
Running head: Probabilistic segmentation and word discovery

An Efficient, Probabilistically Sound Algorithm for Segmentation and Word

Discovery

Michael R. Brent

Johns Hopkins University

Address correspondence to: Michael R. Brent
Department of Cognitive Science
Johns Hopkins University
Baltimore, MD 21218

email: brent@jhu.edu
phone: 410-516-6844
fax: 410-516-8020

2

Abstract

This paper presents a model-based, unsupervised algorithm for recovering word

boundaries in a natural-language text from which they have been deleted. The algorithm is

derived from a probability model of the source that generated the text. The fundamental structure

of the model is specified abstractly so that the detailed component models of phonology, word-

order, and word frequency can be replaced in a modular fashion. The model yields a language-

independent, prior probability distribution on all possible sequences of all possible words over a

given alphabet, based on the assumption that the input was generated by concatenating words

from a fixed but unknown lexicon. The model is unusual in that it treats the generation of a

complete corpus, regardless of length, as a single event in the probability space. Accordingly, the

algorithm does not estimate a probability distribution on words; instead, it attempts to calculate

the prior probabilities of various word sequences that could underlie the observed text.

Experiments on phonemic transcripts of spontaneous speech by parents to young children suggest

that our algorithm is more effective than other proposed algorithms, at least when utterance

boundaries are given and the text includes a substantial number of short utterances.

Keywords: Bayesian grammar induction, probability models, minimum description length

(MDL), unsupervised learning, language acquisition, segmentation

3

1 Introduction

1.1 Background and Motivation

Unlike printed English, in which words are separated by blank spaces, speech does not contain

any reliable acoustic demarcation of word boundaries. As a result, the input from which children

learn their native language more closely resembles a series of utterances, which are demarcated

by silence, than a series of words. Language acquisition researchers have long been interested in

how children segment speech and learn the sounds of individual words, starting from a state in

which they do not know any words. This interest has led to a number of proposed algorithms for

an abstract version of the speech segmentation task. In this task words are represented as strings

of letters or phonemes1 and speech is represented as a text from which the word boundaries have

been removed. Such algorithms also have potential applications for segmenting written texts in

languages where word boundaries are not marked in the orthography. In this paper, however, we

focus on algorithms that children could use for segmentation and word discovery during language

acquisition. This goal imposes significant constraints on segmentation algorithms. First, they

must start out without any knowledge specific to a particular language; engineering systems can

make use of existing dictionaries. Second, they must learn in a completely unsupervised fashion;

engineering systems can train on pre-segmented text. Third, they must segment incrementally.

To a first approximation, this means that the segmentation of each utterance must be finalized

before the next utterance is read in. Specifically, algorithms that make multiple passes through

the corpus or do global optimization will not be considered here.2 Finally, the cognitive

modeling goal dictates the kind of corpus on which we compare algorithms — phonemic

transcripts of spontaneous speech by mothers to their young children. As discussed below, these

corpora are quite different from the types of corpora normally used in language engineering;

performance on child-directed speech corpora may not be a good predictor of performance on the

4

Wall Street Journal.

Previous segmentation algorithms can be divided into three major classes. The first class

focuses on identifying individual word boundaries. These algorithms do not have any explicit

representations of words. They isolate words within an utterance only as a side-effect of

correctly identifying two adjacent word boundaries. In a class of its own is Olivier’s (1968)

algorithm, which is based on maximum-likelihood estimation of a probabilit y distribution on

words and maximum-likelihood segmentation of successive blocks of input. The final class of

previously proposed segmentation algorithms consists of those that are based on some form of

minimum representation-length or text compression. Algorithms from each of these classes are

discussed below.

The algorithms proposed in this paper are based on an explicit probabilit y model. Given

any observed input corpus, the model defines an optimization problem: Find the highest-

probabilit y segmentation of the input, where a segmentation is any sequence of words that yields

the observed input when the word boundaries are deleted. Two local optimization algorithms that

address this problem are discussed.

1.2 Boundary-finding algorithms

1.2.1 Local statistics

Harris (1954) sketched the first procedure for finding morpheme3 boundaries in phonetic

transcriptions of sentences. Harris defined the successor count of each prefix string of a sentence

as the number of distinct phonemes that can follow that prefix in some grammatical sentence of

the language — in other words, the number of one-phoneme extensions that are themselves

prefixes of some grammatical sentence. For example, consider the utterance he’s quicker,

transcribed as /hIyzkwIkFr/. The successor count of /hIyzk/ is defined to be the number of distinct

5

phonemes that can follow /hIyzk/ in grammatical English sentences that begin with the phonemes

/hIyzk/, sentences such he’s cranky, he’s quiet, he’s careless, and so on. To segment an utterance

U, Harris proposed that boundaries be placed after those prefixes of U whose successor counts

are at least as great as those of their immediate neighbors, the prefixes of U that are one phoneme

shorter or longer. For example, if the successor count of /hI/ were 14, that of /hIy/ were 29, and

that of /hIyzk/ were also 29, then a boundary would be placed after /hIy/ (he). (See Brent &

Cartwright, 1996, for further discussion.) This procedure cannot be considered an algorithm,

however, since it relies on human introspection to determine the successor counts. But Harris’s

idea — that the successors of phonemes within words will t end to be more constrained than the

successors of phonemes at the ends of words — has survived in other proposals. For example,

Saffran, Newport, and Aslin (1996), treating syllables rather than phonemes as the fundamental

units of input, have proposed that children might estimate the probabilit y of each syllable in the

language conditioned on its predecessor. This particular conditional probabilit y estimate is

commonly called the transitional probabilit y. Saffran et al. suggest that children may segment

utterances at low points of the transitional probabilit y between adjacent syllables — that is, when

a syllable occurs that is surprising given its predecessor.

Transitional probabilit y is asymmetric — the surprisingness of each syllable is

conditioned on its predecessor but not on its successor. Although it has never been proposed in

the language acquisition literature, a more natural, symmetric measure of the surprisingness of a

pair of adjacent sound units is their mutual information (MI), defined as:

M I(,) log
P r()

P r() P r()
x y

xy

x y
≡

⋅2

(see, e.g., Jelinek, 1997). In the experiments reported below, we compare the performance of an

6

algorithm that segments at low points of transitional probabilit y between phonemes, and one that

segments at low points of mutual information, to our algorithm.

1.2.2 Connectionist algorithms

Elman (1990) proposed a connectionist segmentation algorithm based on the same idea —

segment just prior to phonemes that are surprising given the preceding context. However,

instead of using a statistic based on a fixed context window, such as one phoneme, Elman used a

simple recurrent net (SRN) to evaluate surprisingness. An SRN is an artificial neural-network in

which input is processed sequentially and the activations on the hidden layer at each time step are

fed back as input to the hidden layer at the next time step. This gives the network access to a

limited amount of information about the left context at each time step. The distance over which

information is stored is not fixed in advance; it depends on the network’s weights and on the

particular input sequence. Elman encoded an alphabet of phonemes as arbitrary five-bit

sequences and trained the network to predict the next phoneme at each time step. He then

suggested that time steps on which the network’s prediction error was high were likely to be

those on which it attempted to predict the first phoneme of a word. In the experiments reported

below we compare the performance of Elman’s algorithm to that of our own.

Christiansen, Allen, and Seidenberg (1998) propose a segmentation algorithm that uses

SRN’s in a different way. Like Elman, Christiansen et al. train an SRN to predict the next

symbol in the input, but they include utterance boundaries among the input symbols to be

predicted. They interpret the net as predicting a word boundary whenever the output on the

utterance boundary unit exceeds a certain threshold (the mean activation of the utterance

boundary unit during training). The reasoning is that output on this unit will t end to rise after

phoneme sequences that occur relatively often at the ends of utterances, and since the end of an

7

utterance is also the end of a word, those same sequences will t end to occur relatively often at the

ends of words (see also Aslin, Woodward, LaMendola, & Bever, 1996; Brent & Cartwright,

1996). Christiansen et al. also report simulation experiments in which the input and the

prediction task included information about which phonemes were part of a stressed syllable and

which were not. Their results, which are discussed further below, suggest that both the utterance-

boundary strategy and the stress information are useful for segmentation, but stress is much less

useful than utterance boundaries.

1.3 Word grammars

Olivier (1968) proposed a segmentation algorithm based on the idea of reestimating probabili stic

word grammars. A word grammar is just a finite li st of f inite strings (i.e., a lexicon) and the

language it generates is the set of all finite concatenations of those strings. A probabili stic word

grammar is a word grammar along with a probabilit y distribution on the words. Olivier’s

algorithm maintains an integer for each word in its grammar that corresponds in some sense to an

estimate of the frequency with which that word has occurred in the input so far. Initially, each

character in the alphabet is given a frequency estimate of two. (This represents an a priori

estimate of the frequency with which the character occurs as a word, not as a character in other

words.) The algorithm then processes the input incrementally in blocks. Before processing each

block, it divides the frequency estimates of the words in its current grammar by their sum to

come up with an estimated probabilit y distribution on its current word grammar. It then finds the

maximum likelihood (ML) segmentation of the block given its current word grammar, using

dynamic programming. Finally, it updates the frequency counts in two ways. First, it adds to the

frequency estimate of each word to that word’s frequency in the ML segmentation of the current

block. Second, it joins each pair of adjacent words in the ML segmentation of the current block

8

and increments the frequency of the resulting words by one. The second procedure is necessary

because Olivier’s method of estimating probabilit y distributions assigns probabilit y zero to any

word not in the current word grammar. This implies that the maximum likelihood parse can

never contain any word that was not already in the word grammar. (The presence of all the letters

as words in the initial grammar ensures that there is always a parse with non-zero probabilit y.)

As a result, updating the frequency estimates based only on the maximum likelihood parse would

never yield any new words. In Olivier’s own 1968 implementation frequency-one words are

deleted from the lexicon periodically, but he explicitl y states that this is not a fundamental part of

the algorithm, just an expediency to allow the program to run in the available memory.

1.4 Information-based approaches

This section discusses approaches in which representation schemes are used to define probabilit y

distributions over segmentations implicitl y. A binary representation scheme associates to any

finite string over a given source alphabet one or more finite binary strings known as the

representations of that source string, in such a way that no pair of distinct source strings shares a

common representation. Alternative terms for representation scheme and representation are code

and encoding, respectively. A representation scheme is said to be self-delimiting if there exists an

algorithm that can find the end of any representation without reading beyond the end, given the

beginning. For any self-delimiti ng binary representation scheme, the sum of the negative binary

exponentials of the lengths of all representations (*2-length) converges to a number between zero

and one (Kraft, 1949; Li & Vitanyi, 1993). This implies that the set of all source strings can be

treated as a discrete probability space, where the probability of any source string is proportional

to the sum of the negative binary exponentials of the lengths of all its representations. If a string

has only one representation then its probability is just the negative binary exponential of that

9

representation’s length. The proportionality constant is a normalizing factor equal to one over the

sum of the negative binary exponential of all representations (1/*2-length). Representations are

useful because they provide a straightforward method of constructing a measure whose sum is

guaranteed to converge.

Brent & Cartwright (1996) devised a self-delimiti ng representation scheme that assigns a

unique representation to each segmentation of each string over a given alphabet. They then

treated the problem of segmenting an input text as an optimization problem: Find the

segmentation of the input with the shortest representation. This is equivalent to finding the most

probable segmentation under the distribution in which the prior probabilit y of each segmentation

is proportional to the negative binary exponential of its representation’s length. Brent and

Cartwright’s scheme works by Huffman-coding the sequence of words in a segmented text, then

coding the mapping from Huffman codes to words (see Figure 1 for an example).

Insert Figure 1 about here.

The paper reported on the segmentation accuracy achieved when a particular heuristic strategy

was used to search for the segmentation of a corpus that minimized this objective function.

However, this search strategy was off- line and took time proportional to the cube of the number

of phonemes in the corpus. Since this search mechanism was not cognitively plausible, Brent and

Cartwright limited their cognitive model to the objective function. The relation of that function to

the probabilit y model proposed here is discussed below, as are the results Brent and Cartwright

reported.

Brent and Cartwright’s approach to segmentation is one example of the minimum

representation-length technique, also known as minimum message-length (Wallace & Bolton,

10

1968) and minimum description-length (Quinlan & Rivest, 1989; Rissanen, 1989). It is

traditional in the minimum representation-length literature to divide representations into two

portions, one corresponding to the set of generalizations extracted from the input (lexicon,

grammar, decision tree, patterns, rules) and the other corresponding to the “accidental” or

“unpredictable” component of the input, such as what a particular person chose to say at a

particular time, given the constraints imposed by the rules of his or her language. The length of

each portion can then be interpreted in Bayesian terms as the probabilit y of the generalizations

and the probabilit y of the unpredictable component, given the generalizations. This division often

leads to useful insights about how to interpret the shortest representation of an input in terms of

some other inference problem. Dividing representations up in this way is not necessary for the

construction of a probabilit y distribution, however.

Text compression schemes like LZW (the basis of compress, see e.g. Hankerson, Harris,

and Johnson, 1998) are also self-delimiti ng representation schemes for texts over a source

alphabet. Further, they represent source texts by assigning them a unique segmentation into

shorter strings and applying a self-delimiti ng representation scheme to each shorter string in the

resulting sequence. The compressed text can be viewed as a representation of the unique

segmentation that LZW assigns to the source text. Because it assigns a unique segmentation to

each source string, however, it is not a representation scheme for all possible segmentations of all

source strings. Viewed as a probabilit y distribution on segmentations of a given input, LZW

assigns all the probabilit y to one segmentation. The segmentations chosen by a deterministic

scheme like LZW could turn out to have linguistic relevance, but there is no a priori reason to

expect that they should. We return to the linguistic relevance of LZW in the experimental

section.

De Marcken (1996) also took a minimum representation-length approach to the

11

segmentation problem. However, rather than representing segmentations of the source string, de

Marcken’s scheme represents a hierarchical decomposition where the input is divided into

substrings and each of the substrings is further subdivided until the level of individual characters

is reached (see also Nevill -Manning & Witten, 1997; Wolff , 1982). This structure can be viewed

as a parse tree whose leaves are the individual characters of the input, and whose nodes span the

substrings of the decomposition. Given a text, de Marcken used an off- line algorithm to search

for the hierarchical decomposition with the shortest representation. At the end, the substring

spanned by each node in each tree was interpreted as a possible word, but there was no

commitment about which actually were words and which were not. Thus, while de Marcken’s

algorithm and hierarchical text compression algorithms are related to the problem of interest

here, they do not address that problem directly.

Redlich (1993) also proposed an off- line segmentation algorithm based loosely on the

minimum representation-length framework. However, the only experimental results reported

were on one paragraph of written text. Further, the algorithm was not suff iciently well specified

that we could reimplement it, and hence it is diff icult to evaluate.

1.4.1 Information minimization versus explicit probability models

The minimum representation-length approach provides a straightforward, intuitive

method for constructing a probabilit y distribution. Further, it is not diff icult to craft a

representation scheme such that the corresponding distribution roughly reflects one’s intuitions

about the structure to be uncovered — that is, the system responsible for generating the observed

text. However, the representation schemes one devises are very rarely perfectly eff icient; that is,

there are binary strings b such that b is not a prefix of the representation of any source string, nor

is the representation of any source string a prefix of b. This implies that the sum over all source

12

strings of the corresponding probabilit y is strictly less than one — there is missing probabilit y

mass and there may not be any sensible model that generates source strings according to the

induced measure. There is no way to know how this missing mass may influence the inference

process without recovering it or characterizing it formally. Even when the missing mass is

relatively small i n practical terms, there are theoretical advantages to having a coherent

probabili stic model of how the input is generated. A sound model of the source yields insight

into how the model corresponds to known linguistic structure, how it differs, and how the

differences might be mitigated.

Brent and Cartwright’s representation scheme offers an example of missing probabilit y. It

chooses one particular assignment of binary codes to words even though any consistent

assignment could represent the same segmentation. All the potential representations based on

alternative assignments are wasted — they don’ t represent any segmentation, they are not

prefixes of the representation of any segmentation, and they are not extensions of the

representation of any segmentation. As a result, the probabilit y mass corresponding to these

potential representations is lost.

In the next section of this paper we present an explicit probabili stic model of how

lexicons are generated from alphabets of phonemes and how texts are generated by concatenating

words from lexicons. The general structure of the resulting probabilit y measure is similar to that

which Brent and Cartwright (1996) derived by the minimum representation-length method.

However, some of the missing probabilit y mass has been recovered, and all implicit

approximations have been uncovered and made explicit. The explicit probabilit y model also

makes it clear how components of the model, such as the distribution on the phonological forms

of words, can be upgraded in a modular fashion. Indeed, one small step in that direction is taken

in this paper, where we estimate a distribution on phonemes in the lexicon rather than using a

13

uniform distribution.

2 A probability distribution on all finite sequences of all possible words

This section introduces an explicit, language-independent, model-based probability

distribution on all possible sequences of all possible words over a given alphabet. The

presentation is organized into four subsections. The first subsection describes the structure of the

probability model at a level that abstracts away from many details needed to actually compute the

probabilities of word sequences. The abstract structure is quite general and independent of the

various simplifying assumptions that are made later on for the sake of expediency; it serves as a

backbone to which various component models can be attached.

The second subsection derives a pair of recursive formulae for evaluating the probability

of any given word sequence. These formulae are stated in terms of the abstract model; they

cannot be used for computing probabilities until the detailed component models are specified.

The third section presents one set of component models that are motivated, in part, by

algebraic and computational simplicity. It is expected that each one will be improved in future

work. This subsection concludes with the specific recursive formulae used in the experiments

reported below.

The fourth and final subsection discusses the equations derived in the previous three

sections. The discussion focuses on the implications of an interesting theoretical observation

about the probability model: The prior probabilities of segmentations can be evaluated without

estimating a probability distribution on words. In specifying the detailed distributions we assume

that a distribution on phonemes is estimated from the input, but that is not necessary. If a uniform

distribution on phonemes were used instead then the probability of any given word sequence

could be evaluated exactly, without estimating anything.

14

It is worth noting that the goals of this section are primary theoretical. They are: (a) to

provide a general purpose framework to which a variety of specific linguistic distributions can be

interfaced in a modular fashion, and (b) to show one example of how this can be done.

Naturally, the probability model presented in this section defines an optimization problem: Given

an unsegmented input, find the most probable word sequence among all possible segmentations

of the input. Two incremental algorithms aimed at finding an approximate solution to this

problem quickly are introduced in the next section. In the current section the focus is on the

model and on the evaluation of the prior probabilities of individual segmentations.

2.1 Structure of the model

This subsection describes the structure of the probability model at a level that abstracts

away from many details needed to actually compute the probabilities of word sequences. The

structure is specified as a non-deterministic algorithm that generates every possible word

sequence and then, by deleting word boundaries, every possible input to a segmentation

procedure.

Let (be the input alphabet and let # and $ be two symbols not contained in (. The

generation algorithm consists of four non-deterministic steps and one deterministic step. At the

end of the non-deterministic steps, the algorithm has generated a sequence of utterances

separated by $. Each utterance consists of a sequence of words separated by #. This will be

called a delimited utterance sequence. The final, deterministic step of the algorithm deletes the

#’s leaving a sequence of utterances in which word boundaries are no longer marked. This will

be called a non-delimited utterance sequence. Given a particular delimited utterance sequence,

the result of deleting the #’s will be called its yield. Conversely, given a particular non-delimited

sequence N, each delimited sequence of which N is the yield will be called a segmentation of N.

15

The input to a segmentation algorithm is a non-delimited utterance sequence; the output is a

delimited utterance sequence that is a segmentation of the input.

The five steps of the abstract generative model are as follows:

1. Pick a positive integer n, representing the number of distinct word types to be generated.

2. Pick a set of n distinct strings from the set (+#, representing the phonological forms of

word types. Call the result L, for lexicon. Let the names W1,á,Wn be assigned arbitrarily

to the members of L. We can now write L={W1,á,Wn}. Let , the distinguishedW0 = $

utterance-boundary marker.

3. Pick a function f:{0,á,n}Ú{1,2,á}, where f(i) represents the total frequency of word Wi.

Note that f(i) is not a relative frequency or probabilit y but a positive integer representing

the number of times word Wi will occur in the word sequence being generated.

4. Let m be the total number of word tokens — the sum of the frequencies of all n words.

Pick an ordering function s:{1,á,m}�{1,á,n} that maps each position in the text to be

generated to the index of the word that will appear in that position, so that Ws(i) appears as

the word token in the generated text. For notational convenience, definei th

. w w W Wm s s m1 1, , , ,() ()� �≡

Note that w1, á,wm is a delimited utterance sequence. Define . Let thew w wm m≡ 1 , ,�

domain of s be called the set of token indices and the range of s be called the set of type

indices. Note that s is constrained to map exactly f(i) token positions onto type index i.

5. Concatenate w1, á,wm, delete the #’s, and output the result. The output is a non-delimited

utterance sequence, the yield of w1, á,wm.

As a concrete example the generative process could yield the results shown in Table 1 on

some run, using ordinary letters for the alphabet *.

Insert Table 1 about here

16

In order to evaluate a particular hypothesized segmentation (includingw w wm m= 1 , ,�

word and utterance-boundary markers) we need a formula for the probabilit y with which that

word sequence is generated by steps 1-4 of the model, . Starting from first principles,Pr()w m

this means summing over all possible outcomes of steps 1, 2, 3, and 4:

Pr() Pr(| , , f , s) Pr(, , f , s)
f

w w n L n Lm m
sLn

= ⋅∑∑∑∑

where each sum is over all possible values of the corresponding variable. However, the abstract

model specified above was designed so that there is a one-to-one correspondence between

hypothesized word sequences and joint outcomes of steps 1-4. Specifically, for any given

hypothesis , there is one and only one combination of values of n, L, f, and s for whichw m

— namely, n must be the number of distinct word types in L must be thePr(| , , f , s)w n Lm ≠ 0 w m ,

set of distinct word types in (since the frequencies are strictly positive), f must map eachw m

word type in L into the number of times it appears in , and s must be such that w m

Ws(1),á,Ws(m) = w1, á,wm. Since these particular values of n, L, f, and s are completely determined

by , it would make sense to write them as functions of — for example, we could writew m w m

the number of distinct word types in as . However, this notation is bulky, so thew m n()w m

notation nm, Lm, fm, and sm is used instead. Since there is only one non-zero term in the sum, we

can write:

Pr() Pr(| , , f ,) Pr(, , f ,)w w n L s n L sm m m m m m m m m m= ⋅

Furthermore, since the values of n, L, f, and s completely determine ,w m

Pr(| , , f , s)w n Lm m m m m = 1

and we have:

Pr() Pr(, , f ,)w n L sm m m m m=

17

Using the chain rule, this can be rewritten as:

Pr() Pr(| f , ,) Pr(f | ,) Pr(|) Pr()w s L n L n L n nm m m m m m m m m m m= ⋅ ⋅ ⋅(1)

Now we add to the abstract model two reasonable linguistic assumptions that allow this

expression to be simpli fied substantially.

1. The ordering of the words, s, is probabili stically independent of their pronunciations, so

 This does not necessarily mean that the ordering isPr(s | f , ,) Pr(s | f ,).m m m m m m mL n n=

independent of all aspects of word identity. If we had modeled other properties of words,

such as their syntactic categories, the ordering might be dependent on those properties.

But the assumption implies that any effect of pronunciation on ordering would be

mediated by other properties. This is not true in song lyrics or poetry, where word

combinations are chosen partly on the basis of their sound, but it is true to a first

approximation in other forms of language.

The frequency function fm completely determines the number of distinct words nm,

since the domain of fm consists of nm integers, so (This is justPr(s |f ,) Pr(s |f).m m m m mn =

a fact about the way fm and nm were defined.)

2. The frequencies of words are chosen independently of the frequencies and pronunciations

of all other words, and of n , so where is thePr(f | ,) Pr (f ()|) ,fm m m ii

n
L n i Wm=

=∏ 0
Pr f

probabilit y distribution on the frequencies of individual words. Note that this does not

imply a uniform distribution on word frequencies — like outcomes on the sum of two

dice, word frequencies can have a nonuniform distribution despite being selected

independently of one another.

Since fm(0) represents the number of utterance-boundary markers, we are also

assuming by this equation that the frequencies of words are independent of the number of

18

utterances. The latter assumption is not accurate — if some word occurs 1,000 times, it is

unlikely that the total number of utterances is as small as three. However, this inaccuracy

has littl e importance, since the actual number of utterances is observable in the input and

hence identical for all segmentations of the input.

These two assumptions allow us to simpli fy (1) to:

Pr() Pr(s |f) Pr (f ()|) Pr(|) Pr()fw i W L n nm m m i
i

n

m m m

m

= ⋅








 ⋅ ⋅

=
∏

0
(2)

In order to evaluate this we need to make further assumptions about how each of the non-

deterministic steps of the generative process works. Before moving on to such assumptions,

however, we introduce recursive formulae for evaluating (2).

2.2 Relative probabilities

This section introduces two recursive formulae for evaluating the probabilit y of a word sequence

w1, á,wk in terms of the probabilit y of the sequence w1, á,wk � 1. Let the notation R (for relative

probability) be defined as follows:4

,R ()
P r()

P r()
w

w

wk
k

k

≡
−1

(3)

where and Observe that:w w , ,wk k≡ 1� , P r() .w 0 1≡

P r() R () P r() ,w w wk k k= ⋅ −1(4)

a recursive formula, and:

19

Pr() R()w wk i
i

k

=
=

∏
1

(5)

Hereafter, we focus on computing . Note that is undefined if has probabilit yR()w k R()w k w k −1

zero.

Now for any given we can define nk, Lk, fk, and sk. analogously to nm, Lm, fm, and sm, asw k ,

the number of distinct words, set of distinct words, word frequencies, and ordering of words in

 respectively. Whenever R is defined, we can substitute (2) into (3), yielding:w k ,

R()
Pr(s | f)

Pr(s | f)

Pr (f ()|)

Pr (f ()|)

Pr(|)

Pr(|)

Pr()

Pr()

f

f

w
i W

i W

L n

L n

n

nk
k k

k k

k i
i

n

k i
i

n
k k

k k

k

k

k

k
= ⋅ ⋅ ×

− −

=

−
=

− − −

∏

∏
−

1 1

0

1
0

1 1 1
1

(6)

This formula can be simpli fied by separating two cases, one in which the kth word also occurs in

the first k-1 words — that is, wk � Lk � 1 — and one in which it does not.

2.2.1 Case 1: Familiar words

Word wk is called a familiar word if it also occurs in the first k-1 words — that is, wk � Lk � 1. In

that case, adding wk onto the end of w1, á,wk � 1 leaves the number of distinct words and the set of

distinct words unchanged (nk=nk � 1, Lk=Lk � 1), so

R(|)
Pr(s |f)

Pr(s |f)

Pr (f ()|)

Pr (f ()|)

,
f

f

w w L
i W

i W
k k k

k k

k k

k i
i

n

k i
i

n

k

k
∈ = ⋅−

− −

=

−
=

∏

∏
1

1 1

0

1
0

20

where R(| wk � Lk � 1) denotes the relative probability given that the kth word also occursw k

among the first k �1 words. Further, adding wk onto the end of w1, á,wk-1 increases the frequency

of wk by one (fk (i)= fk � 1(i)+1, for i = sk(k) — that is, when is the index for the word typei

corresponding to) but leaves the frequencies of all other words unchanged (fk (i)= fk � 1(i), forw k

igsk(k)). If we define to be the type index of the kth word then we have
�

k (� s ())k kk≡

and hence:f (�) f (�)k kk k= +−1 1

R (|)
P r(s | f)

P r(s | f)

P r (f (�) |)

P r (f (�) |)
f

�

f
�

w w L
k W

k Wk k k
k k

k k

k k

k k

∈ = ⋅
−−

− −
1

1 1 1
(7)

This expression cannot be simpli fied any more without making further assumptions about the

distribution on ordering functions. To see the general form that such simpli fications might take,

note that sk(i) = sk-1(i) for all i < k. Thus, any distribution on orderings that has some locality will

yield related probabiliti es for the two orderings sk and sk-1.

2.2.2 Case 2: Novel words

Word wk is called a novel word if its occurrence at position k is its first occurrence — that is, wk

Õ Lk � 1. In that case, the number of distinct words increases by one (nk=nk-1+1), the frequencies of

the familiar words are unchanged (fk (i)= fk � 1(i) for), and the frequency of the new wordi n k<

is one (fk (nk)= 1) so (6) can be simplified to:

R (|)
P r(s | f)

P r(s | f)
P r (|)

P r(|)

P r(|)

P r()

P r()fw w L W
L n

L n

n

nk k k
k k

k k
n

k k

k k

k

k
k

∉ = ⋅ ⋅
−

⋅
−−

− − −
1

1 1 1

1
1 1

(8)

This expression cannot be further simplified without making assumptions about the detailed

distributions that govern the steps of the abstract model.

21

Before new assumptions are introduced in the next section, it is worth emphasizing that

no new assumptions were introduced during the derivation of equations (7) and (8). In particular,

evaluating the probabilit y of a word sequence via equations (7), (8), and (5), is mathematically

equivalent to using equation (2) directly.

2.3 Modular linguistic models

This subsection presents one among many possible ways of f illi ng in the details of the probabilit y

model. The particular assumptions made here are approximations motivated by simplicity — it is

expected that future work will im prove on them. Since the assumptions are related to one another

through the equations derived above, it should be possible to modify them independently. In the

following presentation, each subsection corresponds to one distributional assumption.

2.3.1 Uniform distribution on word orders (model step 4)

In this paper, we make the simpli fying assumption that the distribution on ordering functions

given frequencies (Pr(sk | fk)) is uniform. This is equivalent to ignoring the constraints that

syntax and semantics impose on word order. The main virtues of this assumption are algebraic

and computational simplicity. However, there may well be eff icient ways of using bigram,

trigram, or more complex distributions within the same abstract model.

Consider the multiset consisting of fk(0) copies of W0, fk(1) copies of W1, and so on, up to

fk(nk) copies of The number of distinct permutations of this multiset is:W n k
.

k

iki

n k

!

f () !
=∏ 0

22

where k is the sum of the frequencies of all the words (see any introduction to discrete

probability). So, the probability of any particular permutation under the uniform distribution on

all distinct permutations is given by:

P r (s | f)
f () !

!U k k

ki

n
i

k

k

= =∏ 0

and

P r (s | f)

P r (s | f)

f () !

f () !

() !

!

n

n
U k k

U k k

ki

ki

i

i

k

k

k

k
− −

=

−=

= ⋅
−∏

∏ −
1 1

0

10

1

1
(9)

Recall that for familiar words, the frequency of the last word increases by one

() and the frequencies of all other words are unchangedf (�) f (�)k kk k= +−1 1

, where is the type index of the familiar word. Thus,(9) can be(f () f (), �)k ki i i k= ≠−1 fo r �k

simplified to:

P r (s | f)

P r (s | f)

f (�)U k k

U k k

k k

k− −
=

1 1

(10)

Substituting this back into (7), the equation for the relative probability of a familiar word, yields:

R (|)
f (�) P r (f (�) |)

P r (f (�) |)
f

�

f
�

w w L
k

k

k W

k Wk k k
k k k

k k

∈ = ⋅
−−1 1

(11)

When wk is a novel word (wk Õ Lk-1) the number of distinct words increases by one (nk=nk-1+1),

the frequencies of the familiar words are unchanged (fk(i) = fk-1(i) for), and the frequencyi n k<

of the new word is one (fk (nk)= 1), so (9) can be simplified to:

23

Pr (s |f)

Pr (s |f)
U k k

U k k k− −
=

1 1

1
(12)

Substituting this back into (8), the equation for the relative probabilit y of a novel word, yields:

R(|)
Pr (|) Pr(|)

Pr(|)

Pr()

Pr()
f

w w L
W

k

L n

L n

n

nk k k

n k k

k k

k

k

k∉ = ⋅
−

⋅
−−

−
1

1

1

1 1
(13)

2.3.2 Independence of word frequencies from word pronunciations (model step 3)

For purposes of this paper it is assumed that the distribution on word frequencies is independent

of the pronunciations of the words. This is not strictly true — shorter words tend to have

relatively higher frequency, and modeling such dependencies might well be a fruitful avenue to

pursue, but it is beyond the scope of this paper. Under this assumption (11), the equation for the

relative probabilit y of a familiar word, can be rewritten as:

R(|)
f (�) Pr (f (�))

Pr (f (�))
f

f

w w L
k

k

k

kk k k
k k

k

∈ = ⋅
−−1 1

(14)

where Prf is the probabilit y distribution on the integers used for picking word frequencies.

Likewise (13), the equation for the relative probabilit y of a novel word, can be rewritten as:

R(|)
Pr () Pr(|)

Pr(|)

Pr()

Pr()
fw w L
k

L n

L n

n

nk k k
k k

k k

k

k

∉ = ⋅
−

⋅
−−

−
1

1

1

1 1
(15)

2.3.3 Distribution on sets of pronunciations (model step 2)

The most diff icult aspect of this model is finding a distribution on sets of pronunciations that is

both natural from a linguistic point of view and eff iciently evaluable. In fact, we have not been

able to satisfy both constraints completely. We start with a linguistically natural distribution but

24

use an approximation to speed evaluation.

Consider a procedure that goes through nk iterations. At the ith iteration, it picks a string

Si � *+# according to some distribution Pr � on *+#, with the restriction that Si must be distinct

from all strings picked on previous iterations. Let us define to be the probability thatP r(|)W n k

this process produces the sequence of distinct strings in that particular order. Then (, ,) ,W W n k1 �

P r(|) P r (| { , , })

P r ()

P r ({ , , })

W n S W S W W

S W

S W W

k i i i n
i

n

i i

i ni

n

k

k

k

k

= = ∉

=
=

− ∈

=

=

∏

∏

σ

σ

σ

1
1

11 1

�

�

Note that the probability expression in the denominator is not the probability of drawing a

particular lexicon but simply the probability that a single string selected according to Pr � is in a

particular set. Since Pr � is a discrete probability distribution, the probability of a set of strings is

just the sum of the probabilities of the strings in the set. Dropping the Si, we can write:

P r(|)
P r ()

P r ()
W n

W

W
k

i

jj

i
i

n k

=
−

=

−
= ∑∏ σ

σ1
1

1
1

The probability with which this process produces the set of strings Lk in any order is the sum,

over all permutations of of the probability with which it(, ,)p() p ()W W n k1 � (, ,) ,W W n k1 �

produces the sequence .(, ,)p () p ()W W n k1 �

P r(|)
P r ()

P r ()

p()

p ()p :{ , , }

L n
W

W
k k

i

jj

i
i

n

n

k

k

=
−

=

−
= ∑∏∑ σ

σ1
1

1
11 �

where the outer sum is over all permutation functions p on the integers from 1 to nk. The terms in

the product of numerators are the same regardless of the permutation, and since multiplication is

25

order-independent, we can factor the product of numerators out, yielding:

P r(|) P r ()
P r ()():{ , , }

L n W
W

k k i
i

n

p jj

i
i

n

p n

k k

k

=










−=
=

−
=

∏ ∑∏∑σ
σ1

1

1
11

1

1�

Turning now to relative probabilities, we have:

()
()

P r(|)

P r(|)
P r ()

P r ()

P r ()

p()
p :{ , , }

p ()
p :{ , , }

L n

L n
W

W

W

k k

k k
n

jj

i

i

n

n

jj

i

i

n

n

k

k

k

k

k

−

=

− −

=

=

− −

=

−

−

−
=

−

−

∑∏∑

∑∏∑1

1

1 1

11

1

1 1

1

1

1 1

1

1

1
σ

σ

σ

�

�

(16)

We do not know of any way to evaluate this expression exactly without summing explicitly over

all permutations. This would require time exponential in the total size of the input, so we use the

following approximation, which can be evaluated more efficiently:

P r(|)

P r(|)

P r ()

P r ()p()

L n

L n

n W

n

n
W

k k

k k

k n

k

k
jj

n

k

k−
=

−−
≈

−
−

⋅ ∑1
1

11 1
1

σ

σ
(17)

The reasoning behind this approximation is somewhat involved and off the main track, so it has

been relegated to Appendix A. Substituting (17) into (15) yields:

R (|)
P r () P r ()

P r ()

P r()

P r()
fw w L
k

n W

n
n

W

n

nk k k

k n

k

k
jj

n

k

k

k

k

∉ = ⋅
−

−
⋅

⋅
−−

=∑
1

1

1

1
1 1

σ

σ
(18)

Now all that remains is to choose a distribution Pr � on the space of possible pronunciations (*+#)

and distributions on the positive integers.

2.3.4 Distribution on individual pronunciations (model step 2)

In general, languages impose a rich array of phonological constraints on their words. For

26

example, languages impose restrictions on the consonant clusters that can occur at the beginnings

and ends of words. Ideally, a model for the probability that a particular phoneme string is a word

in a particular unknown language should include a universal catalogue of all such phonological

constraints and processes, appropriately parameterized to account for cross-linguistic variation.

In this first attempt to spell out the details of the segmentation model, however, we sidestep

phonology and phonotactics entirely and assume that the phonemes in a word are selected

independently of one another.

Let Pr � be a probability distribution on *A{#}. Then if a1,á,aq � *+# we define

P r ()
P r (#)

P r ()σ a a aq i
i

q

1
1

1

1
� ≡

−
⋅

=
∏

Σ
Σ(19)

The first term results from imposing the condition that the empty word “#” cannot be in the

lexicon. This definition of induces a distribution in which the probabiliti es of words arePrσ

bounded above by an exponentially decreasing function of word length. It is li kely that the true

distribution on lengths of word types has a mode somewhere between 3 and 5 phonemes, rather

than 1, so more accurate models could almost certainly be found.

In the experiments reported below, we estimate Pr � on-line from the relative frequencies

of phonemes in the lexicon so far. That is, one occurrence of the phoneme is counted for each

word type it appears in, not each word token, since we are interested in the probabiliti es of

phoneme strings in the lexicon. The probabilit y of # is estimated in the same way, except that

there is exactly one # in each word type.

2.3.5 Distributions on the positive integers (model steps 1 and 3)

Equation (18) contains distributions on the positive integers in two places. The first is the

27

distribution on the total frequency of each word and the total number of utterance boundary

markers (which, for better or for worse, have been given the same distribution). The second is the

distribution on the total number of word types. We have no idea in advance that any particular

positive integer is more likely than any other, so an ignorant prior makes the most sense. Since

there is no uniform distribution on the positive integers, the best that can be done is a relatively

flat distribution whose sum converges to one. In the experiments presented below, we opted for

algebraic and computational simplicity by using:5

P r()i
i

≡ ⋅
6 1

2 2π
(20)

for all choices of positive integers. Substituting into (18) yields the following formula for the

relative probability of a novel word:

R (|)
P r ()

P r ()
w w L

n

k

W

n

n
W

n

nk k k
k n

k

k
jj

n

k

k

k

k

∉ = ⋅ ⋅
−

−
⋅

⋅
−






−

=∑
1 2

1

2
6

1
1

1

π
σ

σ

(21)

Likewise, substituting (20) into (14) yields the following formula for the relative probability of a

familiar word:

R (|)
f (�) f (�)

f (�)
w w L

k

k

k

kk k k
k k

k

∈ = ⋅
−







−1

2
1

(22)

2.4 Discussion of the model.

In the previous three subsections an abstract, language-independent probability model

was proposed, recursive formulae were introduced for evaluating the prior probability of any

word sequence, and one possible way of filling out the details of the abstract model was worked

28

out. In working out the details, an approximation was introduced to provide for eff icient

evaluation of lexicon probabiliti es. It was also noted that in the experiments the probabilit y

distribution on phonemes (Pr �) is estimated from the input. The approximation speeds

computation and the estimation improves performance over a uniform distribution on phonemes,

but neither assumption is essential. Setting aside these details, equations (21) and (22) can be

used, along with equation (5) to compute the exact prior probabilit y (according to the model) of

any given sequence of words. Even with the assumptions mentioned above, the probabilit y of a

word sequence is computed without estimating a probabilit y distribution on words.

A related property of the abstract model is that the steps do not divide naturally into those

that generate a stable grammar and those that generate a sample given the grammar. Specifically,

outputs are not generated by sampling repeatedly from a stable distribution on words in the

lexicon, which would quali fy as a grammar. The model itself must be viewed as a single

“universal grammar” and the corpus as a sample consisting of just one event.

According to the probabilit y model, the values in equations (21) and (22) are not

probabiliti es; they are merely ratios of probabiliti es of two unrelated corpus-generation events.

However, it is interesting to compare them to what one would expect for the conditional

probabilit y of the kth word, given the first k-1 words. The first term of (22) is, sensibly enough,

the relative frequency of the kth word in the corpus so far. However, this relative frequency

counts the kth occurrence; it is not the normal relative frequency, computed only in terms of

those occurrences whose presence in the input is guaranteed in the conditional probabilit y

conception. Since (22) is derived from marginal probabiliti es of whole corpora, the kth

occurrence in the corpus whose probabilit y is being evaluated is no different from any other

occurrence. This has the effect of adding one to both the numerator and the denominator of the

normal relative frequency. The result looks something like add-one smoothing, a technique that

29

is sometimes used in estimating the probabiliti es of words from their relative frequencies (Gale

& Church, 1994; Witten & Bell , 1991). In the usual treatment of words as independent events,

this kind of smoothing appears to be a correction to a probabilit y model that is fundamentally

unsuited to natural language vocabularies.6 Under the current probabilit y model, where an entire

corpus is a single event in the probabilit y space, “smoothing” falls out of the model.

The second term of (22) is zero for words with no previous occurrences — this makes

sense, since (22) is an equation for familiar words. For words with one previous occurrence this

term is one fourth, and it approaches one rapidly as the frequency of the word increases. This

convergence to unity is not surprising from the perspective of words as independently sampled

events from an unknown probabilit y distribution; the observed relative frequency of a word

becomes an increasingly accurate estimate of the true probabilit y as the sample-size for that word

gets larger. The observed relative frequencies of words that have occurred only once will t end to

overestimate their true relative frequency (e.g., Church & Gale, 1991). To see this, consider the

distribution of waiting-times for the first occurrence of a given word. This distribution will be

the same for all words with the same true relative frequency. But the actual observed waiting

times will be greater for some such words than for others. The sample of words that have

actually been observed once in a finite corpus is not an unbiased sample; it favors words that, by

chance, have waiting times at the low end of the distribution for words of their relative

frequency.

Turning now to (21), the first term is a normalizing constant. The second term could be

decomposed into nk and 1/k and the latter could be interpreted as a smoothed relative frequency.

However, it may be more enlightening to think of nk/k as the type-token ratio — the average of

the observed relative frequencies of all words that have occurred so far. A large type-token ratio

suggests that words have not been repeated very often in the corpus so far, and therefore novel

30

words have occurred frequently. Conversely, a small type-token ratio suggests that words have

been repeated frequently in the corpus so far, and therefore novel words have occurred relatively

rarely. To the extent that the past is any predictor of the future, it makes sense to assign a higher

probabilit y to novel words in the future when novel words have occurred relatively more often in

the past. The third term, which represents the probabilit y that the particular novel word would be

chosen at random during generation of the lexicon, is the dominant term. It has already been

discussed at some length. Its most notable property is that it will t end to decrease rapidly with

the length of the novel word under consideration, all other things being equal. The final term

starts out at one-fourth for the first word type and rapidly approaches one as the number of word-

types increases. It does not seem to have as natural an interpretation as the other terms, but it can

be thought of in a somewhat similar way to the type-token ratio: The more often novel words

have been observed in the past, the less reluctant one should be to posit them.

3 Optimization algorithms

Equations (5), (21), and (22) provide the means to compute the prior probabilit y (according to the

model) of any given sequence of words. In principle, these equations can be used to segment any

observed corpus by computing the prior probabiliti es of all possible segmentations of the corpus

and returning the one whose probabilit y is greatest. The use of prior probabiliti es is sound

because the posterior probabiliti es of segmentations of the observed corpus are proportional to

their priors. This follows from the fact that observed corpora are generated deterministically from

one of their segmentations at step 5 of the model — that is, each word sequence can yield one

and only one observed corpus. However, segmentation by exhaustive search is not

computationally tractable. In a corpus of n phonemes with m utterances, there are possible2 n m−

31

segmentations — there can be a word boundary or not between each pair of adjacent phonemes,

except that there is always a word boundary where there is an utterance boundary.

3.1 Incremental Search

This subsection presents an algorithm, Incremental Search, that is more computationally

tractable than exhaustive search and provides a more plausible model of segmentation by

humans. Incremental Search attempts to find the most probable segmentation of the entire

corpus, exactly as exhaustive search does, the only difference being that Incremental Search does

not evaluate the probabilit y of every single segmentation. Instead, it evaluates the probabiliti es of

segmentations of successively longer prefixes of the observed corpus, adding one utterance at a

time. It searches for a local maximum in the prior probabilit y of the segmentation of the entire

prefix corpus by evaluating the probabiliti es of all segmentations that can be constructed as

follows: Append some segmentation of the last utterance to the most probable segmentation

found for the corpus of all previous utterances. For example, suppose that the most probable

segmentation found for the corpus consisting of all previous utterances is . Incrementalw m

Search evaluates the probabiliti es of all word sequences where wm+1, á,wm+p is a possiblew m p+ ,

segmentation of the current utterance. The probabilit y of each sequence is evaluated by the

formula:

Pr() Pr() R() ,w w wm p m m i
i

p

+ +
=

= ∏
1

(23)

which follows directly from equation (4). Since is fixed and in fact was computed whenPr()w m

the previous utterance was processed, is obtained by computing and multiplying only pPr()w m p+

relative probabiliti es.

32

From a cognitive perspective, we know that humans segment each utterance they hear

without waiting until the corpus of all utterances they will ever hear becomes available.

Incremental Search, unlike exhaustive search, also has this property.

From a theoretical perspective, it is important to emphasize that although Incremental

Search commits to segmentations one utterance at a time, it does so by optimizing the prior

probabilities of segmentations of the entire corpus of all utterances processed so far. As discussed

in the previous section, these computations do not require estimating a probability distribution on

words. Indeed these computations can be exact as far as the abstract model goes, although exact

computations may not be the best choice for a practical implementation.

The number of segmentations Incremental Search evaluates for each utterance is the

binary exponential of the number of phonemes in the utterance minus one. To segment a corpus

with q utterances of lengths l1álq Incremental Search evaluates segmentations,2 1

1

l

i

q
i −

=∑
substantially fewer than the segmentations evaluated in the course of exhaustive search.2 1

1lii

q

=∑ −

Using current computers it is probably feasible to search through all possible segmentations of all

but the rare, extremely long utterances. However, there is still room to improve the algorithm.

3.2 Dynamic programming

If we are willing to accept some approximations to equations (21) and (22) then a dynamic

programming (i.e., Viterbi) type algorithm can be used to find the optimal segmentation of each

utterance without evaluating all possible segmentations. The approximation is to use values of Lk,

k, nk, and fk as of the end of the previous utterance, ignoring whatever changes may come about

as a result of the current utterance. If is the most probable segmentation found for the corpusw m

33

consisting of all previous utterances and wm+1 áwm+p is a possible segmentation of the current

utterance, the approximation is equivalent to using instead of , forR ()w wm m i+ R ()w w wm m m i+ +1
�

1�i�p. Under this assumption, (23) can be approximated by:

 P r() P r() R ()w w w wm p m m m i
i

p

+ +
=

≈ ⋅∏
1

(24)

This seems reasonable when m»p, so it can be expected that Lm+i�Lm, m+i�m, nm+i�nm, and

fm+i�fm , for 1�i�p. When both the first and second occurrences of a novel word are in the same

sentence this results in incorrectly assigning the novel-word probabilit y to both occurrences.

However, this is expected to be rare after the first few sentences.

The segmentation of the current utterance that maximizes (24) can be found by the

algorithm shown in Figure 2, where utterance is the current utterance, is the segmentationw m

chosen for all previous utterances, and R is a function that computes for anyR w wm m i()+

and wm+i.w m

Insert Figure 2 about here.

When R is computed according to equations (21) and (22) this algorithm will be called MBDP-

1.7 MBDP stands for model-based dynamic programming and “1" signifies the hope that some

components of the model will ultimately be improved, leading to revisions of the equations.

 MBDP-1 processes each utterance in time proportional to the square of the number of

phonemes in the utterance. Thus, the time required to segment a corpus with q utterances of

lengths l1álq is order a substantial improvement over Incremental Search.lii

q 2

1=∑ ,

34

At the risk of redundancy, it is worth emphasizing once again that MBDP-1 evaluates

word sequences by prior probability, without estimating a probability distribution on words.

4 Experiment

This section presents experiments comparing MBDP-1 to algorithms based on transitional

probabilities (TP), mutual information (MI), simple recurrent nets (Elman), and probabilistic

word grammars (Olivier). We also include a comparison to LZW, the compression scheme on

which compress is based (see e.g. Hankerson, Harris, and Johnson, 1998). Finally, we compare

all these algorithms to pseudo-random segmentation in which the correct number of word

boundaries are inserted at random locations in the corpus. All the algorithms except the random

one segment in a completely incremental, unsupervised fashion and start with no knowledge of

the input language.

4.1 Method

4.1.1 Implementations

Transitional probabilities and mutual information. These algorithms track the

frequencies of all phonemes and phoneme bigrams in the portion of the corpus processed so far.

At phoneme position i they first update the frequencies for phoneme i, phoneme i+1, and the

bigram spanning both. Next they compute the appropriate statistic (either transitional probability

or mutual information) between i and i+1, call it S[i]. Finally, they insert a boundary between

35

i�1 and i if S[i �1] is less than both S[i] and S[i �2]. Word boundaries are inserted at utterance

boundaries unconditionally, but otherwise each utterance boundary symbol is treated as a

“phoneme” in the input.

Elman’s algorithm. As in Elman (1990), we used a simple recurrent net (SRN) with 20

hidden units and 20 context units. Each of the 50 phonemes in our transcription system was

represented as an arbitrary six-bit vector, so there were six input and six output nodes. The

weights were bounded by one and minus one, the random initial weights were bounded by 0.1

and �0.1, the learning rate was 0.1, and the momentum was zero. At phoneme position thei

root-mean-squared difference between the output vector and the vector representing phoneme

 was computed. This statistic was used for segmentation in the same way as transitionali + 1

probabiliti es and mutual information, except for the treatment of utterance boundaries. Word

boundaries were inserted at utterance boundaries unconditionally as before, but following Elman,

utterance boundaries were otherwise ignored, rather than being treated as input characters.

Finally, the network was trained to predict phoneme by back-propagating the error. Wei + 1

also tried running this algorithm with 5, 10,á,100 hidden and context units, but since the

performance was nearly identical for all values we do not report the results.

Olivier’s algorithm. In our implementation of Olivier’s algorithm the input was

processed in blocks consisting of one utterance. A word-frequency table was initialized to

contain all the phonemes of the input alphabet, each with frequency two. Before processing each

utterance, relative frequencies were computed by dividing each word’s frequency by the sum of

the frequencies of all words in the table. Treating these relative frequencies as probabiliti es, a

36

maximum likelihood parse of the utterance was found. The frequencies of words in this parse

were then added to their frequencies in the stored table. Finally, each pair of adjacent words in

the maximum likelihood parse was concatenated and the frequency of the resulting string in the

frequency table was incremented. Word boundaries were inserted unconditionally at utterance

boundaries. Frequency-one words were deleted from the word grammar after every 500

utterances; varying this parameter did not improve segmentation performance.

LZW. LZW, the text-compression algorithm that forms the basis of compress, maintains a

set of words, initialized to the source alphabet, and a pointer to the next unprocessed character in

the input. Starting with the next unprocessed character, it segments out the longest string that

matches a word in its current word set, outputs a compressed representation of the matching

word, and advances the input pointer over the matching string. It then adds to its set of words the

string just matched with the next character in sequence appended to the end. For example, after

matching ab from the input abcde, it would advance the pointer to c and add abc to the word set.

Each matching string is considered a word in the segmented text. In our implementation, matches

were automatically terminated at utterance boundaries and new matches started afterward. When

a match included the last character of an utterance, no new word was added to the lexicon.

MBDP-1. As described above MBDP-1 processes utterances one at a time. In our

implementation equation (24) is used from the beginning, although the approximation it is based

on is less accurate for the first few utterances than it is later on. After a segmentation is chosen

for an utterance, data structures representing k, and are updated to reflect thatn L, , f

segmentation. The order of the words in the segmented utterances does not need to be stored to

37

compute R because equations (21) and (22) are derived from the assumption that all orders are

equally probable.

Random baseline. We used a pseudo-random baseline segmentation to shed some light on

whether the other six algorithms were useful for segmentation at all. This baseline segmentation

was obtained by first counting the number of words in the correct, standard segmentation, then

inserting that number of word boundaries at randomly chosen, distinct locations in the corpus.

4.1.2 Input

All algorithms were tested on the same corpus of phonemic transcripts of spontaneous child-

directed English. Orthographic transcripts made by Bernstein-Ratner (1987) were taken from the

CHILDES collection (MacWhinney & Snow, 1985) and transcribed phonemically. The speakers

were nine mothers speaking freely to their children, whose ages averaged 18 months (range 13-

21). In order to minimize the number of subjective judgments and the amount of labor required

every word was transcribed the same way every time it occurred. Onomatopoeia (e.g., bang) and

interjections (e.g., uh and oh) were removed for the following reasons: (1) They occur in

isolation much more frequently than ordinary words, so they would have inflated performance

scores; (2) their frequency is highly variable from speaker to speaker and transcriber to

transcriber, so their presence would have increased the random variance in performance scores;

and (3) there is no standard spelling or pronunciation for many of them, so we could not tell from

the orthographic transcript what sound was actually uttered. The total corpus consisted of 9,790

utterances, 33,387 words, and 95,809 phonemes. The average of 3.4 words per utterance is

38

typical of spontaneous speech to young children. The average of 2.9 phonemes per word is not

surprising for a transcription system like ours, where diphthongs, r-colored vowels (e.g. the “ar”

of bar), and syllabic consonants (e.g., the second syllable of bottle) are each transcribed by a

single symbol. These sounds are represented by two symbols in some transcription systems and

sometimes more than two in English orthography. (For examples, see the sample output of

MBDP-1 in Table 2). Before running the experiment all word boundaries were removed, but

utterance boundaries were left intact.

4.1.3 Procedure

Each segmentation algorithm was run on the corpus described above, as was the random baseline

algorithm. The Elman algorithm is non-deterministic due to the random initial weights, so it was

run 100 times, as was the random algorithm.

4.1.4 Scoring

As an objective (though certainly imperfect) standard of correct segmentation we used the

orthographic segmentation. The input was scored in two ways, one emphasizing the utilit y of the

algorithm for segmentation and the other emphasizing its utilit y for discovering novel words. To

compute the segmentation scores, we aligned each phoneme of the segmentation produced by

each algorithm with the corresponding phoneme of the standard segmentation. Each word in the

algorithmic segmentation was labeled a true positive if it li ned up exactly with a word in the

standard segmentation — that is, both boundaries matched. Each word in the algorithmic

39

segmentation which did not align exactly with a word in the standard segmentation was counted

as a false positive. That is, a false positive was scored for each word in the algorithm’s output

unless both its boundaries aligned with consecutive boundaries in the standard. Each word in the

standard segmentation which did not align exactly with a word in the algorithmic segmentation

was counted as a false negative. That is, a false negative was scored for each word in the standard

unless both its boundaries aligned with consecutive boundaries in the algorithm’s output. Note

that all measures assess exact matches of whole words, not matches of single boundaries. We

then computed precision and recall as follows:

precision
true posi ti ves

true posi ti ves + fal se posi ti ves
 recal l

true posi ti ves

true posi ti ves + fal se negati ves
≡ ≡,

These are identical to the measures that we have called accuracy and completeness in previous

papers (e.g., Brent & Cartwright, 1996). In order to reveal how the amount of input processed

affects the performance of each algorithm the corpus was divided into blocks consisting of 500

consecutive utterances. Segmentation precision and recall were scored separately for each block.

To get a better picture of how each algorithm performs a measure that we call lexicon

precision was computed after each block of 500 utterances. After each block, each word type

that the algorithm produced was labeled a true positive if that word type had occurred anywhere

in the portion of the corpus processed so far; otherwise it is labeled a false positive. Because each

distinct word type contributes only one point to the score for each block, lexicon precision is

influenced less by performance on high frequency words and more by performance on low

frequency words.

40

4.2 Results and Discussion

Sample output from MBDP-1 is shown in Table 2. The first five utterances are all treated as

single, novel words. By 100 utterances segmentation is already fairly good, although utterance

104 is still under segmented. The only errors in utterances 1000-1004 are: nose is twice

segmented into no and se, probably due to the high frequency of the word no and the fact that the

sound z serves as a morphemic suff ix (plural nouns and 3rd person singular verbs); those is

segmented into tho and se, probably for similar reasons. The only error in the last five utterances

of the corpus is the failure to segment Ididn’ tthinkitwould. Overall , these examples suggest that

most of the errors are either failures to segment a string of words or over segmentation at real or

potential morpheme boundaries; there seem to be very few errors that split morphemes.

For all seven algorithms, the segmentation precision is shown in Figure 3, the

segmentation recall i n Figure 4, and the lexicon precision in Figure 5.

Insert Figures 3, 4, and 5 about here.

For the two non-deterministic algorithms the mean of 100 runs is shown. In both cases, there

was very littl e variance from run to run — the standard error of the mean for every block of every

score was less than .001 for both algorithms.

By every measure, MBDP-1 outperforms all the other algorithms. Except for Olivier’s

algorithm, the performance ranking of the algorithms is consistent across all three measures:

MBDP-1 is better than MI, MI is better than TP, TP is better than Elman’s algorithm, Elman’s

41

algorithm is better than LZW, and LZW is better than the insertion of the correct number of word

boundaries at random locations. In retrospect, it is not terribly surprising that the algorithms

based on transitional probabiliti es and mutual information do not perform as well as the model-

based algorithm. The length of words in natural languages is unbounded. In order to discover

words, the abilit y to represent words of length greater than two phonemes would appear to be a

distinct advantage. Further, one might expect that mutual information would be a better way of

representing words of length two than transitional probabilit y, since the mutual information

measures the degree to which two phonemes tend to cooccur symmetrically. However, SRNs

can represent statistics over strings of arbitrary length, so it is not clear why Elman’s algorithm

did not perform better. The only explanation seems to be that it does not learn the cooccurrence

statistics of the corpus as well as transitional probabiliti es, perhaps because of its limited

representational capacity. The lack of consistent improvement with corpus size beyond about

2,000 phonemes legislates against the notion that more input would help. The fact that all six of

the unsupervised segmentation algorithms perform better than random segmentation suggests

they are all doing something relevant to the segmentation task.

On the segmentation precision and recall scores there is a notable gap between the two

worst performers, LZW and random, and the remaining algorithms. To see why LZW is so

poorly suited to linguistic segmentation, note that a particular word W can only be segmented out

once in a context where it is followed by a particular phoneme p; thereafter, Wp will be a longer

match than W. For example, LZW can segment out only one of the instances of to followed by

the, no matter how many there are in the input. More generally, each word type can be segmented

42

out at most as many times as there are phonemes in the source alphabet.

All the algorithms except for MBDP-1 show at least a slight decrease in the lexicon

precision measure as more text is processed. The pattern of results for MI is particularly

interesting: It gets moderately good and slightly improving scores on the segmentation measures,

while it gets poor and decreasing scores on the lexicon. One possible explanation is as follows.

Since MI stores the frequencies of all phonemes and pairs of adjacent phonemes, it can represent

the common one- and two-phoneme function words explicitl y, even though it has no explicit

representation of longer words. By the lexicon score, which attends only to word types, MI gets

full credit for segmenting out these words in the first few blocks. After that, it continues to posit

new words, but with littl e success. However, since the short, common words account for a large

fraction of the tokens in every part of a text, MI continues to do relatively well by the measures

that give credit for each token.

For Olivier’s algorithm our results were completely consistent with the results he

reported: The probabili stic word grammar converged to a state where its words were far too long

and the algorithm severely undersegmented. This is reflected in the difference between its

segmentation precision and recall scores. Since a non-trivial proportion of the utterances in the

input corpus consist of just a single word, moderately good segmentation precision could be

achieved by treating each utterance as a single word. However, only a small proportion of the

word tokens are in single-word utterances, so treating every utterance as a single word results in

poor recall . Olivier’s algorithm chooses words that are too long because it attempts to minimize

the product of relative frequencies of words in an utterance without penalizing for the

introduction of long new words into the grammar. Minimizing the product of relative

43

frequencies of words strongly favors minimizing the number of words — that is, maximizing the

length of words — and nothing penalizes it. In our model the probabilit y that a given word will

be generated in the lexicon decreases rapidly with the length of the word. This tendency(Pr)σ

balances the terms that favor minimizing the product of relative frequencies. We believe that this

is the main factor accounting for the success of our algorithm. Indeed, any proper probabilit y

distribution on the set of all strings over a language will , in a certain sense, display a trend toward

lower probabiliti es for longer words (Rissanen, 1989).

The de Marcken (1996) and the Christiansen, Allen, and Seidenberg (1998) algorithms

are not directly comparable to ours, but it is worth mentioning the experimental results they

report. De Marcken’s algorithm is not comparable because it creates a hierarchical

decomposition of the input rather than a segmentation. Nonetheless, de Marcken scores his

decomposition by comparing it to the orthographic segmentation, as we have done here. He gives

his algorithm credit for finding a word if any node in the hierarchical decomposition spans

precisely that word. By this measure de Marcken reports a word recall of 90.5% on the milli on-

word Brown corpus. However, only one in six internal nodes in the hierarchy spans a true word,

yielding a word precision of less than 17%. De Marcken describes this as an advantage for his

applications, but it is not good performance on the task addressed in this paper. Christiansen et

al’s algorithm is not directly comparable to MBDP-1 because it relies on input feature vectors

that encode the phonological relationships among phonemes, while MBDP-1 treats phonemes as

arbitrary, meaningless symbols. Christiansen et al. provide an encoding for the phonemes of one

British dialect, but the performance of their algorithm on other dialects would depend on non-

obvious decisions about how to encode phonemes as feature vectors. They report a segmentation

recall of 44.9% and precision of 42.7% on a corpus of spontaneous child-directed British English

with remarkably similar characteristics to our corpus.

44

It is also interesting to compare the performance of our algorithm to that of the batch

segmentation procedure Brent and Cartwright (1996) used to test their proposed objective

function. Brent & Cartwright’s objective function, based on a minimum description length

analysis, shares many significant features with the objective function derived here by a

probabili stic analysis. Because the batch algorithm took time proportional to the cube of the

number of phonemes in the corpus, it could not be tested on a corpus as large as the 10,000-

utterance corpus used here. Brent and Cartwright reported average segmentation precision and

recall for nine separate runs on nine 1350-phoneme (roughly 170-utterance) subsections of the

corpus used here. The results were 41.3% precision and 47.3% recall , a littl e over half the

performance levels reported here. This difference in performance results from the combined

effects of four differences between the two algorithms:

1. the change from batch to incremental search, which makes it computationally feasible to

process corpora of essentially unlimited size and hence to learn from a more

representative sample of the language

2. the change from the “insert-two” heuristic search (which could be used in either a batch

or an incremental algorithm) to dynamic programming

3. the change from generating the lexical entries according to a uniform distribution on

phonemes to estimating a distribution on phonemes from the current hypothesized

lexicon

4. differences in the objective function resulting from using the model-based approach

rather than the minimum description length approach.

Finally, we were curious how MBDP-1 would perform in the ideal case in which it was

45

given a correctly segmented version of the corpus followed by an unsegmented version. This

would have the effect that (a) all the target words in the unsegmented portion would be familiar

words, and (b) at any point during the processing of the unsegmented portion, the relative

frequencies of words in previous segmentations would be approximately correct. Even under

these ideal conditions performance could be limited by genuine ambiguities where syntax or

semantics is needed to decide among alternative ways of covering an utterance with actual words.

In addition, differences between the true distribution on word sequences and the simple model on

which MBDP-1 is based could lead to errors. However, as it turned out segmentation accuracy

exceeded 98% under these conditions.

5 Conclusions

5.1 Summary of findings

This paper began with an abstract specification of a probability model to which more

detailed models of phonology, word-order, and word frequency were fitted. Together with these

detailed models, the abstract model yields a language-independent, prior probability distribution

on all possible sequences of all possible words in any language over a given alphabet. The most

important features of the model are:

1. the abstract specification, which makes it possible to improve parts of the model without

affecting its fundamental structure

2. the generation of a lexicon and a complete corpus, regardless of length, as a single event

in the probability space, which avoids a number of theoretical problems associated with

46

estimating probabilit y distributions on vocabulary

3. the fact that there is a one-to-one correspondence between joint outcomes of the model’s

nondeterministic steps (1-4) and segmentation hypotheses, which means that the prior

probabiliti es of word sequences can be computed without summing over outcomes, at

least as far as the abstract model goes

4. the fact that each segmentation hypothesis yields exactly one observable corpus via the

deterministic step (5), which means that the posterior probabiliti es of segmentation

hypotheses, given an observed utterance sequence, are proportional to their priors.

Two segmentation algorithms were obtained by adapting the probabilit y distribution to

two search methods: Incremental Search, which uses the probabilit y model directly, and a

dynamic programming search that requires an approximation. The latter combination was dubbed

MBDP-1 and used in the experimental section. Both methods are based on the idea of f inding,

for any observed corpus, the segmentation of that corpus whose prior probabilit y is greatest. Both

progress through the corpus one utterance at a time, committing to the segmentation of that

utterance before considering the next. The more eff icient of the two algorithms, MBDP-1,

processes each utterance in time proportional to the square of its length.

In an experimental comparison to other language-independent incremental segmentation

algorithms, MBDP-1 robustly outperformed all the other algorithms tested. The most dramatic

differences showed up in the lexicon precision measure, which moderates the influence of high

frequency words.

47

5.2 Future work

There is room for improvement in all three of the components that fill out the details of the

abstract probabilit y model: word-order, phonology, and word frequency. For word-order, the

current model assumes a uniform distribution on permutations of the word types. This is

tantamount to ignoring all syntactic and semantic effects on the probabiliti es of various word

sequences. A simple improvement would be to add a step to the model in which bigrams or

trigrams of words are generated from the set of word types. Instead of choosing frequencies for

each word independently, the model would choose frequencies for each word conditioned on

each possible previous context. The permutations would then be chosen so as to respect these

contextually conditioned frequencies. A more ambitious approach would be to add some kind of

grammar — say, a stochastic context-free grammar — to be picked by the model according to

some prior distribution on such grammars (perhaps along the lines of Stolcke, 1994).

For phonology, the current model generates word types for the lexicon by choosing

phonemes independently of one another. This is tantamount to ignoring the effect of a

language’s phonology on the probabiliti es of various phoneme sequences being words of that

language. Just as with word sequences, a relatively straightforward approach would be to use

bigrams or trigrams of phonemes. Another approach would be to use template grammars to

generate words in the lexicon (see Cartwright & Brent, 1997).

Improvements could also be made in modeling the relationship among the total

frequencies of words, their lengths, and the number of utterances in the corpus. There have been

several attempts to model word frequency distributions in corpora, length distributions, and the

48

joint length-frequency distribution in detail (Baayen, 1991; Mandelbrot, 1953; Miller, 1957; Zipf,

1935); incorporating the results of these studies would make the model more accurate.

While MBDP-1 offers substantial improvements over previous unsupervised

segmentation algorithms, we look to improving it through the addition of better component

models of phonology, word order, and word frequency.

5.3 Implications for child language acquisition

From the perspective of language acquisition theory MBDP-1 is consistent with the

INCDROP model (Brent and Cartwright, 1996; Brent, 1996, 1997). Both models predict that

learners will segment utterances in such a way as to:

1. Minimize the sum of the lengths of all novel words in the segmentation

2. Maximize the product of relative frequencies of all words in the segmentation, where the

relative frequency of all novel words is taken to be a positive number less than the

relative frequency of a word that has occurred only once before.

These predictions in turn imply that:

1. An utterance will be treated as a single, novel word if no substring of it is a familiar word.

2. Familiar words that do not overlap other familiar words in an utterance will tend to be

segmented out, unless they are both short and rare.

Using adult subjects in artificial-language learning experiments, Dahan & Brent (1999) find

evidence in favor of the latter two predictions. The models also make other, more detailed

predictions, many of which have not yet been tested in behavioral experiments (see Brent, 1997;

49

Dahan & Brent, 1999).

From a cognitive modeling perspective, the main difference between MBDP-1 and our

previous models is that MBDP-1 uses estimates of the frequency in the lexicon of each phoneme.

The fact that this contributed to improved performance suggests that it would be useful for

human language learners to do likewise. For example, it would be useful for children learning

English to know that, while the initial phoneme of the, this, that, and them occurs very frequently

in speech, it nonetheless occurs in very few distinct words. Thus, the hypothesized occurrence of

a novel word like thatman should be assigned a lower probabilit y than that of a novel word like

batman because of the relatively low frequency of th in the child’s developing lexicon. Thus, the

model suggests that it might be worthwhile to investigate whether human learners do indeed (a)

distinguish between the frequency of phonemes in the lexicon and their frequency in speech, and

(b) use lexical frequency in assessing the plausibilit y of novel words.

50

Acknowledgments

This work was supported in part by a grant from NIDCD (DC 03082) to Michael Brent, who is a

member of the Center for Language and Speech Processing at Johns Hopkins University. Thanks

to Anne Cutler and the Max Planck Institute for Psycholinguistics, where MB did part of the

theoretical work presented here. Thanks to Adam Grove for commenting, “MDL is just poor-

man’s Bayesian.” Thanks to Frantisek Kuminiak for pointing out the need to ensure that word

types are not duplicated in the lexicon; to Mark Liberman for suggesting that we might find a

way to use dynamic programming; to Colin Wilson and other students in my course for refusing

to accept the minimum description length principle on faith; to Lidia Mangu for extensive and

stimulating discussion of the mathematics; to Lidia and Anand Raman for careful reading of

earlier versions of this paper and useful comments on them; to Anand for implementing and

testing the LZW algorithm, and to Kip Lubliner for implementing and testing the Elman and

Olivier algorithms.

51

References

Aslin, R. N., Woodward, J. Z., LaMendola, N. P., & Bever, T. G. (1996). Models of word

segmentation in fluent maternal speech to infants. In J. L. Morgan & K. Demuth (Eds.), Signal to

syntax: Bootstrapping from speech to grammar in early acquisition (pp. 117-134). Mahwah, NJ:

Lawrence Erlbaum Associates.

Baayen, H. (1991). A stochastic process for word frequency distributions. In Proceedings

of the 29th annual meeting of the Association for Computational Linguistics, Berkeley, CA.

Bernstein-Ratner, N. (1987). The phonology of parent child speech. In K. Nelson and A.

van Kleeck (Eds.), Children's Language (Vol. 6). Hill sdale, NJ: Erlbaum.

Brent, M. R. (1996). Advances in the computational study of language acquisition.

Cognition, 61, 1-38.

Brent, M. R. (1997). Toward a unified model of lexical acquisition and lexical access.

Journal of Psycholinguistic Research, 26, 363-375.

Brent, M. R. & Cartwright, T. A. (1996). Distributional regularity and phonotactics are

useful for segmentation. Cognition, 61, 93-125.

Cartwright, T. A. & Brent, M. R. (1994). Segmenting speech without a lexicon:

Evidence for a bootstrapping model of lexical acquisition. In Proceedings of the 16th annual

meeting of the Cognitive Science Society. Hill sdale, NJ: Erlbaum.

Cartwright, T. A. & Brent, M. R. (1997). Syntactic categorization in early language

acquisition: Formalizing the role of distributional analysis. Cognition, 63, 121-170.

Christiansen, M. H., Allen, J., & M. Seidenberg (1998). Learning to segment speech

52

using multiple cues. To appear in Language and Cognitive Processes.

Church, K. W., & Gale, W. A. (1991). A comparison of the enhanced Good-Turing and

deleted estimation methods for estimating probabiliti es of English bigrams. Computer Speech

and Language, 5, 19–54.

Dahan, D. & Brent, M. R. (1999). On the discovery of novel word-like units from

utterances: An artificial-language study with implications for native-language acquisition. To

appear in Journal of Experimental Psychology: General.

Elman, J. L.(1990). Finding structure in time. Cognitive Science, 14, 179-211.

Gale, W. A., & Church, K. W. (1994). What is wrong with adding one? In Oostdijk,

Nelleke, de Haan, P. (Eds), Corpus-Based Research into Language. Amsterdam: Rodopi,

189-198.

Hankerson, D., Harris, G. A., and Johnson, P. D., jr. (1998). Introduction to information

theory and data compression. New York: CRC Press.

Harris, Z. S. (1954). Distributional Structure. Word, 10, 146-162.

Jelinek, F. (1997). Statistical Methods for Speech Recognition. Cambridge: MIT Press.

Kraft, L. G. (1949). A device for quantizing, grouping and coding amplitude modulated

pulses. Unpublished Mater’s thesis, Massachusetts Institute of Technology.

Li, M., & Vitányi, P. M. B. (1993). An introduction to Kolmogorov complexity and its

applications.

MacWhinney, B., & Snow, C. (1985). The child language data exchange system. Journal

of Child Language, 12, 271-296.

53

Mandelbrot, B. (1953). An informational theory of the statistical structure of language. In

W. Jackson (Ed.), Communication Theory. Butterworths.

de Marcken, C. (1995). The unsupervised acquisition of a lexicon from continuous

speech. AI Memo No. 1558, Massachusetts Institute of Technology.

Miller, G. A. (1957). Some effects of intermittent silence. The American Journal of

Psychology, 52, 311-314.

Nevill-Manning, C.G. & Witten, I. H. (1997). Compression and explanation using

hierarchical grammars. Computer Journal 40, 103-116

Olivier, D. C. (1968). Stochastic Grammars and Language Acquisition Mechanisms.

Unpublished doctoral dissertation, Harvard University.

Quinlan, J. R., and Rivest, R. L. (1989). Inferring Decision Trees Using the Minimum

Description Length Principle. Information and Computation, 80, 227--248.

Redlich, A. N. (1993). Redundancy reduction as a strategy for unsupervised learning.

Neural Computation, 5, 289-304.

Rissanen, J. (1989). Stochastic complexity in statistical inquiry. Singapore: World

Scientific Publishing.

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The role of

distributional cues. Journal of Memory and Language, 35, 606-621.

Stolcke, A. (1994). Bayesian Learning of Probabilistic Language Models. Unpublished

doctoral dissertation, University of California at Berkeley.

Wallace, C. S., and Boulton, D. M.. (1968). An Information Measure for Classification.

54

Computer Journal, 11, 185-194.

Witten, I. H., and Bell, T. C. (1991). The zero-frequency problem: Estimating the

probabilities of novel events in adaptive text compression. IEEE Transactions on Information

Theory, 37, 1085-1094.

Wolff, J. G. (1982). Language acquisition, data compression, and generalization.

Language and Communication, 2, 57--89.

Zipf, G. K. (1935). The Psycho-Biology of Language, Boston: Houghton Mifflin.

Appendix A: Approximation to the distribution on sets of pronunciations

This appendix presents the derivation of the approximation to the actual probability (16). Pulling

out the term from the numerator of (16), we can rewrite the right-hand-side as:i n k=

() ()
()

P r ()

P r () P r ()

P r ()

p() p()
p :{ , , }

p()
p :{ , , }

σ

σ σ

σ

W

W W

W
n

jj

n

jj

i

i

n

n

jj

i

i

n

n

k

k
k

k

k

k

1 1

1

1

1 1

1

1 1

1

1

1

1

1 1

1

1

1 1

− ⋅ −

−

=

− −

=

− −

=

−

=

− −

=

−

−

∑ ∑∏∑

∑∏∑
�

�

(25)

We now use the approximation

1 1
1

1

1 1

1

1

−








 ≈ −

−
⋅











=

− −

=

−

∑ ∑P r () P r ()p() p ()σ σW
n

n
Wj

j

n
k

k
j

j

nk k

(26)

The sum on the left-hand-side includes the probabilities of all the except one,W i ni k, , , = 1�

The approximation is that instead of omitting precisely this probability, we omit theW n kp () .

55

probability of the average of all the This approximation is too great for some permutationsW i .

and too small for others. Since the approximation is a sum over all the it is independent ofW i

the permutation and can be factored out, allowing us to rewrite (25) as:

()
()

P r ()

P r ()

P r ()

P r ()

p()
p :{ , , }

p ()
p :{ , , }

σ

σ

σ

σ

W

n
n

W

W

W

n

k

k
jj

n

jj

i

i

n

n

jj

i

i

n

n

k

k

k

k

k

k

1
1

1

11

1

1 1

1

1

1

1

1 1

1

1

1 1

−
−

⋅
⋅

−

−=

=

− −

=

−

=

− −

=

−

−
∑

∑∏∑

∑∏∑
�

�

(27)

We now define:

()
()

h

W

W
k

jj

i

i

n

n

jj

i

i

n

n

k

k

k

k

≡
−

−

=

− −

=

−

=

− −

=

−

−

∑∏∑

∑∏∑

1

1

1

1 1

1

1

1

1

1 1

1

1

1 1

P r ()

P r ()

p ()
p :{ , , }

p ()
p :{ , , }

σ

σ

�

�

(28)

Substituting into (27), we write:

P r()

P r()

P r ()

P r ()

L

L

W

n

n
W

hk

k

n

k

k
jj

n k
k

k−
=

≈
−

− ⋅
∑1

1
1

1
σ

σ
(29)

and focus on understanding the range of values that may take on.hk

To this end, we now change the denominator of hk to an equivalent expression summed

over all permutations of . Define a function g from permutations of to{ , , }1 � n k { , , }1� n k

permutations of as follows:{ , , }1 1� n k −

g(p)()
p () p ()

p () p ()
i

i i n

n i n
k

k k

≡
<
=





if

if
(30)

This function maps permutations of into each permutation of so wen k { , , }1� n k
{ , , } ,1 1� n k −

can rewrite (28) as:

()
()

h

W

n
W

k

jj

i

i

n

n

k
jj

i

i

n

n

k

k

k

k

=
−

−

=

− −

=

−

=

− −

=

−

∑∏∑

∑∏∑

1

1
1

1

1 1

1

1

1

1

1 1

1

1

1

P r ()

P r ()

p ()
p :{ , , }

g (p)()
p :{ , , }

σ

σ

�

�

56

The effect of changing p to g(p) in the denominator is to replace withP r ()σ Wn k

whenever the former term is present in the inner sum. Thus, we can change backP r ()p()σ W n k

from g(p) to p if we make this change explicitly, rewriting the previous equation as:

()
() ()

h n

W

W W W W
k k

jj

i

i

n

n

jj

i

n n jj

i

i n

n

i

n

n

k

k

k k

k

kk

k

= ⋅
−

− + − −

=

− −

=

−

=

− −

=

− −

=

−

=

−

∑∏∑

∑ ∑∏∏∑
−

−

1

1 1

1

1 1

1

1

1

1

1 1

1

1 11

1

1

1 1

1

P r ()

P r () P r () P r () P r ()

p ()
p :{ , , }

p () p () p ()
p ()

p ()

p :{ , , }

σ

σ σ σ σ

�

�

The numerator and the denominator are now identical except for the replacements of

with . In permutations where the replacement occurs in everyP r ()σ W n k
P r ()p ()σ W n k

p ()− =1 1n k

term of the product. In permutations where the replacement occurs in only onep ()− = −1 1n nk k

term of the product. In permutations where the substitution makes theP r () P r ()p()σ σW Wn nk k
>

term for that permutation smaller, and this contributes to making hk as a whole larger.

Conversely, in permutations where the substitution makes the term forP r () P r ()p ()σ σW Wn nk k
<

that permutation larger, and this contributes to making hk as a whole smaller. Thus, if P r ()σ W n k

is large compared to the probabilities of earlier words, the net effect will be to increase hk and

hence to increase the relative probability of Lk, and conversely. In the experiments reported in

this paper, we use the approximation and henceh nk k≈

P r(|)

P r(|)

P r ()

P r ()p ()

L n

L n

n W

n

n
W

k k

k k

k n

k

k
jj

n

k

k−
=

−
≈

−
−

⋅ ∑1
1

1
1

1
σ

σ
(31)

with the understanding that this expression is not quite as responsive to as it should be.P r ()σ W n k

Equation (31) is the approximation given in the main text as (17).

In the experiment reported here the sum in the denominator is 0.302 after segmenting all

10,000 utterances. This suggests that requiring each string selected to be unique has some

57

impact, increasing the probabilit y of novel words by a factor of almost 1.5. This impact is of the

same order as all of the other terms in the relative probabilit y of a novel word (21) except for

 the probabilit y of picking that word’s particular phoneme string independent of thePr (),σ W n k

rest of the lexicon. Further, a better phonological model than the one used in these experiments

would assign greater probabilit y to the words in the lexicon (and less to the others). This could

greatly increase the sum in the denominator, giving this term a greater impact on the overall

probabilit y.

58

Table 1: An example of a possible output of the generative process using ordinary letters for the

alphabet.

1. n=6

2. L={do#, the#, kb#, li ke#, see#, mbo#}.

W1 W2 W3 W4 W5 W6 W0

do# the# kb# like# see# mbo# $

3.

f(1) f(2) f(3) f(4) f(5) f(6) f(0)

2 4 2 1 2 2 2

4. m=2+4+2+1+2+2+2=15

s(1) s(2) s(3) s(4) s(5) s(6) s(7) s(8) s(9) s(10) s(11) s(12) s(13) s(14) s(15)

1 3 5 2 6 0 5 2 2 0 1 3 4 2 6

w1=Ws(1)=W1=do# w2=Ws(2)=W3=kb# w3=Ws(3)=W5=see# w4=Ws(4)=W2=the# …

5. dokbseethembo$seethethe$dokblikethembo

59

Table 2: Sample output from MBDP-1 run on a corpus of phonemically transcribed, spontaneous

child-directed speech.

Utterance Phonetic Output (actual form) Orthographic Equivalent

1 yuwanttusiD6bUk youwanttoseethebook

2 lUkD*z6b7wIThIzh&t lookthere’saboywithhishat

3 &nd6dOgi andadoggy

4 yuwanttulUk&tDIs youwanttolookatthis

5 lUk&tDIs lookatthis

100 h9 d&d& hi dada

101 se h9 d&d& say hi dada

102 hElo hello

103 hElo d&d& hello dada

104 Iz Itd&dianD6fon is itdaddyonthephone

1000 6 no z a no se

1001 It Iz 6kQz no z it is acow’s no se

1002 r9t D* Iz 6kQz no z right there is acow’s no se

1003 gUd g3l good girl

1004 9 dont TINk yu no Eni 6v Do z TIN

z

I don’ t think you know any of tho se

thing s

9786 D* there

9787 nQ D6 d% Iz op~ now the door is open

9788 yu k&n pUt hIm In h(you can put him in here

9789 D* there

9790 no 9dId~tTINkItwUd fIt iDR no Ididn’ tthinkitwould fit either

60

Figure 1: An example of the correspondence between Huffman codes and words in Brent and

Cartwright’s self-delimiti ng representation scheme. The leaves of the code tree contain the codes.

The words are listed in order so that the leftmost word corresponds to the leftmost code in the

tree. For example, if the sequence of words were the#kitty#like#do#you#see then the code word

for the would be 00, the code word for kitty would be 01, and so forth. The order of the words in

the segmentation do you see the kitty see the kitty do you like the kitty would then be represented

by 101110111000111100011011101000001. Note that both the code tree and the letters in the

word list are further encoded as self-delimiti ng binary strings (see Brent & Cartwright, 1996;

Quinlan & Rivest, 1989).

61

Figure 2: A dynamic programming algorithm for finding the segmentation of the current

utterance that maximizes (24). The inputs are utterance, the current utterance, and , thew m

segmentation chosen for all previous utterances. R is a function that computes forR w wm m i()+

any and any hypothesized word wm+i according to equations (21) and (22). The indices first-w m

char and last-char index arrays parallel to the input utterance.

MBDP-1(utterance,)w m

for last-char = 0 to length(utterance)

best-product [last-char] = R(, substring(utterance, 0, last-char));w m

best-start [last-char] = 0;

// After this loop, best-start [last-char] points to the beginning of the optimal word

// ending with last-char. Of course it may turn out that no word will end at last-char in

// the optimal segmentation.

for first-char = 1 to last-char

word-score = R(, substring(utterance, first-char, last-char));w m

if word-score*best-product [first-char �1] > best-product [last-char];

best-product [last-char] = word-score * best-product [first-char � 1];

best-start [last-char] = first-char;

// Now work backward along the best path to insert actual word boundaries.

first-char = best-start [length(utterance)];

while first-char > 0

insert-boundary(first-char);

first-char = best-start [first-char - 1];

62

0

10

20

30

40

50

60

70

80

500 2000 3500 5000 6500 8000 9500
Utterances processed

MBDP

MI

Olivier

TP

Elman

LZW

Rand

Segmentation Precision

Figure 3: Segmentation precision of seven algorithms scored on successive 500-utterance blocks

of phonemically-transcribed, spontaneous child-directed speech.

63

0

10

20

30

40

50

60

70

80

500 2000 3500 5000 6500 8000 9500
Utterances processed

MBDP

MI

TP

Elman

Olivier

LZW

Rand

Segmentation Recall

Figure 4: Segmentation recall of seven algorithms scored on successive 500-utterance blocks of

phonemically-transcribed, spontaneous child-directed speech.

64

0

10

20

30

40

50

60

500 2000 3500 5000 6500 8000 9500
Utterances processed

MBDP

Olivier

MI

TP

Elman

LZW

Rand

Lexicon Precision

Figure 5: Lexicon precision of seven algorithms scored on successive 500-utterance blocks of

phonemically-transcribed, spontaneous child-directed speech.

65

1.Phonemes are symbols representing the basic sounds that serve to distinguish one word from
another in a language. For example, the b sound of cab or the sh sound of ship.

2.Brent and Cartwright (1996) proposed an objective function that children might use for
segmentation, but did not specify a search procedure for the optimization. Brent and Cartwright
investigated their objective function using a global optimization algorithm, but this was not
proposed as an algorithm children might use.

3.A morpheme is an atomic unit of meaning or syntactic function, including root words like toy,
inflectional suffixes like -s, and derivational suffixes like -ness.

4.This ratio looks like a conditional probability, Indeed, that notation would beP r(|).w wk k −1

convenient and algebraically correct. However, the semantics of the model are not consistent
with a conditional probability interpretation. The sequence w1, á,wk is not a conjunction of events
from the probabilit y space but rather a single event that is determined by the joint outcomes of
steps 1-4 above. Thus, w1, á,wk-1 and w1, á,wk are actually distinct, mutually exclusive events
from the probabilit y space. The only reasons for taking their ratios are to simpli fy algebra and
facilit ate computation.

5.A reasonable alternative would be Rissanen’s so-called universal prior (e.g, Rissanen 1989),
which is the limit of a sequence of increasingly flat, monotonically decreasing distributions on
the positive integers. Although the universal prior is flatter (“more ignorant”) than the
distribution we used, it is algebraically and computationally more complex.

6.Add-one smoothing can be derived rigorously under the assumption that the number of types is
a known, fixed integer. When occurrences of words are treated as independent events this
predicts that, as the size of the sample grows without bound, the frequency of the least frequent
word will also grow without bound. This appears to be false for natural language vocabularies;
large corpora are not sampled from a fixed vocabulary but reflect the continual generation of new
vocabulary. When a corpus is viewed as a single event there is no such prediction — sample size
is always one.

7.At the level of detail appropriate for cognitive modeling, MBDP-1 can be viewed as an
implementation of the model that Brent (1997) and Dahan and Brent (1999) refer to as
INCDROP.

Notes

