
Event Detection from Time Series Data

Valery Guralnik, Jaideep Srivastava
Department of Computer Science

University of Minnesota
{ guralnik , srivasta}@cs.umn.edu

Abstract
In the past few years there has been increased interest in
using data-mining techniques to extract interesting patterns
from time series data generated by sensors monitoring
temporally varying phenomenon. Most work has assumed
that raw data is somehow processed to generate a sequence
of events, which is then mined for interesting episodes. In
some cases the rule for determining when a sensor reading
should generate an event is well known. However, if the
phenomenon is ill-understood, stating such a rule is difficult.
Detection of events in such an environment is the focus
of this paper. Consider a dynamic phenomenon whose
behavior changes enough over time to be considered a
qualitatively significant change. The problem we investigate
is of identifying the time points at which the behavior
change occurs. In the statistics literature this has been
called the change-point detection problem. The standard
approach has been to (a) upriori determine the number
of change-points that are to be discovered, and (b) decide
the function that will be used for curve fitting in the
interval between successive change-points. In this paper
we generalize along both these dimensions. We propose an
iterative algorithm that fits a model to a time segment, and
uses a likelihood criterion to determine if the segment should
be partitioned further, i.e. if it contains a new change-
point. In this paper we present algorithms for both the batch
and incremental versions of the problem, and evaluate their
behavior with synthetic and real data. Finally, we present
initial results comparing the change-points detected by the
batch algorithm with those detected by people using visual
inspection.

1 Introduction

Sensor-based monitoring of any phenomenon creates
time series data. The spacing between successive
readings may be constant or varying, depending on

Permission to make digital or hard topics of all or part of this work ~CII
personal or classroom use is granted without fee provided that copies
are not made or distributed lb profit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on scrvcrs or to redistribute to lists.
requires prior specific permission and/or a fee.
KDD-99 San Diego CA USA
Copyright ACM 1999 l-58113-143-7/99/08...$5.00

whether the sampling is fixed or adaptive. The
overall goal is to obtain an accurate picture of the
phenomenon with minimum sampling effort. Examples
of such observations include highway traffic monitoring,
electro-cardiograms, and monitoring of oil refineries.

In the past few years there has been increased interest
in using data mining techniques to extract interesting
patterns from temporal sequences [SA95, MTV97,
PT96]. A standard assumption has been that the raw
data collected from sensors is somehow processed to
generate a sequence of events, which is then mined for
interesting episodes [MTV95, HKM+96]. While there
is no strict definition of an episode, intuitively it is a
pattern of events occurring in some order, and close
enough to each other in time. Recent research has
developed languages for specifying temporal patterns
[MT96, PT96, GWS98], and algorithms have been
proposed that takes advantage of the specified pattern
to increase the computational efficiency of the mining
process.

However, an issue that has received scant attention
is of deriving an event sequence from raw sensor data.
In some cases the rule for determining when a sensor
reading should generate an event is well known, e.g.
if the temperature of a boiler goes above a certain
threshold, then sound an alarm. However, if the
phenomenon is ill-understood or changes its behavior
unpredictably, adapting the threshold such that event
reporting is accurate becomes very difficult. Thus, a
more systematic approach is required for processing the
raw sensor data to generate an event sequence. This is
the focus of our paper.

Consider a dynamic phenomenon whose behavior
changes enough over time so as to be considered a
qualitatively significant change. Each such change is
an event. An example is the change of highway traffic
from light to heavy to congested. Another example is
the change of a boiler from normal to super-heated.
The specific problem we address is of applying data
mining techniques to identify the time points at which
the changes, i.e. events, occur. In the statistics
literature this has been called the change point detection

33

problem. The standard approach has been to (a)
apriori determine the number of change points to
be discovered, and (b) decide the model to be used
for fitting the subsequence between successive change
points. Thus, the problem becomes one of finding the
best set of the predetermined number of points that
minimizes the error in fitting the pre-decided function
[SO94, Hus93, Haw76, HM73, Gut74]. [KS971 addresses
the problem of approximating a sequence of sensor
readings by a set of Ic linear segments as a pre-processing
step. This too can be considered a version of the change-
point detection problem. In the proposed approach, we
address both limitations of standard approaches. First,
we place no constraint on the class of functions that
will be fitted to the subsequences between successive
change points. Second, the number of change points is
not, fixed apriori. Rather, the appropriate set is found
by using maximum likelihood methods [Hud66].

In this paper we study two versions of the change
point detection problem, namely the batch and the
incremental versions. In the batch version the entire
data set is available, as in the case of 24-hour data from
traffic sensors, from which the best, set of change points
can be determined. In the incremental version, the
algorithm receives new data points one at a time, and
determines if the new observation causes a new change-
point to be discovered. Our contributions include

l developing a general approach to change-point,
i.e. event, detection that generalizes previous
approaches,

l developing algorithms for both the batch and incre-
mental versions of the change point detection prob-
lem,

l evaluating their behavior with synthetic and real
data,

l and comparing the algorithms with visual change-
point detection by humans.

This paper is organized as follows: In section 2
we formally describe the event detection problem.
Section 3 presents the batch algorithm and Section 4
its performance. Section 5 describes the incremental
algorithm, which is evaluated in the Section 6. Section
7 concludes the paper.

2 Event Detection as Change-Point
Detection

In this paper we are interested in real-valued time
series denoted by y(t), t = 1,2, n, where t is a
time variable. It is assumed that the time series
can be modeled mathematically, where each model is
characterized by a set of parameters. The problem of
event detection becomes one of recognizing the change

34

of parameters in the model, or perhaps even the change
of the model itself, at unknown time(s).

This problem is widely known as the change-point
detection problem in the field of statistics. A number
of approaches have been proposed to solve the change-
point. detection problem [SO94, Hus93, Haw76, HM73,
Gut74]. The standard assumption is that the phe-
nomenon can be approximated by a known, stationary
(usually linear) model. However, this assumption may
not be true in some domains, creating the need for an
approach that works without this assumption. In this
paper we propose an approach that simultaneously ad-
dresses the issue of model selection and change-point
detection.

2.1 Formal Statement of the Problem

Consider a time series denoted by y(t), t = 1,2,n.
where t is a time variable.

We would like to find a piecewise segmented model
M, given by

Y = fl(t,wl) + cl(t), (1 < t I h),
= f2(t,w2) + e2(t), (6 < t 5 f32),

-.fk(t,.Wlc) +ek(tj, .ie,l;.(t’l.ti~j;~

An fi(t, wi) is the function (with its vector of
parameters wi) that is fit in segment i. The Bi’s are the
change points between successive segments, and ei(t)‘s
are error terms. At this point we put no constraints on
the nature of fi(t, ~0’s.

2.2 Maximum Likelihood Estimation

If all change points are specified a priori, and mod-
els with parameters wi’s and estimated standard devi-
ations gi’s found for each segment, then the statistical
likelihood L, of the change points is proportional to

L=

i

fi (q-m; - heteroscedastic error
i=l

[I
i$ -2

--n/2

- homoscedastic error

Here Ic is the number of change-points, mi is the number
of time points in segment i, and n is the total number
of time pointsl.

If the change points are not known, the maximum
likelihood estimate (MLE) of the ei’s can be found by
maximizing the likelihood L over all possible sets of Bi's,

or equivalently, by minimizing -2 log L. This function
is equivalent to,

1

5 rni log 0: - heteroscedastic error
-210gL = i=l

7l lOg(5 ?&CT;) - homoscedastic error
i=i

‘The homoscedastic error model specifies that 01 = (~2 = . . =
ok. Heteroscedastic error model doesn’t impose this constraint.

In this paper, the term likelihood criteria will refer to
function -2 logL, and will be denoted as C. Because
log is a monotonically increasing function, for the ho-
moscedastic error case we use the equivalent likelihood
criteria of minimizing the function C,“=, rrzi~p.

2.3 Model Selection

For each segment i, model estimation is the problem
of finding the function fi(t, wi) that best approximates
the data. The quality of an approximation produced
by the learning system is measured by the loss function
Loss(y(t),fi(t,wi)), where Bi-i < t 5 0i. The
expected value of loss is called risk functional &(wi) =
E[Loss(y(t), ji(t, wi)]. Therefore, for each segment the
learning system has to find a fi(t, wi) that minimizes
R(wi).

Let us now consider the nature of fi(t, wi)‘s. Most
past work has assumed that the nature of these
functions is known, or can be somehow determined
from domain knowledge. However, in general this
cannot be done, and thus our approach allows the
possibility of arbitrary functions. To provide a handle
on the problem, however, we use the key result of
universal approximation theory, which states, that any
continuous function can be approximated by another
function from a given class [CM98]. The latter class
can be considered as a basis class. An example of such
a basis class is the set of algebraic polynomials { to, 9,
t2, . . }’ [KC96].

For each of the segments, the learning machine
should select a model that best describes the data.
Various model selection methods have been proposed,
e.g. analytical model selection via penalization and
model selection via re-sampling [CM98]. The re-
sampling approach has an advantage of making no
assumptions on the statistics of the data or the type
of target function being estimated. However, its main
disadvantage is high computational effort. With linear
regression it is possible to compute the leave-one-out
cross-validation estimate of expected risk analytically
[CM98]. This has computational advantages over
the re-sampling approach, since repeated parameter
estimation is not required. This is the approach used
in the paper. Finally, the change-point likelihood also
depends on the error model used. Unless there is a
known fact that the error model is heteroscedastic, it
is reasonable to assume the homoscedastic error model
[Kue94], which is what we do.

‘For practical reasons, there must be an upper bound on the
degree of the polynomials in the basis class, say p-l. In general it
is possible to use other basis classes, e.g. radial, wavelet, Fourier,
etc. The choice of which basis class to use is itself an interesting
problem, but outside our present scope. Note that the proposed
approach can work with any of these basis classes.

3 Batch Algorithm

In this section we assume that the entire data set
is collected before the analysis begins. In section 5
we consider the incremental case where change-point
detection proceeds concurrently with data collection.

3.1 Algorithm Description

Change-point detection algorithms have been studied in
the statistics literature [Haw76, HM73, Gut74]. They
have worked under the assumptions that

(a) a stationary known model can be used to describe
the phenomenon, and

(b) the number of change points is known apriori.

Our approach was to start from the algorithm described
in [Haw76], and remove these assumptions.

Assume that the best model that maintains time
points ti, ti+l, tj as a single segment has been
selected. Let S be the residual sum of squares for
this model. The number of points in this segment
is m = j - i + 1. Let C(i, j) = mlog(S/m) if a
heteroscedastic error model is used, and l(i,j) = S
if the error model is homoscedastic.

The key idea behind the proposed algorithm is that
at every iteration, each segment is examined to see
whether it can be split into two significantly different
segments. The splitting procedure can be illustrated by
a consideration of the first stage, since all subsequent
stages consist of equivalent scaled-down problems.

Let the data set cover the time points tl, ts, . . ., t,.
The change point in the first stage is the j minimizing
C(l,j)+ C(j + l,n), say j*. Here j* is defined as

The range of j depends on the fact that at least p
points are needed for model fitting in each segment.
Further, the model fitted in each segment is the best
possible from the space described by the basis functions,
according to the model selection method used.

At the second stage, each of the two segments is
analyzed as above and the best candidate change-points
cl and c2 of each are located. The better of these
candidates is then selected, yielding a division of the
original sequence into three segments. Without loss of
generality let’s assume that point cl is chosen: Now,
the likelihood criteria of the model becomes

c= (C(1, Ci) + l(Ci + l,j*)+,Q* + 1, n)) <
(C(1, j*)+L(j* + 1, cs) + C(cz + 1, n)).

The above procedure is repeated until a stopping
criterion (described in section 3.2) is reached. Figures
1, 2, 3 provide the details of the algorithm.

3.5

The algorithm takes the set of approximating basis functions MS’et
and the time series T

new-change-point = find-candidate(T, MSet)
Change-Points = 0
Candidates = 0

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.

Tl, Tz = get-newAimeranges(T, Change-Points, new-change-point)
while(stopping criteria is not met) do begin

cl = findxandidate(T1, MSet)
c2 = findxandidate(T2, MSet)
Candidates = Candidates U cl
Candidates = Candidates U c2
new-change-point = c E CandidateslQ(Change-Points,c) = min
Candidates = Candidates \ new-change-point
Tl, T2 = get-new-timeranges(T, ChangePoints, new-change-point)
Change-Points = Change-Points U new-change-point

end

Figure 1: Hierarchical Procedure To Detect Change Points

1. optimal-likelihood-criteria = 00
2. for(i = p to ITI - p - 1) do begin
3. likelihood-criteria = Find-Likelihood-Criteria(T [l,i], MSet) +
4. Find-LikelihoodXriteria(T [i + 1, ITI], MSet)
5. if (likelihood-criteria < optimal-likelihood-criteria)
6. split = T(i)
7. optimal-likelihood-criteria = likelihood-criteria
8. endif
9. endfor
10. return split

Figure 2: Find-Candidate Algorithm

1. minimum-risk = 00
2. for (each model M E MSet) do begin
3. model-risk = Risk(T, M)
4. if(model-risk < minimum-risk)
5. minimum-risk = model-risk
6. likelihood-criteria = Fit(T, M)
7. endif
8. endfor
9. return likelihood-criteria

Figure 3: Find-Likelihood-Criteria Algorithm

It should be noted that there have been other algo-
rithms [HM73, Gut741 proposed to solve the change-
point problem. We chose to modify a hierarchical solu-
tion because it is computationally more efficient.

3.2 Stopping Criteria

Since the number of change points is not known
apriori, a stopping criterion must be used by the
algorithm. In practice one would expect that once
the algorithm has detected all “real” change-points,
adding any more change points would not change the
likelihood significantly. In fact, upon the addition
of a sufficient number of spurious change-points, the
overall likelihood value can increase, as illustrated in
Figure 4. In successive iterations of the algorithm,
at first the likelihood criteria decreases dramatically
until it becomes stable, and then. starts to increase

slowly as spurious change-points are found. Therefore,
the algorithm should stop when the likelihood criteria
becomes stable or starts to increase. Formally, if in
iterations k and 5 + 1 the respective likelihood criteria
values are Lk and Ck+l, the algorithm should stop if

(Lk - Lk+l)/lk < s,

where s is a user-defined stability threshold. When
stability threshold s is set to O%, the algorithm stops
only when the likelihood criteria starts increasing.

4 Experimental Evaluation of the
Batch Algorithm

We evaluated the behavior of our change-point detec-
tion algorithm on synthetic as well as real data from
highway traffic sensors. In this section we present the

36

Table 1: Experimental Results for Synthetic Data Sets

Figure 4: Likelihood criteria as a function of change-
points

results of these evaluations. In each case we measure
the effectiveness of the algorithm, i.e. the quality of the
change-points detected. For experimental purposes, the
basis functions we selected were 1, t, t2 and t3. Note
that our approach is general and can work with any
class of basis functions.

4.1 Experiment with Synthetic Data

The data set consisted of 40 data points and was
generated using the following saw-tooth function

i

t * h/lO+e : t E [1,9]

j(t) =
(20-t)*h/lO+c : tc [10,19]
(t - 20) * h/10 + E : t E [20,29]
(40 - t) * h/10 + E : t E [30,39]

The noise E is Gaussian with zero mean and unit
variance. The height of the function h controls the
signal-to-noise ratio. The larger the value of h, the
greater the signal-to-noise ratio. An example of such
a function (without noise) is depicted in Figure 5.

If the proposed algorithm is able to correctly identify
all change-points, it should detect the following inter-
vals: [l, 91, [lo, 191, [20, 291, [30, 391. However, due
to the continuity of the saw-tooth function f(t) at the
change-points, a different set of change-points can also
be detected. For example, the set [l, lo], [II, 191, [20,

Figure 5: Saw-Tooth Function

291, [30, 391 is also a correct set of intervals. This is
because t = 10 can be interpreted as the end of the cur-
rent trend or the beginning of a new one. Similarly for
t = 20 and t = 30.

The experiment was aimed at finding whether the
method is able to correctly identify all change-points,
and the sensitivity of the technique to the noise level.
The results of the experiment are summarized in Table
1. As the signal-to-noise ratio decreases, the algorithm
starts to give less accurate results. In this particular
case the algorithm breaks at height h = 2. However,
the algorithm works well for larger values of h. For
h > 8, the algorithm identifies all change points without
introducing false positives and false negatives.

The stability threshold, s, of the stopping criterion
doesn’t affect the results when the data set does not
have a lot of noise. However, when the noise in the data
set is increased, higher values of s prevent the algorithm
from identifying false change-points. At height h = 5,
when we increased the stability threshold from 0%
to 5%, the algorithm was able to stop before falsely
splitting the region [30, 391 into two regions [30, 351
and [36, 391.

4.2 Experiment with Traffic Data

The data used in our experiments was taken from
highway traffic sensors, called loop detectors, in the

37

Figure 6: Data Set: V274 Figure 7: Data Set: V287

Figure 8: Data Set: V .Ol Figure 9: Data Set: V315

Minneapolis-St. Paul metro area. A loop detector is a
sensor, embedded in the road, with an electro-magnetic
field around it, which is broken when a vehicle goes
over it. Each such breaking, and the subsequent re-
establishment, of the field is recorded as a count. Traffic
volume is defined as the vehicle count per unit time. In
our data set the volume data was sampled at 5 minute
intervals, i.e. the vehicle count was recorded at the end
of a 5 minute interval and the counter was reset to 0.
Each data set is a time sequence collected over a 24-hour
time period, i.e. consisting of 288 samples.

The proposed algorithm’s behavior was evaluated on
four different data sets, the results of which are shown in
Figures 6, 7, 8, and 9. Each change point detected by
the algorithm is based on the criteria defined in Section
3, i.e. the stability threshold of 0% is met for each of
the points. However, some interesting observations can
be made from these graphs. Segment A of Figure 7
is reported as one segment by the algorithm, whereas
based on visual inspection one could argue that there
are one or more change points in it. However, the
likelihood calculations of the algorithm show that the
variations being observed are not statistically significant
and probably attributable to noise. A similar situation
occurs in segment B of Figure 8, which contains
a seemingly significant local minima. The converse
appears in Figure 9, where C and D are reported as two
separate segments, even though they visually appear to
be a single segment. A reason is that we often tend to
focus on straight-line segments in visual examinations
[Att54]. Figure 6 represents a case where all the change
points detected by the algorithm seem to agree with our
intuitive notion of change-points.

4.3 Comparison With Visual Change Point
Detection

A crucial issue in evaluating the behavior of a change

We were interested in how our change point detec-
tion algorithm performed compared to a person doing
the same task through visual inspection. The original
data was very noisy, and thus in some cases it was dif-
ficult to visually detect the actual change points. Es-
sentially, the data had a lot of small variations, which
can potentially cause a human to observe microscopic
trends that are not actually present. Based on our dis-
cussions with traffic engineers from the Minnesota De-
partment of Transportation, i.e. the domain experts, we
smoothed the data using a moving averages approach
for visual inspection based change point detection by
the human observer. Our algorithm was fed the origi-
nal data set, i.e. without smoothing.

38

Figure 10: Subject Sr

Figure 12: Subject S’s

Figure 11: Subject SZ

point detection algorithm is to determine if the change
points detected by it are indeed true change points.
However, this raises the issue of first determining
what the true change points of a function are. This
is a difficult question to answer, because it in turn
depends on the method employed to determine the
true change points. Our approach was to examine the
techniques used in the traffic domain, from which the
data was taken. Traffic engineers use visual inspection
for detecting change points in traffic data. Hence,
we selected the data set of Figure 6 and asked four
human subjects to detect change points3 in it by visual
inspection. Subject Sr and Sz were given smoothed
representation of the time sequence, while subjects S’s
and SJ received the original data set.

Figures 10 through 13 show the change points
reported by subjects Sr , Sz, Ss, and S,, respectively.

3Specific instruction given was to identify points at which the
phenomenon changed significantly. Subjects were not given any
instructions on how to do this, to eliminate bias.

Figure 13: Subject Sd

Benchmark 1 Algorithm 1 Subject 5’1 1 Subject SZ 1 Subject S3 1 Subject S4

v274 1.0 1.79 2.04 2.58 1.77

Table 2: Comparison of likelihood estimates for Algorithmic and Visual Approaches

The change points detected by subject Sr, Figure 10,
seem to be the most similar to those detected by our
algorithm. Subject SZ, Figure 11, seems to be using
a quadratic model for segmentation, while subject Ss,
Figure 12, seems to be using a cubic model. Subject
Sq, Figure 13, seems to be using a linear segmentation
model.

One thing that became clear from this experiment
was that determining the true change points of a
function is not at all straightforward, and human
observers can have significant disagreements. Thus, a
technique based on detecting change points based on
some quantitative measure of likelihood is perhaps more
robust than any of these.

To quantify the quality of change-points identified
by the subjects, we calculated the likelihood estimates
for each of the models and compared them with
the likelihood criteria of the model identified by our
algorithm. The resulting ratios are shown in Table
2. The results show that statistically speaking the

39

while(true)
T = T U new-data-point
split-likelihood-criteria = Find-Split-Likelihood_Criteria(T, MSet)
no-splitJikelihood_criteria = Find-Likelihood-Criteria(T, MSet)
if ((no-split_likelihood-criteria - split_likeZihood-criteria) > 6) then

Report Change Of Pattern
T=0.

endif
endwhile

1.
2.
3.
4.
5.
6.
7.
8.
9.

J

Figure 14: Trend-Change Monitoring Algorithm

optimal-likelihood-criteria = co
for(i = p to ITI -p - 1) do begin

likelihood-criteria = Find_Likelihood-Criteria(T [l, i], MSet) +
Find-Likelihood-Criteria(T [i + 1, ITI], MSet)

if (likelihood-criteria < optimal-likelihood-criteria)
optima2Aikelihoodxriteria = likelihood-criteria

endif
endfor
return ovtimal-likelihood-criteria

Figure 15: Find-Split-Likelihood-Criteria Algorithm

algorithm performed better then any of the four
subjects.

5 The Incremental Algorithm

The batch algorithm is useful only when data collec-
tion precedes analysis. In some cases, change-point de-
tection must proceed concurrently with data collection,
e.g. dynamic control of highway ramp metering lights.
Towards this we developed an incremental algorithm.
The key idea is that if the next data point collected by
the sensor reflects a significant change in phenomenon,
then its likelihood criteria of being a change-point is
going be smaller then the likelihood criteria that it is
not. However, if the difference in likelihoods is small,
we cannot definitively conclude that a change did oc-
cur, since it may be the artifact of a large amount of
noise in the data. Therefore, we use the criteria that a
change-point has been detected if and only if

where 6 is a user-defined likelihood increase threshold.
Suppose that the last change-point was detected at

time tk-1. At time tl, the algorithm starts by collecting
enough data to fit the regression model. Suppose at
time tj a new data point is collected. The candidate
change point is found by determining ti, with likelihood
criterion &in(k,j), such that

Lnin(kj) = km&{qki) + qi + Lj)}.
-

If this minimum is significantly smaller than C(lc, j), i.e.
the likelihood criteria of no change-points from tk to tj,

then ti is a change-point. Otherwise, the process should
continue with the next point, i.e. tj+l. The algorithm
is shown in Figures 14 and 15.

In the incremental algorithm, execution time is a
significant consideration. If enough information is
stored, some of the calculations can be avoided. Thus,
at time tj+l to find likelihood criteria

Ln(k.i + 1) = k~ym, 9 + C(i + l,j + 1))
-

it is only necessary to calculate L(i + 1,j + l), since
.C(k, i) was calculated in the previous iteration.

It should be noted that if a change-point is not
detected for a long time, the successive computations
become increasingly expensive. A possible solution is
to consider a sliding window of only the last w points.

6 Performance Evaluation of the
Incremental Algorithm

To study the performance of the incremental algorithm,
we used data set generated by the following function

t*h/40+c : tE[1,39]
f(t) = { (80 - t) * h/40 + E : t E [40,80]

where the noise E is Gaussian with zero mean and unit
variance.

The goal of this experiment was to observe if the
algorithm is able to accurately recognize the change-
points. Accuracy is measured both by how close the
identified change-point is to the point where the actual
change occurred, and by how long it takes the algorithm
to recognize the change.

40

Incremental (b = 35%) Incremental (6 = 45%) Batch (s = 5%)
change detection change detection change

h point time point time point
detected detected detected

Table 3: Performance of Incremental and Batch Algorithms; the actual change-point is 40.

The results of the experiment are shown in Table
3. The algorithm performs well for data sets with
high signal-to-noise ratio. In addition, the time it
takes to realize that the change occurred is small.
However, for data sets with h 5 20, the algorithm
starts to break. The change-point estimates become
increasingly inaccurate. Moreover, the latency of
recognizing that change has occurred increases. In
addition, for likelihood increase threshold 6 = 35%, the
algorithm identifies spurious change-points. Increasing
the threshold to 45% does not eliminate spurious
change-points, but eliminates a true change-point when
h = 10.

The last column in Table 3 represents results
obtained by running the batch algorithm on the same
data sets with stability threshold s = 5%. Note that the
batch algorithm identifies change-points with very high
accuracy, showing it to be much more tolerant of noise
than the incremental algorithm. This is because the
batch algorithm tries to achieve a global optimization of
the likelihood metric, while the incremental algorithm
seeks only local optimization due to unavailability of
data about the future.

7 Conclusion and Future Work

In this paper, we presented an approach for event
detection from time series data. The approach allows
US to detect a change-point by detecting the change
of model (or parameters of the model) that describe
the underlying data. We use a combination of change-
point detection and model selection techniques. The
proposed approach does not assume the availability of
a model describing the data, or the number of deviation
points in the time series. In addition, the technique is
independent of regression and model selection methods.

Our experimental results suggest that both algo-

rithms are able to correctly identify change-points in
cases where signal-to-noise ratio is not too low. In ad-
dition, the proposed approach is more robust than using
visual inspection by humans, at least by the likelihood
measure used here. First, it is not subject to human ten-
dency to segment smooth curves into piecewise straight
lines. Second, while human beings find it hard to work
with data that contains a lot of noise, the algorithms
are able to handle such data sets (as long as the noise
level doesn’t dominate the signal). The batch algorithm
is more robust than the incremental one, since it works
with the entire data set and can perform global opti-
mization.

As discussed in [Raf93], applicable Bayesian ap-
proaches have been found to produce results more eas-
ily than non-Bayesian ones, especially for change point
detection in one dimensional stochastic processes, How-
ever, a significant hurdle is the existence of a prior
model that is both sophisticated enough to model the
application, and computationally tractable for deriving
the posterior model. In general, to make the computa-
tion tractable often simplifying assumptions are made
[CGS92]. Previous work [CGS92] has shown that iter-
ative techniques such as Monte-Carlo methods can be
used to compute the marginal posterior densities. Our
approach is non-Bayesian, and hence doesn’t require a
prior model. It would be an interesting future research
to see how our approach compares with a Bayesian one
for the problem of event detection.

8 Acknowledgments

The research reported herein has been supported in part
by NSF grant no. EHR-9554517 and ARL contract no.
DAKFll-98-P-0359.

41

References

[Att54]

[CGS92]

[CM981

[Gut741

[GWS98]

[Haw76]

[HKM+96]

[HM73]

[Hud66]

[Hus93]

[KC961

[KS971

F. Attneave. Some informational aspects of
visual perception. Psychol. Rev., 61:183-
193, 1954.

B.P. Carlin, A.E. Gelfand, and A.F. Smith.
Hierarchical bayesian analysis of change-
point problems. Journal of Applied Statis-
tics, 41(2):389-405, 1992.

Vladimir Cherkassky and Filip Mulier.
Learning from Data. Wiley-Interscience,
New York, N.Y., 1998.

S.B. Guthery. Partition regression. J.
Amer. Statist. Ass., 69:945-947, 1974.

Valery Guralnik, Duminda Wijesekera, and
Jaideep Srivastava. Pattern directed min-
ing of sequence data. In The Fourth Inter-
national Coference on Knowledge Discovery
and Data Mining, 1998.

Douglas M. Hawkins. Point estimation of
parameters of piecewise regression models.
The Journal of the Royal Statistical Society
Series C (Applied Statistics), 25(1):51-57,
1976.

K. Hatonen, M. Klemettineen, H. Mannila,
P. Ronkainen, and H. Toivon en. Knowledge
discovery from telecommunication network
alarm databases. In Proc. of the 12th Int’l
Conf. on Data Eng., pages 115-122, Kyoto,
Japan, 1996.

D.M. Hawkins and D.F. Merriam. Optimal
zonation of digitized sequential data. Math-
ematical Geology, 5(4):389-395, 1973.

D.J. Hudson. Fitting segmented curves
whose joint points have to be estimated. J.
Amer. Statist. Ass., 61:1097-1125, 1966.

Marie Huskova. Nonparametric procedures
for detecting a change in simple linear
regression models. In Applied Change Point
Problems in Statistics, 1993.

David Kincaid and Ward Cheney. Numeri-
cal Analysis. Brooks/Cole Publishing Com-
pany, Pacific Grove, CA, 1996.

Eamonn Keogh and Padhraic Smyth. A
probabilistic approach to fast pattern
matching in time series databases. In
Third International Conference on Knowl-
edge Discovery and Data Mining, 1997.

[Kue94]

[MT961

[MTV95]

[MTV97]

[PT96]

[Raf93]

[SA95]

[SO941

Robert 0. Kuehl. Statistical Principles of
Research Design and Analysis. Wadsworth
Publishing Company, Belmont, California,
1994.

H. Mannila and H. Toivonen. Discovering
generalized episodes using minimal occur-
rences. In Proc. of .2nd Int’l Conference
on Knowledge Discovery and Data Mining,
pages 146-151, Portland, Oregon, 1996.

H. Mannila, H. Toivonen, and A. I.
Verkamo. Discovering frequent episodes in
sequences. In Proc. of the First Int’l Con-
ference on Knowledge Discovery and Data
Mining, pages 210-215, Montreal, Quebec,
1995.

H. Mannila, H. Toivonen, and A.I.
Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and
Knowledge Discover, 1(3):259-289, Novem-
ber 1997.

B. Padmanabham and A. Tuzhilin. Pat-
tern discovery in temporal databases: A
temporal logic approach. In Proc. of 2nd
Int’l Conference on Knowledge Discovery
and Data Mining, pages 351-354, 1996.

Adrian E. Raftery. Change point and
change curve modeling in stochastic pro-
cesses and spatial statistics. Technical Re-
port 23, University of Washington, 1993.

R. Srikant and R. Agrawal. Mining general-
ized association rules. In Proc. of the 21th
VLDB Conference, pages 407-419, Zurich,
Switzerland, 1995.

N. Sugiura and Todd Ogden. Testing
change-points with linear trend. Com-
munications in Statistics B:Simulation and
Computation, 231287-322, 1994.

42

