Discovering Outlier Filtering Rules from Unlabeled Data

—Combining a Supervised Learner with an Unsupervised Learner—

Kenji Yamanishi
NEC Corporation
4-1-1,Miyazaki,Miyamae,
Kawasaki,Kanagawa 216-8555,JAPAN

k-yamanishi@cw.jp.nec.com

ABSTRACT

This paper is concerned with the problem of detecting out-
liers from unlabeled data. In prior work we have developed
SmartSifter, which is an on-line outlier detection algorithm
based on unsupervised learning from data. On the basis of
SmartSifter this paper yields a new framework for outlier
filtering using both supervised and unsupervised learning
techniques iteratively in order to make the detection pro-
cess more effective and more understandable. The outline
of the framework is as follows: In the first round, for an
initial dataset, we run SmartSifter to give each data a score,
with a high score indicating a high possibility of being an
outlier. Next, giving positive labels to a number of higher
scored data and negative labels to a number of lower scored
data, we create labeled examples. Then we construct an
outlier filtering rule by supervised learning from them. Here
the rule is generated based on the principle of minimizing
extended stochastic complexity. In the second round, for a
new dataset, we filter the data using the constructed rule,
then among the filtered data, we run SmartSifter again to
evaluate the data in order to update the filtering rule. Ap-
plying of our framework to the network intrusion detection,
we demonstrate that 1) it can significantly improve the ac-
curacy of SmartSifter, and 2) outlier filtering rules can help
the user to discover a general pattern of an outlier group.

1. INTRODUCTION
1.1 Contribution of This Paper

This paper is concerned with the outlier/anomaly detec-
tion problem. This is closely related to fraud detection, net-
work intrusion detection, etc., since criminal or suspicious
activities may often induce outliers. It is also related to
unexpected pattern discovery or rare event discovery.

In prior work [21] we have developed SmartSifter, which
is an on-line outlier detection algorithm based on unsuper-
vised learning from data. It takes a data sequence as in-
put in an on-line way and gives each datum a score, with a
high score indicating a high possibility of being an outlier.
SmartSifter uses a Gaussian mixture model as a statistical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright ACM ...$5.00.

Jun-ichi Takeuchi
NEC Corporation
4-1-1,Miyazaki,Miyamae,
Kawasaki,Kanagawa 216-8555,JAPAN

tak@ap.jp.nec.com

representation of normal behaviors. The key idea of Smart-
Sifter is to learn the model with on-line discounting learn-
ing algorithms and to calculate a score for a datum on the
basis of the change of the model before and after learning
from it. The novel features of SmartSifter are: a) a score
has a clear statistical/information-theoretic meaning, b) it
is adaptive to changes of normal behaviors of new patterns,
¢) it is computationally inexpensive, d) it attains high de-
tection accuracy. In fact, it was demonstrated using KDD
Cup 1999 [6] that network intrusion data were detected with
high accuracy among the data that SmartSifter gave higher
scores. The drawback of SmartSifter is, however, that it
cannot explain why the identified outliers are exceptional.

The contribution of this paper is to provide a new frame-
work for detecting and explaining outliers by combining Smart-
Sifter with a supervised learning technique. Based on the
scores that SmartSifter outputs, we create labeled data by
giving positive labels to higher scored data and negative la-
bels to lower scored data. By supervised learning from both
the positive and negative data, we build an outlier filter-
ing rule that discriminates positive data from negative data.
This filtering rule is used as a preprocessing of SmartSifter
for a new dataset. In this framework individual outliers are
identified in the unsupervised learning process, while a gen-
eral pattern of the identified outliers is discovered in the
supervised learning process.

The purpose of building this framework is two-folds: 1) To
improve the power of SmartSifter by combining supervised
learning with an unsupervised one. 2) To clearly explain
the meaning of the outliers through the rule acquired in the
supervised learning process. This leads to outlier pattern
discovery. We require that 1) and 2) be realized at once.

In the supervised learning process, we use a stochastic
decision list as a representation of a classification rule and
employ a learning algorithm DL-ESC(DL-SC). The key idea
of DL-ESC is to select rules on the basis of the principle of
minimizing extended stochastic complexity (ESC [20]) (or
stochastic complexity (SC [14]), see Section 4). It is theoret-
ically [20] and empirically [11] demonstrated in the scenario
of information theory or statistical decision theory that this
principle leads to a strategy of learning classification rules.
A version of DL-ESC(DL-SC) which can handle discrete at-
tributes only was introduced in the scenario of text classi-
fication [11]. This paper introduces a complete form which
can handle both continuous and discrete attributes.

Applying our framework to the network intrusion detec-
tion problem, we demonstrate that 1) this framework can
significantly increase the accuracy of SmartSifter, and 2)

it can help the user to discover a pattern of some specific
groups of intrusions.

1.2 Related Work

In most of existing techniques for outlier/fraud detection,
one first learns the mechanism of generating data and then
evaluates a given datum relative to the learned mechanism.
We may classify the approaches of outlier detection into
two types: the supervised-learning based approach and the
unsupervised-learning based one. The former requires that
in the learning process, any example be labeled with re-
gard to whether it is exceptional/fraudulent or not (see, e.g.,
[2],[4],[5],[10],[17],[12]), while the latter does not. The latter
is more important in practice since labeled examples are not
necessarily available in real situations.

Unsupervised-learning based methods have been explored
on the basis of the theory of statistical hypothesis test-
ing (see e.g., [1]). Most of them are univariate in nature
and suffers from computational difficulty in dealing with
multi-variate data. Burge and Shawe-Taylor [3] developed
an algorithm for on-line unsupervised outlier detection. It
utilizes current user profile and user profile history to calcu-
late a score for each datum in an on-line process (see [13] [9]
for similar profiling methods), similarly with SmartSifter. It
cannot, however, handle categorical variables while Smart-
Sifter can. It was also shown in [18] that for the network
intrusion detection problem using the dataset KDD Cup
1999 SmartSifter outperformed Burge and Shawe-Taylors’
algorithm both in terms of detection accuracy and compu-
tational efficiency.

Knorr and Ng [7] developed novel unsupervised algorithms
for finding distance-basedoutliers, which are defined in terms
of a geometric distance without any statistical meaning. We
consider statistical outliers, which are defined in terms of
deviation from an underlying statistical model.

It is important to give a clear explanation to the identi-
fied outliers, because it can help the user to understand why
they are interesting and how valid they are. There are, how-
ever, only a few work on identifying and explaining outliers
at once. Knorr and Ng [8] developed algorithms for finding
intensional knowledge of distance-based outliers. This paper
provides a different approach from theirs: we explain sta-
tistical outliers rather than distance-based ones. Although
the previous work [8] can only indicate that each identified
outlier is deviated from the pattern that most of the other
data have, our approach helps the user to discover a pattern
that outliers in a specific group may commonly have.

To the best of our knowledge, in the area of outlier/fraud
detection, there is no previous work which combines a super-
vised learning technique with an unsupervised one, as with
our framework.

2. MAIN FRAMEWORK

Below we describe the framework for outlier filtering.

We prepare a filtering rule R that determines any datum
to be “positive” or “negative” where a positive datum is
thought to be an outlier with high probability. The filtering
rule is initially set to be a default rule “negative.” For a
given dataset S, we filter S through the rule to extract the
dataset P that are determined to be positive by the rule.

Then we delete such data from S to get a filtered dataset
S — P. We then run SmartSifter for S — P. It calculates
a score for each datum in S — P and outputs a dataset Q

consisting of data with higher scores. Based on the scores,
we give positive labels to the top a% data of highest scores
in S— P and let a set of the positive labeled examples be P’.
On the other hand, we make a random sampling of 3% data
in S — P from the pool of remaining data S — P — P’ and
give negative labels to them. We let a set of the negative
labeled examples be N’. Here a and 8 are pre-determined
positive numbers.

Next we run a supervised learning algorithm DI-ESC/DT.-
SC, which takes P’ and N’ and outputs a classifier L that

discriminates the positive examples from negative ones. Among

local rules that appeared in the acquired classifier L, we se-
lect a number of rules that would be useful for outlier filter-
ing. Criteria for selecting rules are here: 1) their accuracy
of identifying positive examples is as high as possible, 2) the
number of examples covered by the rule is not too large,
and 3) the rule itself is intuitively meaningful. We add the
selected rules to R to update the filtering rule. This process
is repeated. The flow is described in Figure 1.

4,‘ Filtering Rule R

|s—p

SmartSifter
Seoring by
Unsupervised Learning

s

— g

lS —P with scores

Labeled Data Generation
Sampling

PN]

Rule Generatioin DL-ESC
Supervised Learning

Figure 1: The flow of outlier detection system

The novel features of this framework are as follows:

1) The filtering rule helps the user to understand outliers.
The filtering rule uses “if-then—else” form to represent a
general feature of a specific group of outliers. Hence it is
useful for understanding and explaining why the identified
outliers are exceptional and how interesting they are. Note
that the attributes in data used for filtering are not neces-
sarily the same as those for SmartSifter. Hence the filtering
rule is able to characterize outliers in terms of attributes
that are not used for SmartSifter.

2) Combining a filtering rule with SmartSifter improves the
power of SmartSifter. It is expected that using a filtering
rule as a preprocessing for SmartSifter greatly improves its
efficiency. This is actually demonstrated in the network in-
trusion detection scenario in Section 5. Further, our frame-
work is expected to be effective in the discovery of a new
pattern of outliers. Omnce the data is filtered by the rule
and SmartSifter is applied to the remaining data in the next
stage, we are able to discover patterns of outliers that didn’t
appear in the earlier stages.

3. OUTLIER DETECTOR: SmartSifter

We briefly overview SmartSifter according to [21]. The
approach of SmartSifter is given as follows:
I) SmartSifter uses a probabilistic model as a representa-

tion of an underlying mechanism of data-generation. The
model takes the following hierarchical structure: Let (x,y)
denote a datum where & denotes a vector of categorical vari-
ables and y denotes a vector of continuous variables. We
write the joint distribution of (x,y) as p(x,y) = p(x)p(y|x).
We represent p(x) by using a histogram density with a finite
number of disjoint cells, and for each cell, for all xs that
fall into it, we represent p(y|x) by using a Gaussian mizture
model. Hence we prepare as many Gaussian mixture models
as cells in the histogram density.

II) Every time a datum is input, SmartSifter employs an
on-line discounting learning algorithm to update the model.
Consider the situation where a sequence of data is given:
(x1,¥1),(x2,y2) -+ in an on-line process. Given the tth
input datum (x¢,y:), identify the cell that x; falls into
and update the histogram density using the SDLE (Sequen-
tially Discounting Laplace Estimation) algorithm to obtain
p(t)(:n). Then, for that cell, update the Gaussian mixture
model using the SDEM (Sequentially Discounting Ezpecta-
tion and Mazimizing) algorithm to obtain pt) (y|x). For
other cells, set p(*) (ylx) = p(t_l)(y|x). The most impor-
tant feature of SDLE and SDEM algorithms is that they
gradually discount the effect of past examples in the on-line
process. This makes the outlier detector adaptive to non-
stationary sources, of which the mechanism for generating
data may change over time. The SDLE algorithm was devel-
oped in [21] as an on-line discounting variant of the Laplace
law based estimation algorithm, while the SDEM algorithm
was developed in [21] as an on-line discounting variant of
the incremental EM algorithm (see [15]).

IIT) SmartSifter gives a score to each datum on the ba-
sis of the learned model. Here we calculate the Hellinger
score defined as follows: Let p{ (x,y) be the probability
distribution learned after obtaining the tth datum. Then
the Hellinger score at the {th datum is given by

Sr(xeyi) = Z/ <\/pm % y) - \/p(t—1>(x,y)>2dy.

Intuitively, this score measures how large the distribution
p*) has moved from p*~") after learning from (x¢,y,). Thus
a highly scored data indicates a high possibility that the
datum is an outlier in the sense that it greatly contributes
to changing a statistical model.

The computation time for SmartSifter is O(d*m) where d
is the data dimension and m is sample size.

For a given dataset, we may run SmartSifter to sequen-
tially score the data then sort them according to their scores.
Then the sorted dataset is a final output of SmartSifter.

4. RULE GENERATOR: DL-ESC/DL-SC

As for the rule generation, we use a stochastic decision list
as a representation of a classifier and employ the principle
of minimizing extended stochastic complexity or stochastic
complexity as a criterion for rule selection.

Let = be a multi-dimensional space called a domain and
let M = {0,1} where “1” means a positive datum while “0”
means a negative one.

We denote a random variable over = as £ and that over
M as p. Each component of £ is called an attribute. For a
given positive integer k, let 7 be a set of k-terms on = where
a k-term is a conjunction of at most k attribute conditions,
e.g., (&1 > 40) and (& < 50) and (&5 > 60) is a 3-term and

¢; denotes the j-th attribute.

A stochastic decision list L is a conditional probability dis-
tribution p(u|€) taking a form of L = (t1,v1,p1), -+, (ts, Vs, Ps)-
Here for any given input &, L assigns p = v; with probability
p: where the 1 is the least index that & makes ¢; true. Hence
it has the following meaning;:

If £ makes t; true, then p = v; with probability p;
else if £ makes fp true, then pu = vy with probability p2

else p = ves with probability ps.

Stochastic decision lists have been developed in a scenario
of learning stochastic rules [19] as a probabilistic variant of
Rivest’s decision lists [16]. We employ an algorithm DL-
ESC [11] for learning a stochastic decision list from given
positive and negative examples. DIL-ESC takes as input a
data sequence of pairs of € and p: (&;, 1) (&,,, tm) and
outputs a stochastic decision list. The key of DL-ESC is
to employ the principle of minimizing extended stochastic
complezity(ESC) [20] in rule selection. Here the ESC is a
kind of extension of Rissanen’s stochastic complexity (SC
[14]), which is the measure of information quantity included
in a data sequence. SC measures the information in terms
of the logarithmic loss, equivalently the codelength required
for encoding the sequence, while ESC measures it in terms of
a general loss function, specifically the 0-1 loss in this case.
We may also use an algorithm DIL-SC, which is obtained
by just replacing ESC with SC in DL-ESC. The details of
DL-ESC/DL-SC are given in Appendix.

The computation time for DL.-ESC/DL-SC is O(d*m) where
d 1s the data dimension, k is a positive integer, usually set
less than 4, and m is sample size.

5. EXPERIMENTAL RESULTS

5.1 Dataset

We used the dataset KDD Cup 1999 [6] prepared for net-
work intrusion detection. The purpose of our experiment
was to detect as many intrusions as possible without mak-
ing use of the labels concerning intrusions. Although in
KDD Cup 1999 the data labels were used in training for
supervised intrusion detection, we used them only for the
evaluation of algorithms.

Each datum in KDD Cup 1999 is specified by 41 attributes
(34 continuous and 7 categorical) and a label describing at-
tack type (22 kinds: normal, back, buffer_overflow, ftp_write,
warezmaster, etc.) where all labels except “normal” indi-
cate an attack. In the original attributes, there are many
attributes that are obtained by combining several attributes.
We deleted such attributes from the original 41 attributes to
get 13 attributes: duration, src_byte, dst_byte, srv_error,
wrong frag, numofurgent, numoffail, service, protocol,
land root login, guest, flag. We used the 13 attributes
for DL-ESC. Further we selected four attributes: service,
duration, src_bytes, dst_bytes for the use of SmartSifter.
This is because these four were thought of as the most basic
attributes. We were interested in seeing how well Smart-
Sifter worked using these attributes only. We were also
interested in generating rules using more attributes than
SmartSifter. Only ‘service’ is categorical. Since the contin-
uous attribute values were concentrated around 0, we trans-
formed each value into a value far from 0, by y = log(z+0.1)

where the base of logarithm 1is e.

The original dataset contains 4,898,431 data, including
3,925,651 attacks (80.1%). This rate of attacks is too large
for statistical outlier detection. Therefore, we removed the
data whose attribute logged in is negative. The resultant
dataset, which we named SF, consists of 976,157 data, in-
cluding 3,377 attacks (0.35%). Attacks that successfully
logged_in are called intrusions.

We further produced from SF five datasets S0,51,52,53,54
by random sampling, where each of them consists of about
10% of SF. Table 1 shows the data size, the number of in-
trusions and the details of intrusions for each dataset.

5.2 lllustration by an Example

Let us illustrate how our framework works. First S1 was
fed to SmartSifter where the first 8,000 data in S1 were not
scored but used only for training because the model would
not be well-trained in the early stages. After processing all
of the data in S1, we sorted them according to their scores
that SmartSifter gave.

We create labeled examples by giving positive labels to
the top 1% data of highest scores and negative labels to the
3% data in S1 randomly sampled from the remaining data.
(Note that “positive” does not necessarily mean “intrusion,”
but highly scored data.) Then we input them to DL-ESC,
which output the following decision list:

If duration > 0.74 & protocol =tcp
then positive with prob.0.84 (539/639)
elsif src_byte < 10.91 & root login =user
then positive with prob.0.93 (2572/2774)
else negative with prob. 0.97(151/155)

Here (539/639) in the first rule means that the number
of the data satisfying the condition “duration > 0.742 &
protocol =tcp” is 639 while 539 of them were positive. We
ignored the first rule because its accuracy (539/639) is not
high enough. We picked up only the last rule in the list and
use it as a filtering rule:

If neither ¢‘duration > 0.742 & protocol =tcp’’

nor ‘‘srcbyte < 10.907 & root login =user ’’ then positive.

Next we input a new dataset S2 into the rule, and let P be
the set of data determined to be positive by the rule. The
number of data included in P was 311 and 199 of them were
intrusions of type back (63.98% accuracy, 63.17% coverage).
No other type of intrusions was included. (Note: This in-
formation about intrusions were not used for learning but
only for the evaluation of algorithms.) This implies that the
filtering rule successfully generalized a pattern of back and
led to discovery of a specific group of outliers, which turned
out to be a group of back.

For the filtered dataset S2—P, we run SmartSifter again.
Then we observed that 25 intrusions were included in the
top 689(=1000—311) dataset Q of highest scores. Hence
we could detect 224(=199+25) intrusions in the 1000 data
included in S2. On the other hand, when S2 was fed to
SmartSifter only, 110 intrusions were included in the top
1000 data of highest scores. This implies that the coverage of
intrusion detection in 1000 data was significantly increased
from 34.92% (=110/315) to 71.11%(=224/315) by filtering
with the rule plus SmartSifter.

Similarly, we applied DL-ESC again to S2-P to get a rule:
If duration > 1.131 & protocol=tcp then positive.

A new dataset S3 was filtered by the preceding rule, then
the filtered dataset was again filtered by the above rule. We
observed that 35 intrusions were included in the extracted
positive dataset and 70% of them were of type warezclient.
This led to discovery of a specific group of outliers, which
includes a group of warezclient.

5.3 Evaluation

We investigated how well our framework performs in com-
parison with SmartSifter. Throughout this section, we de-
note our framework as R&S (=Rule and SmartSifter) and
SmartSifter as SS. For example, for the case where SO was
used as a training set to construct a filtering rule, each of S1,
S2, S3, and S4 was used for test, i.e., it was first filtered by
the rule and SmartSifter was applied to the filtered dataset.

Table 2 shows the coverages achieved by SS and R&S.
Here the coverage of SS is the ratio of the number of intru-
sions in the top n data (n =1,000, 2,000, 3,000) of highest
scores produced by SS, to the total number of intrusions in
the dataset. The coverage of R&S is the ratio of the num-
ber of intrusions in the output of R&S, to that. The output
here is the set which consists of P (flitered data by rules)
and Q (highest scored data by SS) in Figure 1. For example,
consider the case in which S1 was input as test data and the
number of outputs was 1,000 (see the column whose first
line is SO in Table 2). Let the number of intrusions included
in the positive dataset extracted by the filtering rule be N;.
Let the number of intrusions included in the top 1,000 — |P|
data of highest scores in the filtered dataset S1—P be No.
Then the number of intrusions detected by R&S in the 1,000
of S1 is calculated as N1 + N». This calculation was done
for the cases in which the number of outputs were 1,000,
2,000, and 3,000. Each value in the column whose first line
is SO is calculated as the average of coverages over all test
datasets: S1,S2,...,S4. The second column shows the cover-
age of SS averaged over all training sets: S0,..,54, while the
third column shows those of R&S.

We see from Table 2 that when the size of evaluated data
is less than 2000 data (=2%), R&S could detect significantly
more intrusions than SS. Remarkably, R&S attained 68.5%
coverage in 1000 data on average while SS attained 43.1%
for the same sample size.

Figure 2 shows how the averaged coverage grows as the
evaluated sample size increases. The horizontal axis shows
the sample rate—the ratio of the size of evaluated sample to
the total data size, while the vertical axis shows the cov-
erage. We observe that the coverage of R&S grows more
rapidly than that of SS for 0-1% sample rates. When the
sample rate is larger than 3%, they are not different so much.
We are able to say that the outlier filtering contributes to
improving the accuracy of SS for low sample rates.

Figure 3 shows the graph of the coverages of R&S and
SS for small sample rates. Here the coverages of R&S are
plotted for all of different training sets. The coverages were
calculated only for positive datasets extracted by the rule.
For example, R&S(S0) indicates the coverage of R&S when
SO was used as a training dataset to construct a filtering
rule. All of the coverages of R&S are concentrated around
64%—-70%, which is 20%-55% higher than those of SS.

total # of ratio of details
data size | intrusions | intrusions(%) | # back | # warezclient | # others
SO 97560 337 0.35 202 120 15
S1 97216 346 0.36 241 93 12
S2 98013 315 0.32 206 92 17
S3 97890 335 0.34 216 100 19
S4 98189 342 0.35 219 106 17
Table 1: Data Sets
training dataset
| SS(%) | R&S (%) 5
evaluated sample size | (average) | (average) S0(%) | S1(%) | S2(%) | S3(%) | S4(%)
in 1000 (1%) 43.1 68.5 70.8 69.1 64.3 69.4 68.9
in 2000 (2%) 70.5 71.8 73.1 73.0 69.5 71.6 71.6
in 3000 (3%) 75.2 74.3 75.9 74.6 71.6 74.7 74.5

Table 2: Coverage Comparison: SS vs R&S

100 :
by R&S —+—
by 8§ -------
80 | E
=
& 60 ,
(o)
j=2)
[
5] .
3 v
8 40+t E
20 | 1
O v L L L L L
0 05 1 15 2 25 3
Extracted Data (%)
Figure 2: SS vs R&S, Averaged Coverage
100 ‘ :
by R&S(S0) +
by R&S(S1) x
by R&S(S2) x
by R&S(S3) o
80 | byRESSY + 1
by 8§ -
. . x
— o% x s - * x
X 60 = . * 1
g 0%
(4]
(=]
g
[
3
8 40t E
20 | 1
O ‘\ L L L L
0 02 0.4 06 0.8 1

Figure 3:

Extracted Data (%)

SS vs R&S, Different Training Sets

6. CONCLUDING REMARKS

We have proposed a new framework for outlier detection
by combining an unsupervised outlier detector: SmartSifter
with a supervised learning algorithm: DL-ESC. An outlier
filtering rule is constructed with supervised learning by gen-
erating labeled data on the basis of the scores that Smart-
Sifter calculates for unlabeled data. By using the rule as
a preprocessing of SmartSifter, we are able to significantly
improve the power of SmartSifter. Furthermore it helps the
user to discover a general pattern that a specific group of
outlier may have. We demonstrated through the network
intrusion detection that our framework was effective both in
identification and explanation of outliers.

7. REFERENCES

[1] V. Barnett and T. Lewis, Qutliers in Statistical Data, John
Wiley & Sons, 1994.

[2] F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedeschi, A

classification-based methodology for planning audit

strategies in fraud detection, in Proc. of KDD-99,

pp:175-184, 1999.

P. Burge and J. Shawe-Taylor, Detecting cellular fraud

using adaptive prototypes, in Proc. of AI Approaches to

Fraud Detection and Risk Management, pp:9—13, 1997.

T. Fawcett and F. Provost, Adaptive fraud detection, Data

Mining and Knowledge Discovery, vol.1, Kluwer Academic

Publishers, Boston CA, pp:291-316 (1997).

] http://www.hnc.com

6] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

] E. M. Knorr and R. T. Ng, Algorithms for mining

distance-based outliers in large datasets, in Proc. of the

24th VLDB Conference,pp:392—-403, 1998.

E. M. Knorr and R. T. Ng, Finding intensional knowledge

of distance-based outliers, in Proc. of the 25th VLDB

Conference, pp:211-222, 1999.

T. Lane and C.E. Brodley, Temporal sequence learning and

data reduction for anomaly detection, ACM Trans. on

Information and System Security, 2,pp:295-331 (1999).

W. Lee, S. J. Stolfo, and K. W. Mok, Mining audit data to

build intrusion detection models, in Proc. of KDD-98,

1998.

H. Li and K. Yamanishi, Text classification using

ESC-based stochastic decision lists, in Proc. of CIKM’99,

pp:122-130 (1999).

Y. Moreau and J. Vandewalle, Detection of mobile phone

fraud using supervised neural networks: a first prototype,

Available via: ftp://ftp.esat.kuleuven.ac.jp/pub/SISTA/

moreau/reports/icann97_TR97-44.ps.

[13] U. Murad and G. Pinkas, Unsupervised profiling for

(10]

(11]

(12]

identifying superimposed fraud, in Proc. of PKDD’99,
pp:251-261 (1999).

[14] J. Rissanen, Fisher information and stochastic complexity,
IEEE Trans. Inf. Theory, IT-42, 1, pp. 40-47 (1996).

[15] R. M. Neal and G. E. Hinton, A view of the EM algorithm
that justifies incremental, sparse, and other variants,
ftp:/ /ftp.cs.toronto.edu/pub/radford/www/publications.html
1993.

[16] R.L. Rivest, Learning decision lists, Machine Learning, 2,
pp:229-246, (1987).

[17] S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas,
Discovery of fraud rules for telecommunications-challenges
and solutions, in Proc. of KDD-99, pp:409-413, 1999.

[18] J.Takeuchi and K.Yamanishi, Empirical evaluation of an
outlier detection engine SmartSifter, in Proc. of Symposium
on Information and Its Applications (in Japanese), 2000.

[19] K.Yamanishi, A learning criterion for stochastic rules,
Machine Learning, Vol.9,pp:165-203 (1992).

[20] K. Yamanishi, A decision-theoretic extension of stochastic
complexity and its application to learning, IEEFE Trans. on
Inf. Theory, IT-44, pp.1424-1439 (1998).

[21] K. Yamanishi, J.Takeuchi, G.Williams, and P.Milne,
On-line unsupervised outlier detection using finite mixtures
with discounting learning algorithms, in Proc. of
KDD2000, ACM Press, pp:250—-254, (2000).

APPENDIX: Learning Stochastic Decision Lists

Below we give a brief sketch of DL-SC(DL-ESC)-the algo-
rithm for learning stochastic decision lists. A data sequence
is denoted as D™ = (&;, 1) -+ (€,,,, #m) where £, is an in-
put, p; is a corresponding output, and m is sample size.

First we give a strategy for discretizing a continuous vari-
able. Here the discretizing means determining a threshold
7 for each variable & then change &; into a binary variable
by setting & > 7 and §; < 7. Here 7 is chosen so that for
D™ I(r|D™) is minimized with respect to 7:

I(r|D™) = (DY) + [(DZ),

where DY is a subsequence of D™ such that ¢ > 7 while
DT is a subsequence of D™ such that ¢ < 7. Here I(D™)
is stochastic complexity [14] of D™ calculated as follows:
. mi 1 mm .
I(D™) = mH (?) +3log X, (1)
where the base of the logarithm is 2, m; is the number of
examples in D™ such that ¢ = 1, and H(z) = —zlogz —
(1—2)log(1l - 2).

For a set of attributes: V = {&1,---, &}, for a given input
data sequence D™, for each ¢;, we choose 7; = argmin,
I(7|D™) as above, and change ¢; into & s.t. & = 1if (& > 7)
&=0if (& <m). V=Dis(V,D™) ={&,-- ,&0). Here a
discrete variable remains the same.

The algorithm DIL-SC for learning stochastic decision lists
consists of two processes: Growing and pruning. In the
growing process a rule minimizing the splitting complexity
is sequentially added to the list. Below we show how to
calculate the splitting complexity. For ¢ € T, for a given
data sequence D™, we let D{" be a subsequence of D™ such
that & makes ¢ true, and let DT, be a subsequence of D™
such that & makes t false. We define the splitting complezity
of t w.r.t. D™ by

1(HD™) = (D) + 1(DT) (2)

where I(D™) follows (1). In the process of growing, we
choose ¢ so that I(¢|D™) is minimized w.r.t. .

Given:
A set of attribute variables V = {1, --
a data sequence D™,
a positive integer k

75“}7

Initialization:
D :=D™,
V := Dis(V, D),
T := a set of conjunctions of at most k attributes in Vv
L:=0
Growing
do while D # 0 :
For each t € T, calculate the information gain AI(¢|D).
t* := arg min I(¢|D)
if I(D)—1(t*|D) >0
then
D* := a subset of D that makes t* true

*

v* := the labels that most frequently appeared in D*

p* = % (IP%| is the number of examples s.t.
p=v"in D)

Add (t*,v*,p*) to L

D:=D-D*

V := Dis(V, D)

T:=T-{t"}
else

Go out of the loop
Add the default rule (true,v*,p*) to L
Pruning
do while L :# only a default rule
Prune the bottom rule other than the default rule from
L to obtain L'
ifZ(D™: L'y >I(D™: L)
then Go out of the loop
else L:=1'
Output L

Figure 4: DL-SC(DL-ESC)
We may also calculate 7(D™) by the following formula:

I(D™) = min{m1,m — m1} + A\y/mlog m, (3)

where m; is the number of examples in D™ such that y =1,
and) is a positive real number. The quantity (3) is called
the extended stochastic complexity (ESC) [20] for the 0-1
loss.

Once we get a decision list, we prune a rule from the
bottom in order, so that the total complexity is minimized.
Below we show how to calculate the total complexity. For a
decision list L, for a conjunction ¢ appearing in the bottom
rule in L, we let D, be a dataset such that € makes ¢ true.
We calculate the total complezity of D™ w.r.t. L by

STIHD)+ N DA, (4)

where the sum is taken over all ts appearing in L, and X' is a
positive real number, which may be different from A in (3).
Here £(t) = log |T| for the total number |T'| of conjunctions
with at most k attributes over V. A list L for which (4) is
minimized is finally output.

