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Abstract

This paper presents a model -based, unsupervised agorithm for recovering word
boundaries in a natural-language text from which they have been deleted. The algorithm is
derived from a probability model of the source that generated the text. The fundamental structure
of the model is specified abstractly so that the detailed component models of phonology, word-
order, and word frequency can be replaced in amodular fashion. The model yields alanguage-
independent, prior probability distribution on all possible sequences of all possible words over a
given alphabet, based on the assumption that the input was generated by concatenating words
from afixed but unknown lexicon. The model isunusual inthat it treats the generation of a
complete corpus, regardless of length, as asingle event in the probability space. Accordingly, the
algorithm does not estimate a probability distribution on words; instead, it attempts to calculate
the prior probabilities of various word sequences that could underlie the observed text.
Experiments on phonemic transcripts of spontaneous speech by parents to young children suggest
that our algorithm is more effective than other proposed algorithms, at least when utterance

boundaries are given and the text includes a substantial number of short utterances.

Keywords: Bayesian grammar induction, probability models, minimum description length

(MDL), unsupervised learning, language acquisition, segmentation



1 Introduction

1.1 Background and Motivation

Unlike printed English, in which words are separated by blank spaces, speed daes nat contain
any reliable aoustic demarcaion d word boundvries. Asaresult, the inpu from which children
lean their native language more dosely resembles a series of utterances, which are demarcated
by silence than a series of words. Language aquisition reseachers have long been interested in
how chil dren segment speedt and learn the sounds of individual words, starting from astatein
which they do nd know any words. Thisinterest has led to a number of propased algorithms for
an abstrad version d the speet segmentation task. In this task words are represented as grings
of letters or phoremes' and speed is represented as a text from which the word boundries have
been removed. Such algorithms also have potential appli cations for segmenting written textsin
languages where word boundries are not marked in the orthography. In this paper, however, we
focus on agorithms that children could use for segmentation and word dscovery during language
aqquisition. This goal imposes sgnificant constraints on segmentation algorithms. First, they
must start out without any knowledge spedfic to a particular language; engineeing systems can
make use of existing dictionaries. Secnd,they must learn in a cmpletely unsupervised fashion;
engineaing systems can train on pe-segmented text. Third, they must segment incrementally.
To afirst approximation, this means that the segmentation d ead utterance must be finali zed
before the next utteranceisread in. Spedficadly, algorithms that make multi ple passes through
the corpus or do global optimization will not be mnsidered here.? Finaly, the aognitive
modeling goal dictates the kind d corpus onwhich we mmpare dgorithms — phoremic
transcripts of sportaneous eed by mothers to their young children. As discussed below, these
corpora ae quite different from the types of corporanormally used in language engineeing;
performance on chil d-direded speedt corporamay not be agood pedictor of performance onthe
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Wall Stred Journal.

Previous sgmentation algorithms can be divided into threemagjor classes. Thefirst class
focuses onidentifying individual word boundries. These dgorithms do nd have ay explicit
representations of words. They isolate words within an uteranceonly as aside-effed of
corredly identifying two adjacent word boundries. In a dassof itsown isOlivier's (1968
algorithm, which is based onmaximum-likelihoodestimation d a probability distribution on
words and maximum-li kelihoodsegmentation d successve blocks of input. Thefinal classof
previously propcsed segmentation algorithms consists of thaose that are based onsome form of
minimum representation-length o text compresson. Algorithms from ead of these dasses are
discussed below.

The dgorithms propased in this paper are based onan explicit probability model. Given
any observed input corpus, the model defines an ogtimization problem: Find the highest-
probability segmentation d the input, where asegmentation is any sequence of words that yields
the observed inpu when the word boundries are deleted. Two locd optimization algorithms that

addressthis problem are discussed.

1.2 Boundary-finding algorithms

1.2.1 Local statistics

Harris (1954 sketched the first procedure for finding morpheme® boundiriesin phoretic
transcriptions of sentences. Harris defined the succesor count of ead prefix string of a sentence
as the number of distinct phoremes that can foll ow that prefix in some grammatica sentence of
the language — in ather words, the number of one-phoreme extensions that are themselves
prefixes of some grammaticd sentence For example, consider the utterance he’'s quicker,

transcribed as /hiyzkwikar/. The successor count of /hiyzk/ is defined to be the number of distinct
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phoremes that can follow /hiyzk/ in grammaticd Engli sh sentences that begin with the phoremes
/hiyzk/, sentences such he's cranky, he' s quiet, he's careless and so on. To segment an utterance
U, Harris propased that boundaries be placed after those prefixes of U whaose successor courts
are d least as grea asthose of their immediate neighbas, the prefixes of U that are one phoreme
shorter or longer. For example, if the successor court of /hi/ were 14, that of /hiy/ were 29, and
that of /hiyzk/ were dso 29,then aboundiry would be placed after /hiy/ (he). (SeeBrent &
Cartwright, 1996 ,for further discusson.) This procedure caana be considered an agorithm,
however, sinceit relies on human introspedion to determine the succesor courts. But Harris's
idea— that the succesrs of phoremes within words will tendto be more mnstrained than the
succesrs of phoremes at the ends of words— has survived in ather propasals. For example,
Saffran, Newport, and Aslin (1996, treding syll ables rather than phoremes as the fundamental
units of input, have propased that chil dren might estimate the probability of ead syllablein the
language cndtioned onits predecessor. This particular condtional probability estimateis
commonly cdled the transitiond probahlity. Saffran et a. suggest that chil dren may segment
utterances at low points of the transitional probability between adjacent syll ables — that is, when
asyllable ocaursthat is surprising gven its predecessor.

Transitional probability is asymmetric — the surprisingnessof ead syllableis
condtioned onits predecessor but not onits successor. Although it has never been proposed in
the language aquisition literature, a more natural, symmetric measure of the surprisingnessof a

pair of adjacent sound uritsistheir mutual information (Ml), defined as:

_o o Prixy)
MI(x,y) = log, Pr(x) CPr(y)

(see, e.g., Jdinek, 1997). In the experiments reported below, we compare the performance of an



algorithm that segments at low points of transitional probability between phoremes, and ore that

segments at low points of mutual information, to ou algorithm.

1.2.2 Connectionist algorithms

Elman (1990 proposed a cnredionist segmentation algorithm based onthe same idea—
segment just prior to phoremes that are surprising gven the preceding context. However,
instead of using a statistic based onafixed context window, such as one phoreme, Elman used a
simple reaurrent net (SRN) to evaluate surprisingness An SRN is an artificial neural-network in
which inpu is processed sequentially and the adivations on the hidden layer at eat time step are
fed badk asinpu to the hidden layer at the next time step. This gives the network accessto a
limited amourt of information abou the left context at ead time step. The distance over which
informationis dored is not fixed in advance it depends on the network’ s weights and onthe
particular inpu sequence. Elman encoded an alphabet of phoremes as arbitrary five-bit
sequences and trained the network to predict the next phoreme & ead time step. He then
suggested that time steps on which the network’ s prediction error was high were likely to be
those onwhich it attempted to predict the first phoreme of aword. In the experiments reported
below we compare the performance of ElIman’s algorithm to that of our own.

Christiansen, Allen, and Seidenberg (1998 propose asegmentation algorithm that uses
SRN’sin adifferent way. Like Elman, Christiansen et a. train an SRN to predict the next
symbal intheinpu, bu they include utterance boundries among the inpu symbalsto be
predicted. They interpret the net as predicting aword boundry whenever the output onthe
utterance boundry unit exceels a cetain threshold (the mean adivation d the utterance
boundry unit during training). The reasoning is that output on this unit will tendto rise dter

phoreme sequences that occur relatively often at the ends of utterances, and sincethe end d an
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utteranceis also the end d aword, those same sequences will tendto occur relatively often at the
ends of words (see &so Aslin, Woodward, LaMendda, & Bever, 1996 Brent & Cartwright,
1996. Christiansen et al. also report smulation experiments in which the input and the
prediction task included information abou which phoremes were part of a stressed syllable and
which were nat. Their results, which are discussed further below, suggest that both the utterance-
boundry strategy and the stressinformation are useful for segmentation, bu stressis much less

useful than utteranceboundhries.

1.3 Word grammars

Olivier (1968 proposed a segmentation algorithm based onthe ideaof reestimating probabili stic
word grammars. A word grammar isjust afinitelist of finite strings (i.e., alexicon) and the
language it generatesisthe set of al finite cncaenations of those strings. A probabili stic word
grammar isaword grammar along with a probability distribution onthe words. Olivier's
algorithm maintains an integer for ead word in its grammar that corresponds in some sense to an
estimate of the frequency with which that word has occurred in theinput so far. Initialy, eat
charader in the dphabet is given afrequency estimate of two. (This represents an a priori
estimate of the frequency with which the dharader occurs asaword, nd as a harader in other
words.) The dgorithm then processes the input incrementally in blocks. Before processng eath
block, it divides the frequency estimates of the wordsin its current grammar by their sum to
come up with an estimated probability distribution onits current word grammar. It then finds the
maximum likelihood(ML) segmentation d the block given its current word grammar, using
dynamic progranming. Finaly, it updetes the frequency courts in two ways. First, it addsto the
frequency estimate of eat word to that word’ s frequency in the ML segmentation d the arrent

block. Semnd,it joins ead pair of adjacent words in the ML segmentation d the aurrent block
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and increments the frequency of the resulting words by one. The seand pocedureis necessary
because Olivier’'s method d estimating probabilit y distributions assgns probability zero to any
word na in the arrent word grammar. Thisimplies that the maximum likelihood @rse can
never contain any word that was not already in the word grammar. (The presenceof all the letters
aswords in theinitial grammar ensures that there is always a parse with nonzero probability.)
Asaresult, updhting the frequency estimates based orly on the maximum likelihood @arse would
never yield any new words. In Olivier's own 1968implementation frequency-one words are
deleted from the lexicon periodicdly, bu he explicitly states that thisis not afundamental part of

the dgorithm, just an expediency to all ow the program to runin the avail able memory.

1.4 Information-based approaches

This dion dscusses approadies in which representation schemes are used to define probability
distributions over segmentations implicitly. A binary representation scheme associates to any
finite string over a given source alphabet one or more finite binary strings known as the
representations of that sourcestring, in such away that no pair of distinct sourcestrings sares a
common representation. Alternative terms for representation scheme and representation are code
and encoding, respedively. A representation schemeis said to be self-delimiting if there existsan
agorithm that can findthe end d any representation without reading beyondthe end, given the
beginning. For any self-delimiti ng binary representation scheme, the sum of the negative binary
exporentials of the lengths of al representations (X2 converges to a number between zero
and one (Kraft, 1949; Li & Vitanyi, 1993). Thisimplies that the set of all source strings can be
treated as a discrete probability space, where the probability of any source string is proportional
to the sum of the negative binary exponentials of the lengths of al its representations. If a string

has only one representation then its probability is just the negative binary exponential of that

8



representation’ s length. The propartionality constant is a normali zing fador equal to ore over the
sum of the negative binary exporential of al representations (1/X2'°"%"). Representations are
useful becaise they provide astraightforward method d constructing a measure whose sum is
guaranteeal to converge.

Brent & Cartwright (1996 devised a self-delimiti ng representation scheme that assgns a
unique representation to ead segmentation of ead string over a given alphabet. They then
treaed the problem of segmenting an inpu text as an ogtimization problem: Find the
segmentation d the input with the shortest representation. Thisis equivalent to finding the most
probable segmentation under the distribution in which the prior probability of ead segmentation
is propartional to the negative binary exporential of its representation’s length. Brent and
Cartwright’s ssheme works by Huff man-coding the sequence of words in a segmented text, then

coding the mapping from Huff man codes to words (seeFigure 1 for an example).

Insert Figure 1 about here.

The paper reported onthe segmentation acaracy achieved when a particular heuristic strategy
was used to seach for the segmentation d a crpus that minimized this objedive function.
However, this sach strategy was off- line and took time propartional to the aube of the number
of phoremesin the corpus. Sincethis ach medanism was not cognitively plausible, Brent and
Cartwright limited their cognitive model to the objedive function. Therelation d that functionto
the probability model propaosed hereis discussed below, as are the results Brent and Cartwright
reported.

Brent and Cartwright’ s approach to segmentationis one example of the minimum

representation-length technique, al'so knowvn as minimum message-length (Wallace& Bolton,
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1968 and minimum description-length (Quinlan & Rivest, 1989 Rissanen, 1989. It is
traditional in the minimum representation-length literature to dvide representations into two
portions, ore crrespondng to the set of generali zations extraded from the inpu (Iexicon,
grammar, dedsiontreg patterns, rules) and the other correspondng to the “acadental” or
“unpredictable” comporent of the input, such as what a particular person choseto say at a
particular time, given the @nstraintsimpaosed by the rules of his or her language. The length of
eadt pation can then be interpreted in Bayesian terms as the probabilit y of the generali zations
and the probabilit y of the unpredictable mmporent, given the generali zations. This division dten
leads to useful insights about how to interpret the shortest representation o an inpu in terms of
some other inference problem. Dividing representations upin thisway is nat necessary for the
construction d aprobability distribution, havever.

Text compresson schemes like LZW (the basis of compress, see eg. Hankerson, Harris,
and Johnson, 1998 are dso self-delimiti ng representation schemes for texts over a source
aphabet. Further, they represent sourcetexts by assgning them a unique segmentation into
shorter strings and applying a self-delimiti ng representation scheme to ead shorter string in the
resulting sequence The compressed text can be viewed as arepresentation d the unique
segmentation that LZW assgns to the sourcetext. Because it assgns a unique segmentation to
eadt sourcestring, however, it is not arepresentation scheme for all possble segmentations of all
sourcestrings. Viewed as a probability distribution onsegmentations of agiven inpu, LZW
assgns all the probability to ore segmentation. The segmentations chosen by a deterministic
scheme like LZW could turn out to have linguistic relevance, bu thereisnoapriori reasonto
exped that they shoud. We return to the linguistic relevance of LZW in the experimental
sedion.

De Marcken (1996 aso took a minimum representation-length approach to the
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segmentation problem. However, rather than representing segmentations of the sourcestring, de
Marcken's scheme represents a hierarchicd decomposition where theinput is divided into
substrings and eat of the substringsis further subdvided urtil the level of individual charaders
isreated (see &so Nevill-Manning & Witten, 1997 Wolff, 1982. This gructure ca be viewed
asaparsetreewhose leaves are the individual charaders of the input, and whose nodes gpan the
substrings of the decompasition. Given atext, de Marcken used an dff-line dgorithm to seach
for the hierarchicd decompasition with the shortest representation. At the end, the substring
spanned by eat nock in eat treewas interpreted as apossble word, bu there was no
commitment abou which adually were words and which were nat. Thus, while de Marcken's
agorithm and herarchicd text compresson algorithms are related to the problem of interest
here, they do nd addressthat problem diredly.

Redlich (1993 also proposed an off- li ne segmentation algorithm based loosely on the
minimum representation-length framework. However, the only experimental results reported
were on ore paragraph d written text. Further, the dgorithm was not sufficiently well spedfied

that we could reimplement it, and henceit is difficult to evaluate.

1.4.1 Information minimization versus explicit probability models

The minimum representation-length approach provides a straightforward, intuitive
methodfor constructing a probability distribution. Further, it isnat difficult to craft a
representation scheme such that the arrespondng distribution roughly refleds one’ s intuitions
abou the structure to be uncovered —that is, the system resporsible for generating the observed
text. However, the representation schemes one devises are very rarely perfedly efficient; that is,
there ae binary strings b such that b isnot a prefix of the representation d any sourcestring, nar

isthe representation o any sourcestring a prefix of b. Thisimpliesthat the sum over all source
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strings of the correspondng probability is drictly lessthan ore — thereis missng probability
massand there may not be aty sensible model that generates ource strings acarding to the
induced measure. Thereisnoway to knowv how this misang massmay influencethe inference
processwithou recovering it or charaderizing it formally. Even when the missng massis
relatively small in pradicd terms, there ae theoreticd advantages to having a mherent
probabili stic model of how the inpu is generated. A soundmodel of the sourceyields insight
into haw the model corresponds to known linguistic structure, how it differs, and hav the

diff erences might be mitigated.

Brent and Cartwright’ s representation scheme off ers an example of missng probability. It
choases one particular assgnment of binary codes to words even though any consistent
assgnment could represent the same segmentation. All the potential representations based on
aternative sssgnments are wasted — they don't represent any segmentation, they are not
prefixes of the representation d any segmentation, and they are not extensions of the
representation d any segmentation. As aresult, the probabilit y masscorrespondng to these
potential representationsis|ost.

In the next sedion d this paper we present an explicit probabili stic model of how
lexicons are generated from alphabets of phoremes and haw texts are generated by concaenating
words from lexicons. The general structure of the resulting probability measure is smilar to that
which Brent and Cartwright (1996 derived by the minimum representation-length method.
However, some of the missng probability masshas been recovered, and al implicit
approximations have been urcovered and made explicit. The eplicit probability model also
makes it clea how comporents of the model, such as the distribution onthe phondogica forms
of words, can be upgraded in amoduar fashion. Indeed, ore small step in that diredionis taken

in this paper, where we estimate adistribution on phoemesin the lexicon rather than using a
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uniform distribution.

2 A probability distribution on all finite sequences of all possible words

This section introduces an explicit, language-independent, model-based probability
distribution on all possible sequences of all possible words over a given aphabet. The
presentation is organized into four subsections. The first subsection describes the structure of the
probability model at alevel that abstracts away from many details needed to actually compute the
probabilities of word sequences. The abstract structure is quite general and independent of the
various simplifying assumptions that are made later on for the sake of expediency; it servesasa
backbone to which various component models can be attached.

The second subsection derives a pair of recursive formulae for evaluating the probability
of any given word sequence. These formulae are stated in terms of the abstract model; they
cannot be used for computing probabilities until the detailed component models are specified.

The third section presents one set of component models that are motivated, in part, by
algebraic and computational simplicity. It is expected that each one will be improved in future
work. This subsection concludes with the specific recursive formulae used in the experiments
reported below.

The fourth and final subsection discusses the equations derived in the previous three
sections. The discussion focuses on the implications of an interesting theoretical observation
about the probability model: The prior probabilities of segmentations can be evaluated without
estimating a probability distribution on words. In specifying the detailed distributions we assume
that a distribution on phonemesis estimated from the input, but that is not necessary. If auniform
distribution on phonemes were used instead then the probability of any given word sequence
could be evaluated exactly, without estimating anything.
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It isworth noting that the goals of this section are primary theoretical. They are: (a) to
provide agenera purpose framework to which avariety of specific linguistic distributions can be
interfaced in amodular fashion, and (b) to show one example of how this can be done.

Naturally, the probability model presented in this section defines an optimization problem: Given
an unsegmented input, find the most probable word sequence among all possible segmentations
of the input. Two incremental algorithms aimed at finding an approximate solution to this
problem quickly are introduced in the next section. In the current section the focusis on the

model and on the evaluation of the prior probabilities of individual segmentations.

2.1 Structure of the model

This subsection describes the structure of the probability model at alevel that abstracts
away from many details needed to actually compute the probabilities of word sequences. The
structure is specified as a non-deterministic algorithm that generates every possible word
sequence and then, by deleting word boundaries, every possible input to a segmentation
procedure.

Let ¥ betheinpu alphabet and let # and $ ke two symbals not contained in 2. The
generation agorithm consists of four non-deterministic steps and ore deterministic step. At the
end d the nondeterministic steps, the dgorithm has generated a sequence of utterances
separated by $. Each utterance @nsists of a sequenceof words sparated by #. Thiswill be
cdled adelimited utterance sequence. Thefinal, deterministic step of the dgorithm deletes the
# slearing a sequence of utterances in which word boundries are nolonger marked. This will
be cdl ed a non-delimited utterance sequence. Given a particular delimited utterance sequence,
the result of deleting the # swill be cdled itsyield. Conwversely, given a particular non-delimited

sequence N, ead delimited sequence of which N isthe yield will be cdl ed a segmentation of N.
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The input to a segmentation agorithm is a non-delimited utterance sequence; the output isa

delimited utterance sequence that is a segmentation of the input.

The five steps of the abstract generative model are as follows:

1 Pick a positive integer n, representing the number of distinct word types to be generated.

2. Pick aset of n distinct strings from the set Z*#, representing the phonological forms of
word types. Call theresult L, for lexicon. Let the namesW,,...,W,, be assigned arbitrarily
to the members of L. We can now write L={W,,..,W}. Let W, = $, the distinguished
utterance-boundary marker.

3. Pick afunction f:{0,..,n} ~>{1,2,..}, wheref(i) represents the total frequency of word W..
Note that f(i) is not arelative frequency or probability but a paositi ve integer representing
the number of times word W will occur in the word sequence being generated.

4, Let m be the total number of word tokens — the sum of the frequencies of al n words.
Pick an ordering functions:{1,...,m} -{1,...,n} that maps each position in the text to be
generated to the index of the word that will appear in that position, so that W, appears as
thei ™ word token in the generated text. For notational convenience, define

m

Wy, Wy S Wy, W -
Note that w;, ..,w,, isadelimited uterancesequence. Define W, = w,,...,W,, . Let the
domain of s be cdled the set of token indices and the range of s be cdl ed the set of type
indices. Note that sis constrained to map exadly f(i) token pasitions onto type index i.

5. Concdenate w;, ...,w,,, deletethe #'s, and ouput the result. The output isanondelimited
utterance sequence, theyield of wy, ...,w,,.

Asa aoncrete example the generative processcould yield the results shownin Table 1 on

some run, wsing ordinary letters for the dphabet X.

Insert Table 1 about here
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In order to evaluate aparticular hypothesized segmentation W, = w,,..., W (including
word and uterance-boundry markers) we need aformulafor the probabilit y with which that
word sequenceis generated by steps 1-4 of themodel, Pr(w ) . Starting from first principles,

this means simming over all possble outcomes of steps 1, 2, 3,and 4
Pr(w,) = Pr(w,|n,L,f,s)[Pr(n, L,f,s)
3333

where eab sum is over al possble values of the wrrespondng variable. However, the dbstrad
model spedfied above was designed so that there is a one-to-one crresponcdence between
hypothesized word sequences and joint outcomes of steps 1-4. Spedficdly, for any given
hypothesis W_ , thereis one and orly one combination d values of n, L, f, and s for which
Pr(w,[n, L,f,s) # 0— namely, n must be the number of distinct word typesinW,, L must bethe
set of distinct word typesin W, (sincethe frequencies are strictly positive), f must map eah
word typein L into the number of timesit appeasin W, ands must be such that
Wy, Wy = Wy, ., W, Sincethese particular values of n, L, f, and s are mmpletely determined
by W, , it would make sense to write them as functionsof w, — for example, we culd write
the number of distinct word typesin W as n(w,,) . However, this notationis bulky, so the
notationn,, L, f, ahd s, isused insteal. Sincethereis only one nonzero term in the sum, we
can write:

Pr(W,) = Pr(W, [N, Ly f.8,) CPE(N, Ly fS,)
Furthermore, sincethe values of n, L, f, and s completely determine W, ,

Pr(w,[ng, Ly frniSn) =1
and we have:

Pr(w,) = Pr(n,, L,,f.,S,)

m!* =m? ' m?!% m
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Using the dhainrule, this can be rewritten as:

1) Pr(w,) = Pr(s,[fy, Ly.ny) PP, Ly ) EPP(L, [N, ) EPF(N,)

Now we aldto the astrad model two reasonable linguistic assumptions that al ow this

expressonto be smplified substantialy.

1. The ordering of the words, s, is probabili sticdly independent of their pronurtiations, so

Pr(s,If.,L,.n,) =Pr(s,|f,.,n,). Thisdoesnat necessarily mean that the orderingis
independent of al aspeds of word identity. If we had modeled ather properties of words,
such astheir syntadic caegories, the ordering might be dependent on those properties.
But the asumptionimpliesthat any effea of pronurciation on adering would be
mediated by other properties. Thisisnat true in song lyrics or poetry, where word
combinations are dhosen partly onthe basis of their sound, buiit istrueto afirst
approximationin ather forms of language.

The frequency function f, completely determines the number of distinct words n,,
since thedomain of f,, consistsof n, integers, soPr(s,|f,..n,) = Pr(s,|f,). (Thisisjust
afad abou theway f,, and n,, were defined.)

2. The frequencies of words are chosen independently of the frequencies and pronurtiations
of al other words, and & n, soPr(f|L,.,n.) |_|I o Pr(f( , where Pr, isthe
probability distribution onthe frequencies of individual words. Note that this does nat
imply auniform distribution onword frequencies — like outcomes on the sum of two
dice, word frequencies can have anonunform distribution despite being seleded
independently of one anather.

Sincef (0) represents the number of utterance-boundiry markers, we ae dso

asuming by this equation that the frequencies of words are independent of the number of
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utterances. The latter assumptionis not acairate — if some word occurs 1,000times, it is
unlikely that the total number of utterancesisas snall asthree However, thisinacarracy
has littl eimportance, sincethe ad¢ual number of utterancesis observable in theinpu and

henceidenticd for all segmentations of the inpu.

These two assumptions all ow us to simplify (1) to:

2 Pr(w,) = Pr(s,|f,) D§_| Pr; (f(i)IVVi)EDDf(Lmlnm) [Pr(ny,)

In order to evaluate this we need to make further assumptions abou how ead of the non
deterministic steps of the generative processworks. Before moving on to such assumptions,

however, we introducereaursive formulaefor evaluating (2).

2.2 Relative probabilities
This dionintroduces two reaursive formulaefor evaluating the probabilit y of aword sequence
w;, ...,W, in terms of the probability of the sequencew,, ...,w,_;. Let the notation R (for relative

probability) be defined as follows:*

where W, = w,,...,W,, and Pr(w;) = 1.Observe that:

(4) Pr(w,) = R(w, ) [Pr(w,_,),

arecursive formula, and:
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Heredter, we focus on computing R(W, ) . Notethat R(W, ) isundefined if W, _, has probability

Z€Ero.

Now for any givenw, , we can definen,, L, f,, ands.. analogously ton,,, L,,,, ., ands,, as

the number of distinct words, set of distinct words, word frequencies, and adering of wordsin
W, , respedively. Whenever R is defined, we can substitute (2) into (3), yielding:

[]Pr. (f, ()W)
E
[P (f, . (OM)

1=0

Pr(LIn)  Pr(n,)

. Pr(sdfy)
©®  R(W,) Pr(L,4In.) Pr(n,,)

B Pr(sy~lfia)

Thisformula can be simplified by separating two cases, ore in which the kth word also occursin

the first k-1 words — that is, w, € L,_, — and orein which it does not.

2.2.1 Case 1: Familiar words

Word w, is cdled afamiliar word if it also occursin the first k-1 words — that is, w,e L, ;. In
that case, adding w, orto the end d w,, ...,w,_, leaves the number of distinct words and the set of
distinct words unchanged (n=n, ,, L,=L, ,), SO

Ny

Pr(s,|fy) DD)

Pr(scalfi) ﬁ Pri (f . (1)W)) |

1=0

Pre (f, (1)IW,)

R(Ww, OL,,) =
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where R(W, |w, e L, ,) denotes the relative probability given that the kth word also occurs
among thefirst k -1 words. Further, adding w, orto the end o w;, ...,w, ; increases the frequency
of w, by one (f, (i)=f, ,(i)+1, for i = s(k) — that is, when i isthe index for the word type
correspondng to W, ) but leaves the frequencies of all other words unchanged (f, (i)= f, 4(i), for
i=5(K)). If we define ¢ to be the type index of the kth word (K = s, (k)) then we have

f,(K) = f,_,(K) +1and hence:

Pr(s If,) _ Pri(f,
Pr(s,_.|fi_y) Pr,(f, (

(
k

_ ) k)W)
(7 R(w,|w, OL,_) = e

W)

This expresson canna be simplified any more withou making further assumptions abou the
distribution on adering functions. To seethe general form that such simplifications might take,
notethat s (i) = s,(i) for al i <k. Thus, any distribution on a@derings that has ome locdity will

yield related probabiliti es for the two arderings s, and s ;.

2.2.2 Case 2: Nove words

Word w, is cdled anovel word if its occurrence d positionkisits first occurrence— that is, w,
¢ L, ,. Inthat case, the number of distinct words increases by one (n=n, ;+1), the frequencies of
the familiar words are unchanged (f, (i)=f,_,(i) for i <n, ), and the frequency of the new word
isone (f, (n)=1) so (6) can be simplified to:

Pr(s,|f,) Pr(L.|n,)

8) R(w|w, OL, ) =—"7-"—[Pr, (W, )
(®) R{W, I, = Pr(s,Ifi~) ‘ Dpr (Lysglne = Dpr (ny _1

This expression cannot be further simplified without making assumptions about the detailed

distributions that govern the steps of the abstract model.
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Before new assumptions are introduced in the next sedion, it is worth emphasizing that
no rew asumptions were introduced during the derivation d equations (7) and (8). In particular,
evaluating the probability of aword sequencevia equations (7), (8), and (5), is mathematicdly

equivalent to using equation (2) diredly.

2.3 Modular linguistic models

This subsedion presents one anong many passhble ways of filli ng in the detail s of the probability
model. The particular assumptions made here ae gproximations motivated by smplicity — it is
expeded that future work will im prove onthem. Sincethe asumptions are related to ore another
through the equations derived abowe, it shoud be possble to modify them independently. In the

foll owing presentation, eat subsedion corresponds to ore distributional assumption.

2.3.1 Uniform distribution on word orders (model step 4)

In this paper, we make the smplifying assumption that the distribution on adering functions
given frequencies (Pr (s | f,)) isuniform. Thisisequivalent to ignoring the constraints that
syntax and semantics impase onword order. The main virtues of this assumption are dgebraic
and computational simplicity. However, there may well be dficient ways of using bigram,
trigram, or more complex distributions within the same astrad model.

Consider the multi set consisting of f,(0) copies of W, f,(1) copies of W,, and so on, upto

f () copies of Wnk . The number of distinct permutations of this multi set is:

21



where k is the sum of the frequencies of all the words (see any introduction to discrete
probability). So, the probability of any particular permutation under the uniform distribution on
all distinct permutations is given by:

Pry (s,lf,) = —H‘:‘;ff(i)!

and

Pr. (s 0f) [ ]ofe()! (k-1)!
Pry (Seoalfi) B rl,nk’lfk_l(i)[ k!

i=0

9)

Recall that for familiar words, the frequency of the last word increases by one

(fy (k) = fk_l(kA) +1) and the frequencies of all other words are unchanged

(f (i) =f,_.(i), fori# kA) , wherek isthe type index of the familiar word. Thus,(9) can be
simplified to:

Pry (slt)  _ fi(K)
Pry (Skalfi) k

(10)

Substituting this back into (7), the equation for the relative probability of afamiliar word, yields:

fk(kA)D Pre (f, (
k Pr(f (K

_ . K)IW, )
(1) R(W|w, OL,)= .

W)

When w, isanovel word (w, ¢ L,,) the number of distinct words increases by one (n.=n, ,+1),

the frequencies of the familiar words are unchanged (f (i) = f,,(i) for i < n, ), and the frequency

of the new word is one (f, (n)= 1), so (9) can be smplified to:
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Substituting this badk into (8), the equationfor the relative probability of a novel word, yields:

Pr, Pr(L,|n,)
13) R(w, L =
(13 R(W,|w, OL, ) Ebr L |n, - Dpr (n, _1

2.3.2 Independence of word frequencies from word pronunciations (model step 3)

For purpaoses of this paper it is assumed that the distribution onword frequencies is independent
of the pronurtiations of the words. Thisisnat strictly true — shorter words tend to have
relatively higher frequency, and modeling such dependencies might well be afruitful avenue to
pursue, bu it is beyondthe scope of this paper. Under this assumption (11), the eguation for the

relative probability of afamiliar word, can be rewritten as:

fi(k) - Pri (1, (K))

(14) R(W,|w, UL,,) = kK Pr(f (kS) ~1)
Ay

where Pr; is the probability distribution onthe integers used for picking word frequencies.

Likewise (13), the equation for the relative probability of anovel word, can be rewritten as:

Pry(D)  Pr(Ln) . Pr(n,)
k  Pr(L,4[n, =1) Pr(n, -1

(19 R(wW,|w, OL,,)=

2.3.3 Distribution on sets of pronunciations (model step 2)
The most difficult asped of thismodel isfinding adistribution onsets of pronurciationsthat is
both natural from alinguistic point of view and efficiently evaluable. Infad, we have nat been

ableto satisfy bath constraints completely. We start with alinguisticdly natural distribution bu
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use an approximation to speed evaluation.

Consider a procedure that goes through n, iterations. At theith iteration, it picks a string
S e X*'# according to some distribution Pr ; on Z*#, with the restriction that § must be distinct
from al strings picked on previous iterations. Let us definePr(Wn,) to be the probability that

this process produces the sequence of distinct strings (W, ,...,W, ), in that particular order. Then

Ny

Pr(Win,) = [ Pro(S = WIS O{W,,....W, })

_r Pro (S = W)
Al 1-Pro(s O(W,,... W, 1)

Note that the probability expression in the denominator is not the probability of drawing a
particular lexicon but simply the probability that a single string selected according to Pr,isin a
particular set. Since Pr, is adiscrete probability distribution, the probability of a set of stringsis

just the sum of the probabilities of the strings in the set. Dropping the S, we can write:

YVa - nk PrU(Wi)
Pr(W [n,) = D 1- zi:lpra(W,-)

The probability with which this process produces the set of stringsL, in any order is the sum,
over al permutations (Wp(l) ,...,Wp(nk)) of (Wl,...,Wnk ), of the probability with which it
produces the sequence (W), .-, W, ) -

ny PI‘U(Wp(i))
p:{l,.Z.,”k} I':! 1- zlj_:llpra(wp(j))

Pr(L In,) =

where the outer sum is over all permutation functions p on the integers from 1 to n,. Thetermsin

the product of numerators are the same regardless of the permutation, and since multiplication is
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order-independent, we can factor the product of numerators out, yielding:

ny D Ny 1
JOUNES g XU
k1M =1 D):{lan} D 1- ijll Pra(Wp(j))

Turning now to relative probabilities, we have:

Ny

i-1 -1
1-) _Pr (W _))
Pl gy D [P
Pr(Lk_1|nk —]_) o\t ne -1

[ (1 - i,-_:ll Pro (W) ))_1

p{l...n -1} 1=1

(16)

We do not know of any way to evaluate this expression exactly without summing explicitly over
all permutations. Thiswould require time exponentia in the total size of the input, so we use the
following approximation, which can be evaluated more efficiently:

Pr(L In,) n Pry (W, )
17 - . on -1 —n-
( ) PI‘(Lk_l|nk 1) 1_ k DZ 1PrU(Wp(J))

-

The reasoning behind this approximation is somewhat involved and off the main track, so it has

been relegated to Appendix A. Substituting (17) into (15) yields:

__ Pr (1) r]k Pra(Wnk) Pr(n )
R(W,|w, OL,,) = fk E o1 Dpr(n k—1)
k

(18)

Now all that remainsisto choose a distribution Pr ; on the space of possible pronunciations (X*#)

and distributions on the positive integers.

2.3.4 Distribution on individual pronunciations (model step 2)

In general, languages impose arich array of phonological constraints on their words. For
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example, languages impose restrictions on the consonant clusters that can occur at the beginnings
and ends of words. Ideally, amodel for the probability that a particular phoneme string is aword
in aparticular unknown language should include a universal catalogue of all such phonological
constraints and processes, appropriately parameterized to account for cross-linguistic variation.

In thisfirst attempt to spell out the details of the segmentation model, however, we sidestep
phonology and phonotactics entirely and assume that the phonemes in aword are selected
independently of one another.

Let Pry, be aprobability distribution on ZU{#} . Thenif a,,...,a, € X# we define

1 q
1- Pr):(#) 1=

(190  Pr,(a...a,) 1 Prs(a;)

The first term results from imposing the @ndtionthat the enpty word “#’ canna bein the
lexicon. Thisdefinition d Pr_ induces adistributionin which the probabiliti es of words are
bounded above by an exporentialy deaeasing function o word length. It islikely that the true
distribution onlengths of word types has a mode somewhere between 3and 5 phoemes, rather
than 1,so0 more accirate models could amost certainly be found.

In the experiments reported below, we estimate Pr 5, on-line from the relative frequencies
of phoremesin the lexicon so far. That is, one occurrence of the phoreme is counted for eat
word typeit appeasin, nd ead word token, sincewe ae interested in the probabiliti es of
phoreme strings in the lexicon. The probability of # is estimated in the same way, except that

thereis exadly one# in ead word type.

2.3.5 Distributionson the positive integers (model steps 1 and 3)

Equation (18) contains distributions on the positive integersin two places. Thefirst isthe
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distribution on the total frequency of each word and the total number of utterance boundary
markers (which, for better or for worse, have been given the same distribution). The second is the
distribution on the total number of word types. We have no ideain advance that any particular
positive integer is more likely than any other, so an ignorant prior makes the most sense. Since
there is no uniform distribution on the positive integers, the best that can be doneis arelatively
flat distribution whose sum convergesto one. In the experiments presented below, we opted for

algebraic and computational simplicity by using:®

@) ()= -

for al choices of positive integers. Substituting into (18) yields the following formulafor the

relative probability of anovel word:

6
i3

Pry(W,,) Ly —1%2
n -1 un, O
Ny

gk
k

(21) R(W, |w, UL ) =
1_

i Pro(W))

Likewise, substituting (20) into (14) yields the following formulafor the relative probability of a

familiar word:

(22)  R(W,|w, OL,)=

2.4 Discussion of the model.
In the previous three subsections an abstract, language-independent probability model
was proposed, recursive formulae were introduced for evaluating the prior probability of any

word sequence, and one possible way of filling out the details of the abstract model was worked
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out. In working out the detail s, an approximation was introduced to provide for efficient
evaluation d lexicon probabiliti es. It was aso naed that in the experiments the probability
distribution on phoemes (Pry,) is estimated from the inpu. The gproximation speals
computation and the estimation improves performance over auniform distribution on phoemes,
but neither assumptionis esentia. Setting aside these detail s, equations (21) and (22) can be
used, along with equation (5) to compute the exad prior probability (acording to the model) of
any given sequence of words. Even with the assumptions mentioned abowve, the probability of a
word sequenceis computed without estimating a probability distribution onwords.

A related property of the astrad model isthat the steps do nd divide naturaly into those
that generate astable grammar and those that generate asample given the grammar. Spedficdly,
outputs are not generated by sampling repeaedly from a stable distribution onwordsin the
lexicon, which would qualify as agrammar. The model itself must be viewed asasingle
“universal grammar” and the @rpus as a sample ansisting of just one event.

Acoording to the probability model, the values in equations (21) and (22) are not
probabiliti es; they are merely ratios of probabiliti es of two urrelated corpus-generation events.
However, it isinteresting to compare them to what one would exped for the condtional
probability of the kth word, given the first k-1 words. The first term of (22) is, sensibly enowgh,
the relative frequency of the kth word in the @rpus s far. However, this relative frequency
courts the kth occurrence it is not the normal relative frequency, computed oy in terms of
those occurrences whose presencein the inpu is guaranteed in the condtional probability
conception. Since (22) is derived from marginal probabiliti es of whole @wrpora, the kth
occurrencein the @rpus whose probability is being evaluated is no dfferent from any other
occurrence This hasthe dfed of adding one to bah the numerator and the denominator of the

normal relative frequency. Theresult looks something like add-one smoathing, atednique that
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is ometimes used in estimating the probabiliti es of words from their relative frequencies (Gale
& Church, 1994 Witten & Bell, 1997). In the usual treagment of words as independent events,
thiskind d smoathing appeasto be a orredionto a probability mode that is fundamentally
unsuited to natural language vocabularies.® Under the aurrent probability model, where an entire
corpusisasingle event in the probability space “smocthing” fals out of the model.

The secondterm of (22) is zero for words with no pevious occurrences — this makes
sense, since(22) is an equation for familiar words. For words with ore previous occurrencethis
term is one fourth, and it approacdhes one rapidly as the frequency of the word increases. This
convergenceto unty is nat surprising from the perspedive of words as independently sampled
events from an unknavn probabilit y distribution; the observed relative frequency of aword
beames an increasingly acaurate estimate of the true probabilit y as the sample-size for that word
getslarger. The observed relative frequencies of words that have occurred orly oncewill tendto
overestimate their true relative frequency (e.g., Church & Gale, 199]). To seethis, consider the
distribution o waiti ng-times for the first occurrence of agiven word. Thisdistributionwill be
the same for all words with the same true relative frequency. But the atual observed waiting
times will be greder for some such words than for others. The sample of words that have
adually been olserved orcein afinite crpusisnot an unbased sample; it favors words that, by
chance, have waiting times at the low end o the distribution for words of their relative
frequency.

Turning now to (21), thefirst term is a normali zing constant. The secondterm could be
deacmpaosed into n, and 1k and the latter could be interpreted as a smoothed relative frequency.
However, it may be more enlightening to think of n/k as the type-token ratio — the average of
the observed relative frequencies of al words that have occurred so far. A large type-token ratio

suggests that words have not been repeaed very often in the corpus  far, and therefore novel

29



words have occurred frequently. Conversely, a small type-token ratio suggests that words have
been repeded frequently in the corpus  far, and therefore novel words have occurred relatively
rarely. To the extent that the past is any predictor of the future, it makes sense to assgn a higher
probability to nowel wordsin the future when nowel words have occurred relatively more oftenin
the past. The third term, which represents the probabilit y that the particular novel word would be
chaosen at randam during generation d the lexicon, is the dominant term. It has already been
discussed at some length. Its most notable property isthat it will tendto deaease rapidly with
the length of the novel word under consideration, all other things being equal. The final term
starts out at one-fourth for the first word type and rapidly approadhes one a the number of word-
typesincreases. It does not seam to have & natural an interpretation as the other terms, but it can
be thought of in a somewhat simil ar way to the type-token ratio: The more often nowel words

have been olserved in the past, the lessreluctant one shoud be to pasit them.

3 Optimization algorithms

Equations (5), (21), and (22) provide the means to compute the prior probabilit y (acerding to the
model) of any given sequence of words. In principle, these eguations can be used to segment any
observed corpus by computing the prior probabiliti es of all possble segmentations of the crpus
and returning the one whose probability is greaest. The use of prior probabiliti esis ound
because the paosterior probabiliti es of segmentations of the observed corpus are propational to
their priors. Thisfollows from the fad that observed corpora ae generated deterministicdly from
one of their segmentations at step 5 d the model — that is, ead word sequence ca yield ore
and orly one observed corpus. However, segmentation by exhaustive seach is not

computationally tradable. In a crpus of n phoremes with m utterances, there ae 2" ™" possble
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segmentations— there can be aword boundry or nat between ead pair of adjacent phoremes,

except that there is always aword boundry where there is an utterance boundxry.

3.1 Incremental Search

This subsedion presents an algorithm, Incremental Seach, that is more cmputationally
tradable than exhaustive seach and provides amore plausible model of segmentation by
humans. Incremental Seach attempts to find the most probable segmentation d the entire
corpus, exadly as exhaustive seach daes, the only differencebeing that Incremental Seach does
nat eval uate the probability of every single segmentation. Instead, it evaluates the probabiliti es of
segmentations of successvely longer prefixes of the observed corpus, adding one utterance d a
time. It seachesfor alocd maximum in the prior probability of the segmentation d the entire
prefix corpus by evaluating the probabiliti es of all segmentations that can be @nstructed as
foll ows: Append some segmentation d the last utteranceto the most probable segmentation
foundfor the arpus of al previous utterances. For example, suppase that the most probable
segmentation foundfor the crpus consisting of all previous utterancesis W, . Incremental

Search evaluates the probabiliti es of all word sequencesw, ,, where Wy, ... W, ,isapossble
segmentation d the aurrent utterance The probability of eat sequenceis evaluated by the

formula:

(23) Pr(Wm+p) = Pr(Wm)lil R(Wm+i)1

which foll ows diredly from equation (4). Since Pr(w,,) isfixed andin fad was computed when
the previous utterancewas processed, Pr(w, . ) isobtained by computing and multiplying only p

relative probabiliti es.
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From a cognitive perspective, we know that humans segment each utterance they hear
without waiting until the corpus of al utterances they will ever hear becomes available.
Incremental Search, unlike exhaustive search, also has this property.

From atheoretical perspective, it isimportant to emphasize that although Incrementa
Search commits to segmentations one utterance at atime, it does so by optimizing the prior
probabilities of segmentations of the entire corpus of all utterances processed so far. As discussed
in the previous section, these computations do not require estimating a probability distribution on
words. Indeed these computations can be exact as far as the abstract model goes, athough exact
computations may not be the best choice for a practical implementation.

The number of segmentations Incremental Search evaluates for each utterance is the
binary exponential of the number of phonemes in the utterance minus one. To segment a corpus
with g utterances of lengths ,...|, Incremental Search evaluates Z iqzl 2!~ segmentations,
substantially fewer than the2 2t segmentations evaluated in the course of exhaustive search.
Using current computersit is probably feasible to search through all possible segmentations of al

but the rare, extremely long utterances. However, there is still room to improve the algorithm.

3.2 Dynamic programming

If we are willing to accept some approximations to equations (21) and (22) then adynamic
programming (i.e., Viterbi) type algorithm can be used to find the optimal segmentation of each
utterance without evaluating all possible segmentations. The approximation is to use values of L,,
k, n,, and f, as of the end of the previous utterance, ignoring whatever changes may come about

asaresult of the current utterance. If W, isthe most probable segmentation found for the corpus
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consisting of all previous utterances and W,,,,; ..W,.,, iS apossible segmentation of the current

utterance, the approximation is equivalent to usingR(w, w,,,;) instead of R(W,w,,,,...w,.), for

i)
1<i<p. Under this assumption, (23) can be approximated by:
(24)  Pr(w,,,) = Pr(w,) El_p! R(W, W)
This seems reasonable when m»p, so it can be expected that L,,.;~<L,,, mti=m, n..;=n,, and
fi=fm , fOr 1<i<p. When bah thefirst and second acurrences of anovel word are in the same
sentencethis resultsin incorredly assgning the novel-word probability to bah occurrences.
However, thisis expeded to be rare dter the first few sentences.

The segmentation d the aurrent utterance that maximizes (24) can be found ty the
agorithm shown in Figure 2, where utterance isthe arrent utterance, W, is the ssgmentation

chosen for all previous utterances, and Ris afunction that computes R(W,,w ., ) for any

W, andw,,;.
Insert Figure 2 about here.

When Ris computed acording to equations (21) and (22) this algorithm will be cdled MBDP-
1.” MBDP stands for model-based dynamic programming and “1" signifies the hope that some
comporents of the model will ultimately be improved, leading to revisions of the equations.
MBDP-1 processes ead uterancein time propartional to the square of the number of
phoremesin the utterance Thus, the time required to segment a crpus with q utterances of

lengths|,..1, is order Z iqzl Ii2 , asubstantial improvement over Incremental Seach.
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At therisk of redundancy, it is worth emphasizing once again that MBDP-1 evaluates

word sequences by prior probability, without estimating a probability distribution on words.

4 Experiment

This section presents experiments comparing MBDP-1 to agorithms based on transitional
probabilities (TP), mutual information (MI), simple recurrent nets (Elman), and probabilistic
word grammars (Olivier). We aso include a comparison to LZW, the compression scheme on
which compressis based (see e.g. Hankerson, Harris, and Johnson, 1998). Finally, we compare
all these agorithms to pseudo-random segmentation in which the correct number of word
boundaries are inserted at random locations in the corpus. All the agorithms except the random
one segment in a completely incremental, unsupervised fashion and start with no knowledge of

the input language.

4.1 Method

4.1.1 Implementations

Transitional probabilities and mutual information. These algorithms track the
frequencies of all phonemes and phoneme bigrams in the portion of the corpus processed so far.
At phoneme position i they first update the frequencies for phoneme i, phonemei+1, and the
bigram spanning both. Next they compute the appropriate statistic (either transitional probability

or mutual information) between i and i+1, call it §i]. Finaly, they insert a boundary between



i-landiif §i -1] islessthan bah Fi] and §[i -2]. Word boundries areinserted at utterance
boundries uncondtionaly, bu otherwise eat uteranceboundry symbal istreged asa
“phoreme” in theinpu.

Elman’salgorithm. Asin EIman (1990, we used asimple reaurrent net (SRN) with 20
hidden units and 20context units. Each o the 50 phoremes in ou transcription system was
represented as an arbitrary six-bit vedor, so there were six input and six output nodes. The
weights were bounaded by one and minus one, the randam initia weights were bounded by 0.1
and -0.1,the learning rate was 0.1, and the momentum was zero. At phoreme position i the
root-mean-squared dff erence between the output vedor and the vedor representing phoreme
i +1 was computed. This datistic was used for segmentation in the same way as transitional
probabiliti es and mutual information, except for the treament of utterance boundaries. Word
boundiries were inserted at utterance boundiries uncondtionally as before, bu foll owing Elman,
utterance boundiries were otherwise ignored, rather than being treaed as inpu charaders.
Finally, the network was trained to predict phoreme i + 1 by badk-propagating the aror. We
aso tried running this algorithm with 5, 10,.,100 hdden and context units, bu sincethe
performancewas nealy identicd for al values we do nd report the results.

Olivier’salgorithm. In ou implementation d Olivier' s agorithm the inpu was
processed in blocks consisting of one utterance. A word-frequency table was initialized to
contain al the phoremes of the inpu aphabet, eat with frequency two. Before processng eath
utterance, relative frequencies were amputed by dividing ead word' s frequency by the sum of

the frequencies of all wordsin the table. Treding these relative frequencies as probabiliti es, a
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maximum likelihood parse of the utterance was found. The frequencies of words in this parse
were then added to their frequencies in the stored table. Finally, each pair of adjacent wordsin
the maximum likelihood parse was concatenated and the frequency of the resulting string in the
frequency table was incremented. Word boundaries were inserted unconditionally at utterance
boundaries. Frequency-one words were deleted from the word grammar after every 500
utterances; varying this parameter did not improve segmentation performance.

LZW. LZW, the text-compression algorithm that forms the basis of compress, maintains a
set of words, initialized to the source a phabet, and a pointer to the next unprocessed character in
the input. Starting with the next unprocessed character, it segments out the longest string that
matches aword in its current word set, outputs a compressed representation of the matching
word, and advances the input pointer over the matching string. It then adds to its set of words the
string just matched with the next character in sequence appended to the end. For example, after
matching ab from the input abcde, it would advance the pointer to ¢ and add abc to the word set.
Each matching string is considered aword in the segmented text. In our implementation, matches
were automatically terminated at utterance boundaries and new matches started afterward. When
amatch included the last character of an utterance, no new word was added to the lexicon.

MBDP-1. As described above MBDP-1 processes utterances one at atime. In our
implementation equation (24) is used from the beginning, although the approximation it is based
onisless accurate for the first few utterances than it is later on. After a segmentation is chosen
for an utterance, data structures representingn, L, k, andf are updated to reflect that

segmentation. The order of the words in the segmented utterances does not need to be stored to
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compute R because equations (21) and (22) are derived from the assumption that all orders are
equally probable.

Random baseline. We used a pseudo-random baseline segmentation to shed some light on
whether the other six algorithms were useful for segmentation at al. This baseline segmentation
was obtained by first counting the number of words in the correct, standard segmentation, then

inserting that number of word boundaries at randomly chosen, distinct locations in the corpus.

4.1.2 Input

All algorithms were tested on the same corpus of phonemic transcripts of spontaneous child-
directed English. Orthographic transcripts made by Bernstein-Ratner (1987) were taken from the
CHILDES caollection (MacWhinney & Snow, 1985) and transcribed phonemically. The speakers
were nine mothers speaking freely to their children, whose ages averaged 18 months (range 13-
21). In order to minimize the number of subjective judgments and the amount of labor required
every word was transcribed the same way every time it occurred. Onomatopoeia (e.g., bang) and
interjections (e.g., uh and oh) were removed for the following reasons: (1) They occur in
isolation much more frequently than ordinary words, so they would have inflated performance
scores; (2) their frequency is highly variable from speaker to speaker and transcriber to
transcriber, so their presence would have increased the random variance in performance scores,
and (3) there is no standard spelling or pronunciation for many of them, so we could not tell from
the orthographic transcript what sound was actually uttered. The total corpus consisted of 9,790

utterances, 33,387 words, and 95,809 phonemes. The average of 3.4 words per utteranceis
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typicd of sporntaneous geed to yourg children. The average of 2.9 phommes per word is not
surprising for atranscription system like ours, where diphthongs, r-colored vowels (e.g. the “a”
of bar), and syll abic consonants (e.g., the seamndsyll able of bottle) are eat transcribed by a
single symbd. These sounds are represented by two symbals in some transcription systems and
sometimes more than two in English orthography. (For examples, seethe sample output of
MBDP-1 in Table 2). Before runnng the experiment all word boundries were removed, bu

utterance boundiries were left intad.

4.1.3 Procedure
Ead segmentation algorithm was run onthe arpus described abowve, as was the randam baseline
agorithm. The Elman algorithm is nondeterministic due to the randam initial weights, so it was

run 100times, as was the randam agorithm.

4.1.4 Scoring

Asan oljedive (though certainly imperfed) standard of corred segmentation we used the
orthographic segmentation. The inpu was cored in two ways, one enphasizing the utility of the
algorithm for segmentation and the other emphasizing its utility for discovering novel words. To
compute the segmentation scores, we digned ead phoreme of the segmentation produced by
ead agorithm with the wrrespondng phoreme of the standard segmentation. Eadch word in the
algorithmic segmentation was labeled atrue positive if it lined upexadly with aword in the

standard segmentation —that is, bah boundries matched. Each word in the dgorithmic
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segmentation which dd na align exadly with aword in the standard segmentation was courted
asafalse positive. That is, afalse positive was sored for ead word in the dgorithm’s output
unlessboth its boundaries ali gned with consecutive boundriesin the standard. Each word in the
standard segmentation which dd na align exadly with aword in the dgorithmic segmentation
was courted as afalse negative. That is, afalse negative was scored for ead word in the standard
unlessboth its boundaries aligned with consecutive boundriesin the dgorithm’s output. Note
that all measures assessexad matches of whole words, na matches of single boundxries. We

then computed precision and recall asfoll ows:

true positives ocall = true positives
true positives+ false positives’ " true positives+ false negatives

precision =

These aeidenticd to the measures that we have cdl ed accuracy and completenessin previous
papers (e.g., Brent & Cartwright, 1996. In order to reved how the anourt of inpu processed
aff eds the performance of eat agorithm the corpus was divided into blocks consisting of 500
conseautive utterances. Segmentation predsion and recdl were scored separately for ead block.
To get a better picture of how ead algorithm performs a measure that we cdl lexicon
precision was computed after eady block of 500 uterances. After ead bock, ead word type
that the dgorithm produced was labeled atrue positive if that word type had occurred anywhere
in the portion d the mrpus processed so far; otherwiseit islabeled afalse positive. Because eab
distinct word type @ntributes only one point to the score for eat block, lexicon predsionis
influenced lessby performance on hgh frequency words and more by performance onlow

frequency words.
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4.2 Resultsand Discussion

Sample output from MBDP-1is shown in Table 2. The first five utterances are dl treded as
single, novel words. By 100 uterances ssgmentationis aready fairly good,athough uterance
104is gill under segmented. The only errorsin uterances 10001004are: noseistwice
segmented into no and se, probably due to the high frequency of the word no and the fad that the
sound z serves as a morphemic suffix (plural nours and 39 person singular verbs); thoseis
segmented into tho and se, probably for similar reasons. The only error in the last five utterances
of the crpusisthe failure to segment Ididn tthinkitwould. Overall, these examples siggest that
most of the arors are ather fail ures to segment a string of words or over segmentation at red or
patential morpheme boundhries; there seam to be very few errors that split morphemes.

For all seven agorithms, the segmentation predasionis shown in Figure 3, the

segmentation recd! in Figure 4, and the lexicon gredsionin Figure 5.

Insert Figures 3, 4, and 5 about here.

For the two nondeterministic dgorithmsthe mean of 100runsis shown. In bah cases, there
was very littl e variance from runto run —the standard error of the mean for every block of every
score was lessthan .001for both algorithms.

By every measure, MBDP-1 ouperforms all the other algorithms. Except for Olivier's
agorithm, the performanceranking of the dgorithmsis consistent acossall threemeasures:

MBDP-1 is better than M1, Ml is better than TP, TP is better than EIman’s algorithm, Elman’s
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algorithm is better than LZW, and LZW is better than the insertion d the @rred number of word
boundries at randam locaions. In retrosped, it is not terribly surprising that the dgorithms
based ontransitiona probabiliti es and mutual information do nd perform as well as the model-
based algorithm. The length of wordsin natural languagesisunbouned. In order to dscover
words, the aility to represent words of length greaer than two phoremes would appea to be a
distinct advantage. Further, one might exped that mutual information would be abetter way of
representing words of length two than transitional probability, since the mutual information
measures the degreeto which two phoremes tend to cooccur symmetricaly. However, SRNs
can represent statistics over strings of arbitrary length, so it isnat clea why Elman’s algorithm
did na perform better. The only explanation seansto bethat it does not learn the coccurrence
statistics of the @rpus as well as transitional probabiliti es, perhaps because of its limited
representational cgpadty. Thelad of consistent improvement with corpus s$ze beyondabou
2,000 phoemes legidlates against the notion that more input would help. The fad that al six of
the unsupervised segmentation algorithms perform better than randam segmentation suggests
they are dl doing something relevant to the segmentation task.

On the segmentation predsion andrecdl scores there isanotable gap between the two
worst performers, LZW and randam, and the remaining algorithms. To seewhy LZW is
poaly suited to linguistic segmentation, nde that a particular word W can orly be segmented ou
oncein a omntext where it isfollowed by a particular phoreme p; theredter, Wp will be alonger
match than W. For example, LZW can segment out only one of the instances of to foll owed by

the, nomatter how many there aein the inpu. More generaly, ead word type can be segmented
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out at most as many times as there ae phoremes in the source dphabet.

All the dgorithms except for MBDP-1 show at least a slight deaease in the lexicon
predsion measure & moretext is procesed. The pattern of results for Ml is particularly
interesting: It gets moderately good and sli ghtly improving scores on the segmentation measures,
whileit gets poa and deaeasing scores on the lexicon. One posshle explanationis as foll ows.
Since MI stores the frequencies of all phoremes and pairs of adjacent phoremes, it can represent
the ammon ore- and two-phoreme function words expli citly, even though it has no expli cit
representation d longer words. By the lexicon score, which attends only to word types, M| gets
full credit for segmenting out these words in the first few blocks. After that, it continuesto pasit
new words, bu with littl e success However, sincethe short, commonwords acourt for alarge
fradion d the tokensin every part of atext, M| continuesto dorelatively well by the measures
that give aedit for ead token.

For Olivier' s algorithm our results were completely consistent with the results he
reported: The probabili stic word grammar converged to a state where its words were far too long
and the dgorithm severely undersegmented. Thisisrefleded in the difference between its
segmentation predsion and recdl scores. Since anonttrivia propation d the utterancesin the
inpu corpus consist of just asingle word, moderately good segmentation redasion could be
achieved by treaing ead utterance a asingle word. However, ony asmall propation d the
word tokens arein single-word utterances, so treding every utterance a asingle word resultsin
poar recdl. Olivier'sagorithm chooses words that are too long because it attempts to minimize
the product of relative frequencies of words in an utterancewithou penalizing for the

introduction d long new words into the grammar. Minimizing the product of relative
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frequencies of words grongly favors minimizing the number of words — that is, maximizing the
length of words — and ndhing penalizesit. In our model the probability that a given word will
be generated in the lexicon(Pr,) deaeases rapidly with the length of the word. This tendency
balances the terms that favor minimizing the product of relative frequencies. We believe that this
isthe main fador acourting for the successof our agorithm. Indeed, any proper probability
distribution onthe set of al strings over alanguage will, in a cetain sense, display atrend toward
lower probabiliti es for longer words (Rissanen, 1989.

The de Marcken (1996 and the Christiansen, Allen, and Seidenberg (1998 algorithms
arenat diredly comparableto ous, bu it isworth mentioning the experimental results they
report. De Marcken’s agorithm is not comparable becaise it creaes a hierarchicd
decompasition d theinpu rather than a segmentation. Nonetheless de Marcken scores his
decompasition by comparing it to the orthographic segmentation, as we have dore here. He gives
his algorithm credit for finding aword if any node in the hierarchicd decomposition spans
predsely that word. By this measure de Marcken reports aword recdl of 90.3% on the milli on-
word Brown corpus. However, only onein six internal nodes in the hierarchy spans a true word,
yielding aword preasion d lessthan 1®6. De Marcken describes this as an advantage for his
applicaions, bu it isnot good performance on the task addressed in this paper. Christiansen et
a’salgorithm isnat diredly comparable to MBDP-1 becaiseit reliesoninpu feaure vedors
that encode the phondogicd relationships among phoremes, while MBDP-1 treas phoremes as
arbitrary, meaningless ymbals. Christiansen et al. provide an encoding for the phoremes of one
British daed, bu the performance of their algorithm on aher dialeds would depend on nonr
obvious dedsions abou how to encode phoremes as feaure vedors. They report a segmentation
recdl of 44.9% and pedsion d 42.7%%6 ona @rpus of sportaneous chil d-direded Briti sh English

with remarkably similar charaderistics to ou corpus.
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It is aso interesting to compare the performance of our agorithm to that of the batch
segmentation procedure Brent and Cartwright (1996 used to test their propcsed oljedive
function. Brent & Cartwright’s objedive function, kased ona minimum description length
analysis, shares many significant feaures with the objedive function derived here by a
probabili stic analysis. Because the batch agorithm took time propartional to the aibe of the
number of phoremesin the wrpus, it could na be tested ona wrpus as large athe 10,000
utterance @rpus used here. Brent and Cartwright reported average segmentation gredsion and
recdl for nine separate runs on rine 1350 phoreme (roughly 170-utterance) subsedions of the
corpus used here. Theresultswere41.3%6 predsionand 47.3%6 recdl, alittl e over half the
performancelevels reported here. This differencein performanceresults from the cmbined
effeds of four diff erences between the two algorithms:

1. the change from batch to incrementa seach, which makes it computationally feasible to
processcorpora of esentialy unlimited size and henceto lean from amore
representative sample of the language

2. the dhange from the “insert-two” heuristic seach (which could be used in either a batch
or an incremental algorithm) to dynamic programming

3. the dhange from generating the lexicd entries acarding to a uniform distribution on
phoremes to estimating a distribution on phoemes from the aurrent hypothesized
lexicon

4, differences in the objedive function resulti ng from using the model -based approac

rather than the minimum description length approacd.

Finally, we were aurious how MBDP-1 would perform in theided case in which it was
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given a correctly segmented version of the corpus followed by an unsegmented version. This
would have the effect that (a) all the target words in the unsegmented portion would be familiar
words, and (b) at any point during the processing of the unsegmented portion, the relative
frequencies of words in previous segmentations would be approximately correct. Even under
these ideal conditions performance could be limited by genuine ambiguities where syntax or
semantics is needed to decide among alternative ways of covering an utterance with actual words.
In addition, differences between the true distribution on word sequences and the simple model on
which MBDP-1 is based could lead to errors. However, asit turned out segmentation accuracy

exceeded 98% under these conditions.

5 Conclusions
5.1 Summary of findings
This paper began with an abstract specification of a probability model to which more
detailed models of phonology, word-order, and word frequency were fitted. Together with these
detailed models, the abstract model yields alanguage-independent, prior probability distribution
on al possible sequences of all possible words in any language over a given a phabet. The most
important features of the model are:
1. the abstract specification, which makesit possible to improve parts of the model without
affecting its fundamental structure
2. the generation of alexicon and a complete corpus, regardless of length, as asingle event

in the probability space, which avoids a number of theoretical problems associated with
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estimating probability distributions on vacabulary
3. the fad that there is a one-to-one @rresponcdence between joint outcomes of the model’s

nonceterministic steps (1-4) and segmentation hypotheses, which means that the prior

probabiliti es of word sequences can be computed without summing over outcomes, at
least as far asthe astrad model goes

4, the fad that ead segmentation hypothesis yields exadly one observable @rpusviathe
deterministic step (5), which means that the paosterior probabiliti es of segmentation
hypotheses, given an olserved uterance sequence are propartional to their priors.

Two segmentation algorithms were obtained by adapting the probabilit y distribution to
two seach methods: Incremental Search, which uses the probability model diredly, anda
dynamic programming seach that requires an approximation. The latter combination was dubled
MBDP-1 and wsed in the experimental sedion. Both methods are based onthe ideaof finding,
for any observed corpus, the segmentation d that corpus whose prior probability is greaest. Both
progressthrough the corpus one utterance d atime, committing to the segmentation d that
utterance before considering the next. The more dficient of the two algorithms, MBDP-1,
processes ead uterancein time propartional to the square of its length.

In an experimental comparisonto ather language-independent incremental segmentation
agorithms, MBDP-1 robustly outperformed al the other algorithms tested. The most dramatic
differences rowed upin the lexicon predsion measure, which moderates the influence of high

frequency words.
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5.2 Futurework

Thereisroom for improvement in al threeof the comporents that fill out the detail s of the
abstrad probability model: word-order, phonadogy, and word frequency. For word-order, the
current model assumes auniform distribution on @rmutations of the word types. Thisis
tantamourt to ignoring all syntadic and semantic df eds on the probabiliti es of various word
sequences. A simpleimprovement would be to add a step to the model in which bigrams or
trigrams of words are generated from the set of word types. Instead of choasing frequencies for
eadt word independently, the model would choose frequencies for ead word condtioned on
eat passhble previous context. The permutations would then be chosen so asto resped these
contextually condtioned frequencies. A more anbiti ous approadch would be to add some kind o
grammar — say, a stochastic context-freegrammar — to be picked by the model acwrding to
some prior distribution onsuch grammars (perhaps along the lines of Stolcke, 19949.

For phondogy, the airrent model generates word types for the lexicon by choasing
phoremes independently of one anather. Thisistantamourt to ignoring the dfed of a
language’ s phondogy on the probabiliti es of various phoreme sequences being words of that
language. Just as with word sequences, arelatively straightforward approach would beto use
bigrams or trigrams of phoremes. Ancther approach would be to use template grammars to
generate words in the lexicon (seeCartwright & Brent, 1997.

Improvements could also be made in modeling the relationship among the total
frequencies of words, their lengths, and the number of utterancesin the crpus. There have been

several attempts to model word frequency distributions in corpora, length distributions, and the
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joint length-frequency distribution in detail (Baayen, 1991; Mandelbrot, 1953; Miller, 1957; Zipf,
1935); incorporating the results of these studies would make the model more accurate.

While MBDP-1 offers substantial improvements over previous unsupervised
segmentation algorithms, we look to improving it through the addition of better component

models of phonology, word order, and word frequency.

5.3 Implicationsfor child language acquisition
From the perspective of language acquisition theory MBDP-1 is consistent with the
INCDROP modéel (Brent and Cartwright, 1996; Brent, 1996, 1997). Both models predict that
learners will segment utterances in such away asto:
1 Minimize the sum of the lengths of al novel wordsin the segmentation
2. Maximize the product of relative frequencies of all words in the segmentation, where the
relative frequency of all novel wordsis taken to be a positive number less than the
relative frequency of aword that has occurred only once before.
These predictions in turn imply that:
1. An utterance will be treated as a single, novel word if no substring of it isafamiliar word.
2. Familiar words that do not overlap other familiar words in an utterance will tend to be
segmented out, unless they are both short and rare.
Using adult subjectsin artificial-language learning experiments, Dahan & Brent (1999) find
evidence in favor of the latter two predictions. The models also make other, more detailed

predictions, many of which have not yet been tested in behavioral experiments (see Brent, 1997,
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Dahan & Brent, 1999.

From a aogniti ve modeling perspedive, the main dff erence between MBDP-1 and ou
previous modelsisthat MBDP-1 uses estimates of the frequency in the lexicon d ead phoreme.
The fad that this contributed to improved performance suggests that it would be useful for
human language leanersto dolikewise. For example, it would be useful for children leaning
English to know that, while theinitial phoreme of the, this, that, and them occurs very frequently
in speed, it norethelessoccursin very few distinct words. Thus, the hypothesized occurrence of
anowvel word li ke thatman shoud be assgned alower probability than that of anovel word like
batman because of the relatively low frequency of thin the dhild’s developing lexicon. Thus, the
model suggests that it might be worthwhil e to investigate whether human leaners doindeel (a)
distinguish between the frequency of phoremes in the lexicon and their frequency in speed, and

(b) use lexicd frequency in assessng the plausibility of novel words.
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Appendix A: Approximation to the distribution on sets of pronunciations
This appendix presents the derivation of the approximation to the actual probability (16). Pulling
out thei = n, term from the numerator of (16), we can rewrite the right-hand-side as:

4 onA

S (-3 renw,) -3 e )

) pA{d,...n} =1

(25)  Pr (W, -

ne -1 .
i-1
[ (1_ j:lPrU(WP(J)))

p{1,...n -1} 1=1

We now use the approximation

1

O Mt O O n -1 & O
(26) %—;Pra(wp(j))g =t- o DjZlPrU(Wp(j))E
The sum on the left-hand-side includes the probabilities of all the W,, i = 1,...,n, except one,

Wp(nk ) The approximation is that instead of omitting precisely this probability, we omit the
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probability of the average of all the W, . This approximation is too great for some permutations
and too small for others. Since the approximation is asum over al the W, it isindependent of

the permutation and can be factored out, allowing us to rewrite (25) as:

nk—l X -1
i-1
Pr, (W, ) > ] (1_ jzlprU(Wp(J)))
(27) 1 o Ny p{l,...n} 1=1 :
_ n - Ny M i—1 -1
1 n, jzlPra(Wi) Z I_l (1_ j:lPrU(WP(J)))

p{l,...n, -1} 1=1

We now define:

n -1 , 4
[] (1 B Ij_:llprU(WP(i)))
(29) hk _ _p{hond |n:k1_l — .
[l (1_ jzlPrU(Wp(i)))

p{l,...n -1} 1=1

Substituting into (27), we write:

Pr(L) _ Pr (W, )
(290 Pr(L.) 1_”kn7_12’;k=1pra(wj)
and focus on understanding the range of values that hk may take on.

[,

To this end, we now change the denominator of h, to an equivalent expression summed
over dl permutations of {1,...,n,} . Define afunction g from permutations of {1,...,n,} to
permutations of {1,...,n, —1} asfollows:

(i) if p(i) <n,
(ny) if p(i) =n,

. p
30
(30) a(p)(i) Ep

This function maps n, permutations of {1,...,n,} into each permutation of {1.....n, =1}, sowe

can rewrite (28) as:

-1

nﬁ(l‘ zi:lpra(wpm))

p{l...n} 1=1
1 i i-1 1
n > u (1_ jzlprU(Wg(P)(i)))
Kk p{lyn) i=
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The effect of changing p to g(p) in the denominator isto replace Pr, (W, ) with
Pr,(W,,)) whenever the former term is present in the inner sum. Thus, we can change back

from g(p) to p if we make this change explicitly, rewriting the previous equation as:

n -1

i-1 -1
p:{l,.Z.,nk} D (1_ i=1Pr0(Wp(j)))

1 n-l

h =n, O P (ng) 1

P:{l,.Z.,nk} D (l_ ii;llpra(wp(j)))

i-1 &
(1+ Pry(W, ) = Pro(W,,,) - J_:1Prc,(Wp(j)))

i=p*(ny)

The numerator and the denominator are now identical except for the replacements of

Pra(Wnk ) with Pr (W, ) . In permutations where p~(n,) = 1the replacement occursin every
term of the product. In permutations where p~*(n, ) = n, — 1 the replacement occursin only one
term of the product. In permutations where Pr, (W, ) > Pr (W, ,) the substitution makes the
term for that permutation smaller, and this contributes to making h, as awhole larger.
Conversely, in permutations where Pr, (W, ) < Pr, (W, ,) the substitution makes the term for
that permutation larger, and this contributes to making h, as awhole smaller. Thus, if Pr, (W, )
is large compared to the probabilities of earlier words, the net effect will be to increase h, and
hence to increase the relative probability of L,, and conversaly. In the experiments reported in

this paper, we use the approximationh, = n, and hence

Pr(L,In,) _ n, PrJ(Wnk)

(B Pr(L_n, -1 , N -1
k-11Mk 1—7nk DZj:lprU(Wp(j))

with the understanding that this expression is not quite as responsiveto Pr, (Wnk ) asit should be.
Equation (31) is the approximation given in the main text as (17).
In the experiment reported here the sum in the denominator is 0.302 after segmenting all

10,000 utterances. This suggests that requiring each string selected to be unique has some
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impad, increasing the probability of novel words by afador of almost 1.5. Thisimpad is of the
same order as al of the other termsin the relative probability of anovel word (21) except for
Pr, (W, ), the probability of picking that word's particular phoreme string independent of the
rest of the lexicon. Further, a better phondogicd model than the one used in these experiments
would assgn greder probability to the words in the lexicon (and lessto the others). This could
gredly increase the sum in the denominator, giving this term a greaer impad on the overall

probability.
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Table 1: An example of apossble output of the generative processusing ordinary letters for the

aphabet.
1. n=6
2. L={do#, the#, kb#,like#, see#, mbo#}.
W, [ W, W | W, W | W | W
do# | thett | kb# | like# | see# | mbo# | $
3.
fQ) [ @) [T | 4 | f(5) | f(6) |f(0)
2 4 2 1 2 2 2
4, m=2+4+2+1+2+2+2=15
S(1) [ S(2) [s(3) [ (D [ s(5) | s(6) | S(7) | S8 | S9) | S(10) | s(1) | s(12) | s(13) | s(14) | s(19)
1 3 5 2 6 0 5 2 2 0 1 3 4 2 6
W =W =Wi=do#  W,=W,,=Wy=kb#  w=W,;=W,=see# W, =W, =W,=the#
5. dokbseeghembo$sedhethe$dokHi kethembo
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Table 2: Sample output from MBDP-1 run ona @rpus of phoremicaly transcribed, sportaneous

child-direded speed.

Utterance  Phoretic Output (adual form) Orthographic Equivaent

1 yuwanttusiD6bUk youwanttoseehebook

2 I[UkD* z6bAvI Thizhé& t lookthere’ saboywithhishat

3 &nd6dogi andadoggy

4 yuwanttulUk&tDls youwanttolookatthis

5 |Uk&tDIs lookatthis

100 h9 d&d& hi dada

101 se h9 d&d& say hi dada

102 hElo hello

103 hElo d%d& hello dada

104 Iz Itd&dianD6fon is itdaddyonthephore

1000 6 noz anose

1001 It 1z 6kQz noz itisamw’ snose

1002 rot D* 1z 6kQz noz right there isacow’sno se

1003 gud g3l goodgirl

1004 9 dort TINK yu no Eni 6v Do z TIN | dont think you knaov any of tho se
z thing s

9786 D* there

9787 nQ D6 d% Iz op~ now the doa is open

9788 yu k&n pJt him In K you can pu him in here

9789 D* there

9790 no 9dd~tTINkItwUd fiIt iDR no Ididn'tthinkitwould fit either

59



Figure 1: An example of the @rrespondence between Huff man codes and words in Brent and
Cartwright’s self-delimiti ng representation scheme. The leaves of the mde tree ontain the mdes.
Thewords are listed in order so that the leftmost word corresponds to the leftmost code in the
tree For example, if the sequence of words were thetkitty# i kettdo#youttsee then the wde word
for the would be 00, the ade word for kitty would be 01, and so forth. The order of the wordsin
the segmentation do you see the kitty see the kitty do you like the kitty would then be represented
by 10111011100011110001101110100009dte that both the code tree and the lettersin the
word list are further encoded as lf-delimiti ng binary strings (seeBrent & Cartwright, 1996

Quinlan & Rivest, 1989.

100 101 110 111
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Figure 2: A dynamic programming algorithm for finding the segmentation of the current
utterance that maximizes (24). The inputs are utterance, the current utterance, and W, , the
segmentation chosen for al previous utterances. Ris afunction that computes R(W, w ;) for
any W_ and any hypothesized word w,,,; according to equations (21) and (22). Theindices first-

char and last-char index arrays parallel to the input utterance.

MBDP-1(utterance, W, )
for last-char = 0 to length(utterance)
best-product [last-char] = R(W,, , substring(utterance, O, last-char));
best-start [last-char] = 0;
/I After thisloop, best-start [last-char] points to the beginning of the optimal word
/I ending with last-char. Of course it may turn out that no word will end at last-char in
/I the optimal segmentation.
for first-char = 1 to last-char
word-score = R(W_, , substring(utterance, first-char, last-char));
if word-score* best-product [first-char -1] > best-product [last-char];
best-product [last-char] = word-score * best-product [first-char - 1];
best-start [last-char] = first-char;
/I Now work backward along the best path to insert actual word boundaries.
first-char = best-start [length(utterance)];
whilefirst-char >0
insert-boundary(first-char);

first-char = best-start [first-char - 1];
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Figure 3: Segmentation precision of seven algorithms scored on successive 500-utterance blocks

of phonemically-transcribed, spontaneous child-directed speech.
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Figure 4: Segmentation recall of seven algorithms scored on successive 500-utterance blocks of

phonemically-transcribed, spontaneous child-directed speech.
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Figure 5: Lexicon precision of seven algorithms scored on successive 500-utterance blocks of

phonemically-transcribed, spontaneous child-directed speech.
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Notes

1.Phonemes are symbol s representing the basic sounds that serve to distinguish one word from
another in alanguage. For example, the b sound of cab or the sh sound of ship.

2.Brent and Cartwright (1996) proposed an objective function that children might use for
segmentation, but did not specify a search procedure for the optimization. Brent and Cartwright
investigated their objective function using aglobal optimization agorithm, but this was not
proposed as an agorithm children might use.

3.A morphemeis an atomic unit of meaning or syntactic function, including root words like toy,
inflectional suffixeslike -s, and derivational suffixes like -ness.

4.Thisratio looks like a conditional probability, Pr(W, |W,_, ). Indeed, that notation would be

convenient and algebraically correct. However, the semantics of the model are not consistent
with aconditional probability interpretation. The sequence w;, ...,w, isnot a onjunction d events
from the probability spacebut rather asingle event that is determined by the joint outcomes of
steps 1-4 above. Thus, w;, ..,w,, andw,, ...,w, are adualy distinct, mutually exclusive events
from the probability space The only reasons for taking their ratios are to simplify algebra and
fadlit ate computation.

5.A reasonable dternative would be Rissanen’s -cdled unversal prior (e.g, Rissanen 1989,
which isthe limit of a sequenceof increasingly flat, monaonicaly deaeasing distributions on
the positi ve integers. Although the universal prior isflatter (“moreignorant”) than the
distributionwe used, it is algebraicadly and computationally more complex.

6.Add-one smoathing can be derived rigorously under the assumption that the number of typesis
aknown, fixed integer. When occurrences of words are treaed as independent events this
predicts that, as the size of the sample grows withou bound,the frequency of the least frequent
word will also grow without bound.This appeasto be false for natural |anguage vocabularies;
large corpora ae not sampled from afixed vocabulary but refled the continual generation d new
vocabulary. When a wrpusisviewed asasingle event there isno such prediction —sample size
isaways ore.

7.At the level of detall appropriate for cognitive modeling, MBDP-1 can be viewed as an
implementation d the model that Brent (1997 and Dahan and Brent (1999 refer to as
INCDROP.
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