual scanning and probing behavior. Thus, the worm may be stopped at its very 
first propagation attempt from the first victim even if the worm attempts to be slow 
and stealthy to avoid detection by probe detectors.  

Careful treatment of port-forwarding protocols and services, such as P2P and NTP 
(Port 123) is required to apply this correlation strategy, otherwise normal port 
forwarding may be misinterpreted as worm propagations. Our work in this area 
involves two strategies, truncation of packets (focusing on control data) and modeling 
of the content of media [7]. This work is beyond the scope of this paper due to space 
limitations, and will be addressed in a future paper.  

4.1. Ingress and Egress Traffic Correlation 

When PAYL detects some incoming anomalous traffic to port i, it generates an alert 
and places the packet content on a buffer list of “suspects”. Any outbound traffic to 
port i that is deemed anomalous is compared to the buffer. The comparison is 
performed against the packet contents and a string similarity score is computed. If the 
score is higher than some threshold, we treat this as possible worm propagation and 
block or delay this outgoing traffic. This is different from the common quarantining 
or containment approaches which block all the traffic to or from some machine. 
PAYL will only block traffic whose content is deemed very suspicious, while all 
other traffic may proceed unabated maintaining critical services.  



     

There are many possible metrics which can apply to decide the similarity between 
two strings. The several approaches we have considered, tested and evaluated include: 

String equality (SE): this is the most intuitive approach. We decide that a 
propagation has started only if the egress payload is exactly the same as the ingress 
suspect packet. This metric is very strict and good at reducing false positives, but too 
sensitive to any tiny change in the packet payload. If the worm changes a single byte 
or just changes its packet fragmentation, the anomalous packet correlation will miss 
the propagation attempt. 

Longest common substring (LCS): the next metric we considered is the LCS 
approach. LCS is less exact than SE, but avoids the fragmentation problem and other 
small payload manipulations. The longer the LCS that is computed between two 
packets, the greater the confidence that the suspect anomalous ingress/egress packets 
are more similar. The main shortcoming of this approach is its computation overhead 
compared to string equality, although it can also be implemented in linear time [3]. 

Longest common subsequence (LCSeq): this is similar to LCS, but unlike an 
LCS, the longest common subsequence need not be contiguous. LCSeq has the 
advantage of being able to detect polymorphic worms, but it may introduce more false 
positives. 

For each pair of strings that are compared, we compute a similarity score, the 
higher the score, the more similar the strings are to each other. For SE, the score is 0 
or 1, where 1 means equality. For both LCS and LCSeq, we use the percentage of the 
lcs or lcseq length out of the total length of the candidate strings. Let’s say string s1 
has length L1, and string s2 has length L2, and their lcs/lcseq has length C. We 
compute the similarity score as 2*C/( L1+ L2). This normalizes the score in the range 
of [0…1], where 1 means the strings are exactly equal. We show how well each of 
these measures work in Section 4.3. 

Since we may have to check each outgoing packet (to port i) against possibly many 
suspect strings inbound to port i, we need to concern ourselves with the computational 
costs and storage required for such a strategy. On a real server machine, e.g., a web 
server, there are large numbers of incoming requests but very few, if any, outgoing 
requests to port 80 from the server (to other servers). So any outgoing request is 
already quite suspicious, and we should compare each of them against the suspects. If 
the host machine is used as both a server and a client simultaneously, then both 
incoming and outgoing requests may occur frequently. This is mitigated somewhat by 
the fact that we check only packets deemed anomalous, not every possible packet 
flowing to and from a machine. We apply the same modeling technique to the 
outgoing traffic and only compare the egress traffic we already labeled as anomalous.  

4.2  Automatic Worm Signature Generation 

There is another very important benefit that accrues from the ingress/egress packet 
content correlation and string similarity comparison: automatic worm signature 
generation. The computation of the similarity score produces the matching substring 
or subsequence which represents the common part of the ingress and egress malicious 
traffic. This common subsequence serves as a signature content-filter.  Ideally, a 
worm signature should match worms and only worms. Since the traffic being 



 

compared is already judged as anomalous, and has exhibited propagation behavior – 
quite different from normal behavior – and the similar malicious payload is being sent 
to the same service at other hosts, these common parts are very possibly core exploit 
strings and hence can represent the worm signature. By using LCSeq, we may capture 
even polymorphic worms since the core exploit usually remains the same within each 
worm instance. 

Thus, by correlating the ingress and egress malicious payload, we are able to detect 
the very initial worm propagation, and compute its signature immediately. Further, if 
we distribute these strings to collaborating sites, they too can leverage the added 
benefit of corroborating suspects they may have detected, and they may choose to 
employ content filters, preventing them from being exploited by a new, zero-day 
worm. We discuss this possibility further in Section 5. 

4.3 Evaluation 

In this section, we evaluate the performance of ingress/egress correlation and the 
quality of the automatically generated signatures. 

Since none of the machines were attacked by worms during our data collection 
time at the three sites, we launched real worms to un-patched Windows 2000 
machines in a controlled environment. For testing purposes, the packet traces of the 
worm propagation were merged into the three sites’ packet flows as if the worm 
infection actually happened at each site. Since PAYL only uses payload, the source 
and target IP addresses of the merged content are irrelevant.  

Without a complete collection of worms, and with limited capability to attack 
machines, we only tested Code Red and Code Red II out of the executable worms we 
collected. After launching these in our test environment and capturing the packet flow 
trace, we noticed interesting behavior: after infection, these two worms propagate 
with packets fragmented differently than the ones that initially infected the host. In 
particular, Code Red can separate “GET.” and “/default.ida?” and “NNN…N” into 
different packets to avoid detection amongst many signature-based IDSes. The 
following table shows the length sequences of different packet fragmentation for 
Code Red and Code Red II. 

 

Table 2. Different fragmentation for CR and CRII 

Code Red (total 4039 bytes) 
Incoming Outgoing 
1448, 1448, 1143 4, 13, 362, 91, 1460, 1460, 649 
 4, 375, 1460, 1460, 740 
 4, 13, 453, 1460, 1460, 649 
Code Red II (total 3818 bytes) 
Incoming Outgoing 
1448, 1448, 922 1460, 1460, 898 

 
To evaluate the accuracy of worm propagation detection, we appended the 

propagation trace at the very end of one full day’s network data from each of the three 



     

sites. When we collected the trace from our attack network, we not only captured the 
incoming port 80 requests, but also all the outgoing traffic directed to port 80. We 
checked each dataset manually, and found there is a small number of outgoing 
packets for the servers that produced the datasets W and W1, as we expected, and not 
a single one for the EX dataset. Hence, any egress packets to port 80 would be 
obviously anomalous without having to inspect their content. For this experiment, we 
captured all suspect incoming anomalous payloads in an unlimited sized buffer for 
comparison across all of the available data in our test sets.  

We also purposely lowered PAYL’s threshold setting (after calibration) in order to 
generate a very high number of suspects in order to test the accuracy of the string 
comparison and packet correlation strategies.  In other words, we increased the noise 
(increasing the number of false positives) in order to determine how well the 
correlation can still separate out the important signal in the traffic (the actual worm 
content).  

The result of this experiment is displayed in the following table for the different 
similarity metrics. The number in the parenthesis is the threshold used for the 
similarity score. For an outgoing packet, PAYL checks the suspect buffer and returns 
the highest similarity score. If it’s higher than the threshold, we judge there is a worm 
propagation. False alerts suggest that an alert was mistakenly generated for a normal 
outgoing packet. The reason why SE does not work here is obvious: worm 
fragmentation blinds the method from seeing the worm’s entire matching content. The 
other two metrics worked perfectly, detecting all the worm propagations with zero 
false alerts. 

Table 3. Results of correlation for different metrics 

 Detect propagate False alerts 
SE No No 
LCS(0.5) Yes  No 
LCSeq(0.5) Yes No 

 
To evaluate the false alerts more carefully, we decided to use some other traffic to 

simulate the outgoing traffic of the servers. For EX data, we used the outgoing port 80 
traffic of other clients in that enterprise as if it originated from the EX server itself. 
For the W1 and W datasets, we used the outgoing port 80 traffic from the CS 
department. Then we repeated the previous experiments to detect the worm 
propagation with the injected outgoing traffic on each server. The result remains the 
same - using the same thresholds as before, we can successfully detect all the worm 
propagations without any false alerts. 

In these experiments, we used an unlimited buffer for the incoming suspect 
payloads. The buffer size essentially stores packets for some period of time that is 
dependent upon the traffic rate, and the number of anomalous packet alerts that are 
generated from that traffic. That amount is indeterminate a priori, and is specific to 
both the environment being sniffed and the quality of the models computed by PAYL 
for that environment. Since CodeRed and CodeRed II launch their propagations 
immediately after infecting their victim hosts, a buffer holding only the most recent 5 
or 10 suspects is enough to detect their propagation. But for slow-propagating or 
stealthy worms which might start propagating after an arbitrarily long hibernation 



 

period, the question is how many suspects should we save in the suspect buffer? If the 
ingress anomalous payloads has been removed from the suspect buffer before such a 
worm starts propagating, PAYL can no longer detect it by correlation. Theoretically, 
the larger the buffer the better, but there is tradeoff in memory usage and computation 
time. But for those worms that may hibernate for a long period of time, cross-site 
collaboration and exchange of suspect packet payloads might provide a solution. We 
discuss this in the next section.  
As we mentioned earlier, the worm signature is a natural byproduct of the 
ingress/egress correlation. When we identified a possible worm propagation, the LCS 
or LCseq can be used as the worm signature. Figure 6 displays the actual content 
signatures computed for the CodeRed II propagations detected by PAYL in a style 
suitable for deployment in Snort. Note the signature contains some of the system calls 
used to infect a host, which is one of the reasons the false positive rate is so low for 
these detailed signatures. 

 
|d0|$@|0 ff|5|d0|$@|0|h|d0| @|0|j|1|j|0|U|ff| 
5|d8|$@|0 e8 19 0 0 0 c3 ff|%`0@|0 ff|%d0@|0  
ff|%h0@|0 ff|%p0@|0 ff|%t0@|0 ff|%x0@|0 ff|%| 
0@|fc fc fc fc fc fc fc fc fc fc fc fc fc fc  
fc fc fc fc fc 0 0 0 0 0 0 0 0 0 0 0 0 0|\EXP 
LORER.EXE|0 0 0|SOFTWARE\Microsoft\Windows NT 
\CurrentVersion\Winlogon|0 0 0|SFCDisable|0 0 
 9d ff ff ff|SYSTEM\CurrentControlSet\Service 
s\W3SVC\Parameters\Virtual Roots|0 0 0 0|/Scr 
ipts|0 0 0 0|/MSADC|0 0|/C|0 0|/D|0 0|c:\,,21 
7|0 0 0 0|d:\,,217|fc fc fc fc fc fc fc fc fc 
 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 
… 

Fig. 6. The initial portion of the PAYL generated signature for CodeRed II. 

We replicated the above experiments in order to test if any normal packet is 
blocked when we filter the real traffic against all the worm signatures generated. For 
our experiments we used the datasets from all the three sites, which have had the CRII 
attacks cleaned beforehand, and in all cases no normal packet was blocked.  

5  Anomalous Payload Collaboration among Sites 

Most current attack detection systems are constrained to a single ingress point within 
an enterprise without sharing any information with other sites. There are ongoing 
efforts that share suspicious source IP address [5, 9], but to our knowledge no such 
effort exists to share content information across sites in real time.  

Here we focus on evaluating the detection accuracy of using collaboration among 
sites, assuming a scaleable, privacy-preserving secured communication infrastructure 
is available. (We have implemented a prototype in Worminator [9].) 

Recall that, in Section 3.4, we described experiments measuring the diversity of the 
models computed at multiple sites. As we saw, the different sites tested have different 
normal payload models. This implies from a statistical perspective that they should 
also have different false positive alerts. Any “common or highly similar anomalous 
payloads” detected among two or more sites logically would be caused by a common 
worm exploit targeting many sites.  Cross-site or cross-domain sharing may thus 



     

reduce the false positive problem at each site, and may more accurately identify worm 
outbreaks in the earliest stages of an infection.  

 To test this idea, we used the traffic from the three sites. There are two goals we 
seek to achieve in this experiment. One is to test whether different sites can help 
confirm with each other that a worm is spreading and attacking the Internet. The other 
is to test whether false alerts can be reduced, or even eliminated at each site when 
content alerts are correlated.  

In this experiment, we used the following simple correlation rule: if two alerts from 
distinct sites are similar, the two alerts are considered true worm attacks; otherwise 
they are ignored. Each site’s content alerts act as confirmatory evidence of a new 
worm outbreak, even after two such initial alerts are generated. This is very strict, 
aiming for the optimal solution to the worm problem.  

This is a key observation. The optimal result we seek is that for any payload alerts 
generated from the same worm launched at two ore more sites, those payloads should 
be similar to each other, but not for normal data from either site that was a false 
positive. That is to say, if a site that generates a false positive alert about normal 
traffic it has seen, it will not produce suspect payloads that any other site will deem to 
be a worm propagation. Since we conjectured that each site’s content models are 
diverse and highly distinct, even the false positives each site may generate will not 
match the false positives of other sites; only worms (i.e., true positives) will be 
commonly matched as anomalous data among multiple sites.  

To make the experiment more convincing, we no longer test the same worm traffic 
against each site as in the previous section, since the sensor will obviously generate 
the exact same payload alert at all the sites. Instead, we use multiple variants of the 
same worm CodeRed and CodeRed II to test, which were extracted from real traffic 
and the launched worms. To make the evaluation strict, we tested different packet 
payloads for the same worm, and all the variant packet fragments it generates. We 
purposely lowered the PAYL threshold to generate many more false positives from 
each site than it otherwise would produce.  

As in the case described above where we correlated ingress/egress packets to a 
host, the cross-site correlation uses the same metrics (SE, LCS and LCSeq) to judge 
whether two payload alerts are “similar”.  However, another problem that we need to 
consider when we exchange information between sites is privacy. It may be the case 
that a site is unwilling to allow packet content to be revealed to some external 
collaborating site. A false positive may reveal true content.  

A packet payload could be presented by its 1-gram frequency distribution (see 
Figure 2). This representation already aggregates the actual content byte values in a 
form making it nearly impossible (but not totally impossible) to reconstruct the actual 
payload. (Since byte value distributions do not contain sequential information, the 
actual content is hard to recover. 2-gram distributions simplify the problem making it 
more likely to recover the content since adjacent byte values are represented. 3-grams 
nearly make the problem trivial to recover the actual content in many cases.)  

However, we note that the 1-gram frequency distribution reordered into the rank-
ordered frequency distribution produces a distribution that appears quite similar to an 
the exponential decreasing Zipf-like distribution. The rank-ordered distribution sorts 
the 1-gram distribution from the most frequent byte value to the least frequent. The 
rank ordering of the resultant distinct byte values is a string that we call the “Z-string” 



 

(as discussed in Section 3.1). One cannot recover the actual content from the Z-String. 
Rather, only an aggregated representation of the byte value frequencies is revealed, 
without the actual frequency information. This representation may convey sufficient 
information to correlate suspect payloads, without revealing the actual payload itself 
in almost all cases (except for the most trivial of payloads). Hence, false positive 
content alerts would not reveal true content, and privacy policies would be maintained 
among sites.  

In this cross-domain correlation experiment we propose two more metrics which 
don’t require exchanging raw payloads, but instead only the 1-gram distributions, and 
the privacy-preserving Z-string representation of the payload: 

Manhattan distance (MD): Manhattan distance requires exchange of the byte 
distribution of the packet, which has 256 float numbers. Two distributions are similar, 
and hence two payloads are similar, if they have a small Manhattan distance.  The 
maximum possible distance is 2. So we define the similarity score as (2-distance)/2, to 
normalize the score range to the same range of the other metrics described above. 

LCS of Z-string (Zstr): While maintaining maximal privacy preservation, we 
perform the LCS on the Z-string of two alerts. The similarity score is the same as the 
one for LCS, but here the score evaluates the similarity of two Z-strings, not the raw 
payload strings. 

Figure 7 presents the results achieved by sharing PAYL alerts among the three 
sites using CodeRed, CodeRed II and their variant packet fragments. The results are 
shown in terms of the similarity scores computed by each of the metrics. Each plot is 
composed of two different representations: one for false alerts (histogram) and the 
other for worm alerts (dots on the x-axis). The bars in the plots are histograms for the 
similarity scores computed for false PAYL alerts. The x-axis shows the similarity 
score, defined within the range [0...1], and the y-axis is the number of pairs of alerts 
within the same score range. The similarity scores for the worm alerts are shown 
separately as dots on the x-axis. The worm alerts include those for CodeRed, 
CodeRed II and their variant fragments. Note that all of the scores calculated between 
worm alerts are much higher than those of the “false” PAYL alerts and thus they 
would be correctly detected as true worms among collaborating sites. The alerts that 
scored too low would not have sufficient corroboration to deem them as true worms.  

  



Fig. 7. Similarity scores of Zstr and LCSeq metrics for collaboration. 

The above two plots show the similarity scores using Zstr and LCSeq metrics. LCS 
produced a similar result to LCSeq. String equality and Manhattan distance metrics 
did not perform well in distinguishing true alerts and false ones, so their plots are not 
shown here. The other two metrics presented in figure 7 give particularly good results. 
The worms and their variant packet fragments have much higher similarity scores 
than all the other alerts generated at each distinct site.  This provides some evidence 
that this approach may work very well in practice and provide reliable information 
that a new zero-day attack is ongoing at different sites. Note too that each site can 
contribute to false positive reduction since the scores of the suspects are relatively low 
in comparison to the true worms. Furthermore, the Zstr metric shows the best 
separation here, and with the added advantage of preserving the privacy of the 
exchanged content.   

There are two interesting observations we made from this data. The red circle in 
the LCSeq plot represents the similarity score when exchanging the alerts among the 
sites that PAYL generated for CodeRed and CodeRed II. LCSeq is the only metric 
that gave a relatively higher score that is worth noticing, while all the others provide 
less compelling scores. When we looked back at the tcpdump of CodeRed and 
CodeRed II, both of them contained the string:                

“GET./default.ida?........u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%..
...” 

while CodeRed has a string of repeated “N”, and CodeRed II has string of repeated 
“X” padding their content. Since subsequences do not need to be adjacent in the 
LCSsq metric, LCSeq ignored the repetitions of the unmatched “N” and X substrings 
and successfully picked out the other common substrings. LCS also performed 
higher-than-average score here, but not as good as LCSeq. This example suggests that 
polymorphic worms attempting to mask themselves by changing their padding may be 
detectable by cross-site collaboration under the LCSeq metric. 

Another observation is that the LCSeq and LCS results display several packet 
content alerts with high similarity scores. These were false alerts generated by the 
correlation among the sites. The scores were measured at about 0.4 to 0.5. Although 
they are still much smaller than the worm scores, they are already outliers since they 
exceeded the score threshold used in this experiment. We inspected the content of 
these packets, and discovered that they included long padded strings attempting to 
hide the HTTP headers. Some proxies try to hide the query identity by replacing some 
headers with meaningless characters – in our case, consisting of a string of “Y”s. 
Such payloads were correlated as true alerts while using LCSeq/LCS as metrics, 
although they are not worms. However, these anomalies did not appear when we used 
the Zstr metric, since the long string of “Y’s” used in padding the HTTP header only 
influences one position in the Z-string, but has no impact on the remainder of the Z-
string. 

These results suggest that cross-sites collaboration can greatly help identify the 
early appearance of new zero-day worms while reducing the false positive rates of the 
constituent PAYL anomaly detectors. The similarity score between worms and their 
variants are much higher than those between true false positives (normal data 
incorrectly deemed anomalies), and can be readily separated with high accuracy.  



 

When several sites on the Internet detect similar anomalous payloads directed at 
them, they can confirm and validate with each other with high confidence that an 
attack is underway. As we mentioned earlier, this strategy can also solve the limited 
buffer size problem described in Section 4.3.  If we only consider one single host, a 
stealthy worm can hibernate for a long period of time until a record of its appearance 
as an anomaly is no longer stored in the buffer of suspect packets. However, in the 
context of collaborating sites, the suspect anomaly can be corroborated by some other 
site that may also have a record of it in their buffer, as a remote site may have a larger 
buffer or may have received the worm at an earlier date. The distributed sites 
essentially serve as a remote long-term store of information, extending the local 
buffer memory available on the host.  Furthermore, this strategy concurrently 
generates content filtering signatures. Any two sites that correlate and validate 
suspects as being true worms both have available the actual packet content from 
which to generate a signature, even if only Z-strings are exchanged between those 
sites.   

6 Conclusion 

In this paper, we provided experimental evidence that payload anomaly detection and 
content alert correlation, either on the host or across hosts and sites, holds promise for 
the early detection of zero-day worm outbreaks. 

It is important to note that the range of worms tested and reported in the paper is 
limited in number and in scope. We hope that others with substantially larger zoos 
might make them available for testing, or to repeat the experiments reported herein to 
validate the results. Although we used real packet traces from three sources, a larger 
scale study of the methods described in this paper is necessary to understand whether 
the methods scale as we conjecture, and whether sites’ content flows provide the 
necessary diversity to more readily detect common attack exploits that each may see 
during a worm outbreak. 

PAYL can accurately detect new worms without signatures using machine learned 
models of normal network content traffic. Correlating content alerts generated by 
PAYL reduces false alarms, and generates detailed content signatures that may be 
used for filtering worm attacks at multiple sites. We believe that, over the next few 
years, worm writers will have substantially new and effective defenses to overcome, 
and we wish them nothing but failure and frustration in attempting to thwart these 
new generation of defensive systems. We further posit that the worm problem will 
ultimately be solved by defensive “coalitions”, making the Internet and network 
systems in general safe from at least this class of cyber attacks for the foreseeable 
future.  
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