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ABSTRACT

Association rules are valuable patterns because they offer
useful insight into the types of dependencies that exist be-
tween attributes of a data set. Due to the completeness na-
ture of algorithms such as Apriori, the number of patterns
extracted are often very large. Therefore, there is a need
to prune or rank the discovered patterns according to their
degree of interestingness. In this paper, we will examine the
various interestingness measures proposed in statistics, ma-
chine learning and data mining literature. We will compare
these measures and investigate how close they reflect the
statistical notion of correlation. We will show that support-
based pruning, which is often used in association rule dis-
covery, is appropriate because it removes mostly uncorre-
lated and negatively correlated patterns. Our experimental
results verified that many of the intuitive measures (such
as Piatetsky-Shapiro’s rule-interest, confidence, laplace, en-
tropy gain, etc.) are very similar in nature to correlation
coefficient (in the region of support values typically encoun-
tered in practice). Finally, we will introduce a new metric,
called the IS measure, and show that it is highly linear with
respect to correlation coefficient for many interesting asso-
ciation patterns.

1. INTRODUCTION

Association rules [2, 1] are valuable patterns that can be
derived from large databases. Conceptually, an association
rule indicates that the presence of a set of items (itemset) in
a transaction would imply the occurence of other items in
the same transaction. The association rule discovery prob-
lem is often decomposed into two separate tasks : (1) to
discover all itemsets having support above a user-defined
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threshold, and (2) to generate rules from the frequent item-
sets. The first task can be very expensive, because it may
require a lot of I/O operations. Over the years, many algo-
rithms have been developed to efficiently generate the fre-
quent itemsets [3, 14, 8].

The rule generation task is less I/O intensive. However,
there are two major problems with association rule genera-
tion : (1) too many rules are generated (rule quantity prob-
lem), and (2) not all of the rules are interesting (rule quality
problem). Both problems are not entirely independent. For
example, knowledge about the quality of a rule can be used
to reduce the number of rules presented to an analyst.

There has been various research effort aimed at mitigating
both problems. The rule quantity problem can be handled
by pruning or summarizing the discovered rules. Toivonen
et al.[19] proposed the idea of using structural rule covers
to remove redundant rules and clustering as a means for
grouping together related rule covers. Liu et al. [12] used
the standard x? test to prune insignificant rules and intro-
duced the concept of direction setting rules to summarize
the patterns. Other researchers such as Srikant et al. [18]
and Ng et al. [13] have used the constraints provided by a
user to limit the number of rules that are generated.

Solution to the rule quality problem relies on specification of
an interestingness measure to represent the novelty, utility
or significance of a pattern. By ordering the discovered rules
according to their degree of interestingness, highly-ranked
rules can be presented to the analyst. Some of these mea-
sures are applicable to itemsets as well as rules. ! In such
cases, they can be incorporated into the itemset generation
step to remove uninteresting itemsets.

Support and confidence are used in the original formula-
tion of association rule discovery problem. Support is nec-
essary because it represents the statistical significance of a
pattern. From the marketing perspective, support of an
itemset in retail sales data justifies the feasibility of pro-
moting the items together. Support is also good for prun-
ing the search space since it possesses a nice downward clo-
sure (anti-monotonicity) property (Figure 1). This property
states that if a set of items C appears in ¢ transactions, then

!We will use the term association pattern to refer to both
an association rule and the itemset from which the rule is
generated.
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Figure 1: Lattice structure for all itemsets. This structure can be divided into several regions :

I. Infrequent and

dependent itemsets, II. frequent and dependent itemsets, III. frequent and independent itemsets, IV. infrequent and

independent itemsets.

any subset of C' must occur in at least ¢ transactions. As
a result, if an itemset C' does not meet the minimum sup-
port requirement, then we can ignore all supersets of C' from
consideration. However, support alone may not serve as a
reliable interestingness measure. For example, rules with
high support quite often correspond to obvious knowledge
about the domain. The rule Bread =—> Milk, for instance,
may not be informative despite having a large support value.
In Fig. 1, any itemsets that lie outside the frequent itemset
border can be declared as uninteresting. However, one may
still have to face the problem of combinatorial explosion due
to the large number of rules that can be potentially gener-
ated.

Confidence measures the conditional probability of events
associated with a particular rule. For example, if a rule
X — Y has confidence ¢, this means that ¢% of all trans-
actions that contain X will also contain Y. Unfortunately,
the confidence measure can be misleading in many practical
situations, as shown by Brin et al. in [6, 17]. [6, 17] offerred
an alternative to evaluate the significance of association pat-
terns using x> test. This test is desirable because it will rule
out itemsets that occur by chance. [6, 17] also showed that
the x? statistic has an upward closure (monotonicity) prop-
erty i.e. if an itemset C passes the x? test, so will every
superset of C. This property will allow us to look for a bor-
der between dependent and independent itemsets (Fig. 1).
However, we will argue that the alternative proposed in [6,
17] may still be unsatisfactory.

This paper intends to follow-up on the earlier work done by
Brin et al in [6]. The main contributions of this paper are
as follows :

1. We investigate the possibility of using various mea-
sures from statistics, machine learning and data min-
ing literature to rank the association patterns.

2. We show that support-based pruning is useful for re-
moving uncorrelated and negatively correlated item-
sets.

3. We combine support-based pruning with x? pruning to
reduce the complexity of mining interesting association

patterns. Specifically, we examine the applicability of
various interestingness measures to region II of Fig. 1.

4. We introduce a new measure, called the 1.5 measure,
which takes into account both the interestingness and
support of a pattern.

5. We evaluate how well the various interestingness mea-
sures can capture the notion of statistical correlation.
In fact, our empirical results show that many of these
measures are capable of representing statistical corre-
lation within certain range of support values.

2. STATISTICAL MEASURES OF DEPEN-
DENCY

In this section, we will present several statistical methods
for measuring the dependencies between variables. Our fo-
cus will be primarily on pairs of dichotomous variables, even
though some of the techniques described here can be ex-
tended to more than two variables. In general, the rela-
tionship between two binary variables, A and B, can be
summarized in a 2 x 2 contingency table as shown in Table
1.

For comparison purposes, we have generated an artificial
dataset that contains 10000 random samples. Each sam-
ple is a 4-tuple (fi1, fi0, fo1, foo), subjected to the follow-
ing constraints : fi1/N < 1, fio/N < 1, foi/N < 1 and
fi1 + fio + for < N. We can think of each sample as a real-
ization of the contingency table for a pair of items (itempair)
in the overall dataset.

2.1 ?test

The x? test can be used to test the hypothesis that items
in a pattern are independent of each other. For the 2 x 2
contingency table shown in Table 1, its x? value is given by:

¥ = N(f11fo0 — fo1 fi0)? ()

fitfor frafro
The larger the x? value, the more evidence we have to reject
the independence hypothesis. [6, 17] have used this test to
find both positive and negatively correlated association pat-
terns. They also showed that x? is upward closed, a property
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Table 1: A 2 x 2 contingency table for binary variables.

that can be exploited to prune the exponential search space. written as
[6] have also devised an efficient algorithm to search for a Nf. — ) _
border between dependent and independent itemsets. How- PAB = hu—fe fa  fufoo— fufo (3)

ever, the x? test alone may not be the ultimate answer due
to the following reasons:

1. As stated in [6], x> does not tell us the strength of
correlation between items in an association pattern.
Instead, it will only help us to decide whether items
in the pattern are independent of each other. Thus, it
cannot be used for ranking purposes.

2. The upward closure property of x> ensures that all
itemsets above the x? border are statistically depen-
dent. In reality, some itemsets above the x? border
will be more interesting than others. Therefore, just
knowing the border alone is insufficient.

3. The x? statistic depends on the total number of trans-
actions. On the other hand, the x> cutoff value de-
pends only on the degrees of freedom of the attributes
(which is 1 for binary attributes) and the significance
level desired. For example, the rejection region for bi-
nary attributes at 0.05 significance level is 3.84. When
the number of transactions are large, the cutoff value
can be exceeded by a very large number of itemsets.

2.2 Measures of Association

For ranking purposes, we need an explicit measure of vari-
able dependencies. We will present two such statistical mea-
sures in this section. They are Pearson’s correlation coeffi-
cient and Goodman and Kruskal’s A coefficient [11]. Other
measures include Yule’s @@ and Y coefficients, uncertainty
coefficients, Cramer’s contingency coefficients, odds ratio,
etc. [16, 11, 20].

2.2.1 Correlation coefficient
Correlation coefficient measures the degree of linear depen-
dency between a pair of random variables. Theoretically, it
is defined as the covariance between two variables, divided
by their standard deviations (o) :

Cov(A, B)

paB = pyp— (2)
where Cov(A,B) = E(AB) — E(A)E(B) and E(-) is the
expected value. The range of pap is between —1 and +1.
If the two variables are independent, then pap = 0. How-
ever, the converse is not necessarily true. It is possible that
paB = 0 when the variables have strong non-linear depen-
dencies. Fortunately, such a problem does not exist for bi-
nary variables.

For binary variables, 04 = y/P(A)(1 — P(A)) where P(A) =
fi+/N. The correlation coefficient between A and B can be

Vs forfrifro Vit forfeifro

The above equation is obtained assuming that the contin-
gency table is constructed using data from the entire pop-
ulation. For finite samples, the above equation is equiv-
alent to Pearson’s ¢-coefficient. For convenience, we will
use the term correlation coefficient and ¢-coefficient inter-
changeably for the rest of the paper. Also, for binary vari-
ables, the ¢-coefficient is closely related to the x? statistic.
Upon comparing equation 3 with equation 1, we would ob-
tain ¢* = x?/N.

A greater concern is that a large positive correlation coefli-
cient may indicate either A and B are highly dependent (i.e.
fi1 is large) or A and B are highly dependent (i.e. foo is
large). The two cases can be distinguished only if the joint
support of (A, B) (i.e. fi1) is taken into consideration.

2.2.2 ) Coefficient

This coefficient was suggested based upon the following idea
: if two variables are highly dependent, then the error in
predicting the value of one of the variables would be smaller
whenever the value of the other variable is known. For ex-
ample, consider the dependencies between A and B. If no
other information is available, the best guess we can make
about the value of A is A = arg(maxy, P(Ag)). The error €a
in making this guess is P(ea) = 1—P(A) = 1—max; P(Ay).

Now, suppose we observe B = B;. With this new in-
formation, the best estimate of A is the value that maxi-
mizes the conditional probability A = arg(maxy P(Ax|B1)).
The error associated with this estimator is P(eq|B1) =1 —
maxy, P(Ax|B1). The average prediction error for A given
B can be computed by averaging over the entire range of B
values :

P(ealB) P(ea|B1)P(B1) + - -- + P(e4| B ) P(Bum)
= (1- m’?xP(Ak|Bl))P(BI) 4.

+(1 —mgxP(Alem))P(Bm)
= 1 —kaaxP(Ak,Bj) . (4)

Goodman and Kruskal defines the index of predictive asso-
ciation for A given B as

P(ea) — P(ea|B) _ 2_;maxy fjx — maxy fix

A =
A P(EA) N — maxpg f+k

(5)

This equation can be used as an interestingness measure for
the rule B — A. For an itemset {A, B} , we can use the



symmetric version of this coefficient :

AaB =

> maxy fik + 32, max; fjr — maxy fir — max; fj+{6)
\

2N — maxy fr —max; fj4+

3. MEASURES OF DEPENDENCY FROM
DATA MINING

In recent years, various interestingness measures have been
proposed to measure the significance of patterns derived us-
ing machine learning and data mining techniques. Many of
these measures can be adapted to association patterns.

3.1 Support and Confidence

As previously mentioned, support is necessary because it
measures the statistical significance of a pattern. Since the
choice of an appropriate support threshold can be ad-hoc,
we need to ensure that support-based pruning will not re-
move many of the interesting patterns. In this paper, we
assume that only positively correlated itemsets are of inter-
est to a data analyst. This is a valid assumption in datasets
where the presence of an item in a transaction is more sig-
nificant than its absence. This appears to be true for a large
variety of datasets. Figures 2 and 3 show the effect of ap-
plying various support thresholds on our artificial dataset.
The first graph in both figures represent the histograms of
¢-coefficients for every itempairs in the dataset. These his-
tograms appear to be very similar to a Gaussian distribu-
tion. The rest of the histograms show the itempairs that are
removed when various support thresholds are imposed.

Figure 2 shows that by imposing an upper bound on sup-
port, one may end up pruning uncorrelated, positively cor-
related and negatively correlated itempairs in equal propor-
tions. In contrast, pruning with minimum support will re-
move mostly uncorrelated or negatively correlated itempairs
(Fig. 3). This result makes sense because itempairs with low
support tend to have large values of fio, fo1 or foo. This
often corresponds to uncorrelated or negatively correlated
itemsets. In addition, the positively correlated itemsets that
are removed are those that have large values in foo. Hence,
minimum support-based pruning is a good strategy if we are
only interested in positively correlated association rules.

Confidence was initially proposed to measure the strength
of an association rule. However, [6] showed that it may pro-
duce counter-intuitive results especially when strong nega-
tive correlations are present.

Consider the 2 x 2 table shown in Table 2. It summarized
the purchase of two brands of operating systems at a retail
store within a certain time period. Suppose the support and
confidence thresholds were set at 5% and 50% respectively.
The association rule Linur — WindowsNT would have a
20% support and 67% confidence. Thus, it will pass both
threshold conditions and eventually declared to be interest-
ing. However, this information can be misleading. The prior
probability that a customer purchases Windows NT is 80%.
Once we know that the customer had purchased Linux, the
conditional probability that he or she would buy Windows
NT reduces to 75%. Hence, the high confidence of the rule
Linux — WindowsNT is misleading.

Another confidence-like measure is the laplace function, which
is often used to measure the accuracy of classification rules [10]:
c(AUB)+1

laplace = 70(14)_'_2 (7

where o(A) denotes the number of transactions that contain

3.2 Interest and IS Measure
Interest factor is another widely used measure for associa-
tion patterns [6, 17, 5, 9]. This metric is defined to be the
ratio between the joint probability of two variables with re-
spect to their expected probabilities under the independence
assumption.

1(4,8) = LWAB)_ Jul (8)

P(A)P(B)  fitfn

The interest factor is a non-negative real number; with a
value of 1 corresponding to statistical independence.

The interest factor, I(A, B), is closely related to the ¢ co-
efficient. If we re-arrange equation 3, we can obtain the
following :

Nfi1 1.
b = f1+f1j-1 1 fiefra _ (=1 -Vi+fn (9)
Vit for frifro V o+ fro
Consider the region of low support values, i.e. f—ll\;*‘— <1

and ATI < 1. Both fof and erTO will be close to 1. If the
items are highly correlated, then I > 1. In this region of
approximation, equation 9 becomes :

fiefor _ | Nfu  fu

o) fiefen . Nfn
N? fitfra V. N2 fitfia
\/Ix %

This suggests that a good interestingness measure, derivable
from statistical correlation, in the region of low support and
high interest values is :

¢

Q

f11 P(A,B) P(A,B)
—r@pm 0 W

1S has many desirable properties as an interestingness mea-
sure. First of all, it is a product of two important quantities,
interest factor and support. This measure takes into account
both the interestingness and support aspects of a pattern.
Secondly, for binary pairs of variables, I.S can be expressed
as the geometric mean of confidence for rules that can be
generated from the itempair i.e.

18 = \/Conf(A — B) x Conf(B — A).

Another useful interpretation of this measure is as the cosine
angle between two vectors, i.e. IS = P(A,B)/+/P(A)P(B).

Figure 4 shows the relationship between IS and ¢ using
the artificial dataset. Note the high linearity exhibited by
the IS measure, agreeing with the theoretical arguments
above. We have also repeated our experiments using real-
world datasets. The first dataset is a subset of Reuters
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Figure 2: Number of itempairs removed by applying upper support threshold.
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Figure 3: Number of itempairs removed by applying lower support threshold.

| WindowsNT | WindowsNT | |

Linux 20 10 30
Linuzx 60 10 70
| | 80 | 20 | 100 |

Table 2: A 2 x 2 contingency table example.
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newswire articles?>. This dataset contains 2886 attributes
and 2005 documents. The second dataset is obtained from
a large retail corporation. This dataset has 14462 attributes
and 58565 transactions. The relationship between IS and
¢-coefficient for these datasets are shown in Figure 5.

3.3 Other Measures

We now describe three other interestingness measures that
can be used for association patterns. They are the Gini
index [4], Piatetsky-Shapiro’s rule-interest [15] and convic-
tion [7].

The Gini index for an association rule A — B is given by

P(A)(P(B|A)® + P(~B|A)*)+
P(=A)(P(B|-A)® + P(~B|-4)%)
—P(B)’ — P(-B)’ (12)

Gint =

This value may range from 0 (when A and B are completely
independent) to 0.5 (for perfect correlation).

The rule-interest function, which was introduced in [15], can
be defined to be :

RI = P(A,B)— P(A)P(B) (13)

The range of this function is between -0.25 and 0.25.

Conviction was introduced in [7] as an asymmetric version
of the interest factor.
. _ P(A)P(-B)

conviction = P(A,—B) (14)
This measure is intuitively derived from interest factor in
the following way. The rule A — B is logically equivalent
to =(A A =B). Since the interest factor between A and - B
%, equation 14 is obtained by inverting the ratio.
This inversion is due to the outside negation symbol in the
logical expression ~(AA-B). The value of conviction ranges
from 0 to +oo.

is

4. RANKING OF ASSOCIATION PATTERNS

In this section, we will show how the various measures de-
scribed previously can be used for ordering the association
patterns according to their degree of interestingness. Instead
of ordering every itemsets, a good starting point would be to
rank only itemsets that fall into region II of Fig. 1. Firstly,
we need to determine the maximal frequent itemset border
and x? border using algorithms such as Apriori [3] and the
Dependence Rules Algorithm[17]. The two borders can be
used to remove all itemsets that are infrequent or indepen-
dent. We would then compute the interest value for each
remaining itemset according to an interestingness measure,
F. If an analyst is only interested in itemsets, we can return
the highly-ranked itemsets.

However, if an analyst is interested in rules rather than item-
sets, one must define the corresponding objective measures
for rules, F'. In many cases, the objective measures for
itemsets may not be the same as that for association rules.
Therefore, one must ensure that both F and F’ are consis-
tent with each other.

Zavailable at http://www.research.att.com /" lewis.

We will now illustrate an example of ranking itemsets and
rules using the interest factor, I. Consider a large k-itemset
{A1,As--- Ap}. There are 272 ways to partition the item-
set into rules. ® The interest factor for the large k-itemset
is :

P(Ai1,As,--- Ag)

Hdn A &) = 5 p(ay Py~ P

Suppose we want to compute the interest factor for the rule
AAy- - Aj — Aj+1Aj+2 s Ak ‘We can rewrite the above
equation into the following form :

I(Aq,---Ag)
P(Ay, As, -+ Aj) P(Aj11, Ajia,- - AglAr -+ A))
P(A)P(As) - P(AR)

_ _P(A,Ap, -0 Aj)  P(Ajy1, Ajse, - Ag[AiAs - - A))
P(A1)P(Az)--- P(4;) P(z‘t;‘+1)P(Aj+2)"jP(Ak)
P(A1,As,--- A,
= I(A1,As,---A; = !
(A Ao ) B Y P(Ays2) - PAP(Ai s - A))
P(Aj1,Aj 42, Ak)
P(Ajt1, Ajya, - Ar)
= I(Ax,--- Aj) 1(Ajya, - Ag)
P(A1,Aa,--- Ap) (16)

X .
P(Ax,--- Aj)P(Ajq1, - Ag)

The above equation allows us to define the interest factor for
a rule in terms of the interest factor for the corresponding
itemsets :

Definition 1. The interest factor for the rule
AjAy--- AJ' — Aj+1Aj+2 s Ak
can be defined as :

I(Ay - Aj — Ajyr - Ag)
P(A1, A, --- Ay)
P(A17A27AJ)P(AJ+17AJ+2Ak)

= Hands A an
I(Al,AQ,. . 'AJ) I(Aj+1,Aj+2,- . 'Ak) .

The above definition is useful because it allows us to com-
pute the interest factor for a rule using only the interest fac-
tors of the itemsets. Furthermore, it says that the best rule
for a given itemset is the one that maximizes the difference
between I(A1, As,--- Ag) and the product I(Ay, As,--- Aj)
I(Ajy1,Ajy2,--- Ag). This definition can also be used to
define the interest part of the IS measure for an association
rule.

5. RESULTS

One way to compare the various measures presented in this
paper is by determining their correlation with respect to
the ¢-coefficient. Table 3 illustrates the correlation values
computed using the artificial dataset, for various ranges of
support values. For asymmetric measures such as confidence
and conviction, we represent the confidence or conviction

3Here, due to the symmetry of the I factor, we assume that
the rules A — B and B —» A have the same interest
value.



Table 3: Correlation between different interestingness measures and ¢-coefficient for various range of support
values. These coefficients are computed for itempairs generated using the artificial dataset.

[ Support [ Interest | IS | laplace | conviction [ confidence | A [ entropy | RI | Gini index |

[0,1] 0.7057 | 0.7981 | 0.7855 0.0511 0.7854 -0.0027 | -0.0065 | 0.9811 -0.0046
[0.005,1 0.7055 | 0.7979 | 0.7862 0.0510 0.7861 0.0136 | 0.0220 | 0.9814 0.0151
[0.01,1] 0.7135 | 0.7974 | 0.7846 0.0510 0.7845 0.0353 | 0.0541 | 0.9818 0.0388
[0.05,1] 0.7393 | 0.7915 | 0.7659 0.0534 0.7659 0.2101 | 0.2577 | 0.9840 0.2263
[0.005,0.7] | 0.7293 | 0.8627 | 0.8856 0.0477 0.8854 0.0555 | 0.1011 | 0.9911 0.0511
0.01,0.7 0.7391 | 0.8650 | 0.8879 0.0476 0.8878 0.0738 | 0.1327 | 0.9912 0.0746
0.05,0.7 0.7725 | 0.8760 | 0.8929 0.0476 0.8928 0.2506 | 0.3566 | 0.9921 0.2855
[0.005,0.5] | 0.7315 | 0.9318 | 0.9298 0.0483 0.9296 0.5280 | 0.5571 | 0.9800 0.4722
0.01,0.5 0.7433 | 0.9342 | 0.9313 0.0480 0.9311 0.5401 | 0.5831 | 0.9798 0.4920
0.05,0.5 0.7835 | 0.9505 | 0.9350 0.0458 0.9349 0.6970 | 0.7601 | 0.9777 0.6914
[0.005,0.3] | 0.7057 | 0.9806 | 0.9317 0.3199 0.9311 0.8644 | 0.9023 | 0.9492 0.8426
0.01,0.3 0.7280 | 0.9820 | 0.9340 0.3193 0.9336 0.8696 | 0.9101 | 0.9469 0.8482
0.05,0.3 0.7704 | 0.9871 | 0.9273 0.3076 0.9271 0.9147 | 0.9452 | 0.9316 0.8897

value of an itempair by the maximum value for all the rules
generated from the itempair.

Notice that the correlation between RI and ¢ consistently
stays above 0.9 for all the support regions considered in Ta-
ble 3. However, for the last three rows, IS seems to be the
best choice, which is not surprising considering it is derived
from the correlation coefficient itself. On the other hand,
conviction works poorly even for the low support region.
This is because it has a very wide range of values (from 0 to
00). Other measures such as the A-coefficient and Gini index
have very low correlation with ¢ when no support thresholds
are imposed. This is because both measures are symmetric
about zero (i.e. their values are non-negative). However, as
the support region becomes smaller, the symmetry will be
broken and the correlation values become larger (Fig. 6).

Finally, note that many of the interestingness measures are
highly correlated with the ¢ coefficient for the last three
rows of Table 3. This include the laplace function, maximum
confidence, A, entropy and the Gini index.

6. CONCLUSIONS

The following conclusions can be made :

e Support is a good measure because it represents how
statistically significant a pattern is. Support-based
pruning is effective because it allows us to prune mostly
uncorrelated or negatively correlated patterns.

e x? is appropriate to test whether there is sufficient
evidence to show that items in a pattern are indepen-
dent of each other. However, it does not quantify the
strength of correlation among the items.

e Many of the measures (such as IS, laplace, maximum
confidence, RI) have similar behavior in the region
of medium support values (which typically occurs in
many practical datasets). They provide similar infor-
mation regarding the dependencies between items as
correlation coefficient.

The above conclusions suggest that we can use any of these
interestingness measures to rank patterns that belong to re-
gion II of Fig. 1. A good interestingness measure should be

highly correlated with statistical correlation and takes into
account the support of the pattern.
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