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Abstract

In this paper we describe our preliminary experiments to extenavdhie pioneered by Forrest (see
Forrest et al. 1996) on learning the (normal and abnormal) pattekhsixoprocesses. These patterns
can be used to identify misuses of and intrusions in Unix systemdoiMelated machine learning
tasks on operating system call sequences of normal and abnormaidimterecutions of the Unix
sendmail process. We show that our method can accurately distinguish all abrexetations of
sendmail from the normal ones provided in a set of test traces. Thelmipegy results indicate that
machine learning can play an important role by generalizing storednsequgormation to perhaps
provide broader intrusion detection services. The experiments alsal regme interesting and
challenging problems for future research.

Introduction

Misuse and intrusion of computer systems has been a pervasive probtesimexeomputers were first
invented. With the rapid deployment of network systems, intrusions haeenbemore common, their
patterns more diverse, and their damages more severe. Astamesil effort has been devoted to the
problem of detecting intrusions as quickly as possible.

There are two basic approaches to intrusion detection (seegfFetrial. 1996)):

» Misuse Intrusion Detection: known patterns of (past) intrusions acetagdentify intrusions as they
happen, as in COAST (Kumar and Spafford 1995) and STAT (ligun et al..1995)

* Anomaly Intrusion Detection: recognizes behaviors that deviate frazorf(ted) normal behavior (as
in (Forrest et al. 1996)).

Since intruders are constantly inventing new (hence a priori unknownksattsing only the misuse
intrusion detection method will likely be inadequate in fully protectany computer system. Some
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systems, for example the IDES system (Lunt et al. 1992), usepptbaches.

Anomaly intrusion detection usually involves the use of profiles for uskavim or privileged
processes. When a user profile is used, intrusion is detectedanser behaves out of his/her (normal)
character according to statistical profiles (Lunt et al. 1@®2hduced patterns of behavior (Teng et al.
1990). The main difficulty with this approach is that generation ef piofiles requires potentially large
amount of audit trail data about actions, which can change dynamicaliytimes of each user or
population of users. More recently, researchers have tried irtstegdermine the normal behavior for
privileged processes (those that run as root). Ko, Fink and L(&ttet al. 1994) used a program
specification language to formally specify the normal behavior obgrgm as the collection of allowed
operations (the system calls and their parameters). Forralst(Ebrrest et al. 1996) introduced a novel
and simpler method. They gathered the traces of normal runs of ampragd analyzed the “local
(short) range ordering of system calls”. They discovered that tlbeak orderings “appears to be
remarkably consistent, and this suggests a simple definition of nbemnavior”. The key idea here is to
build a “normal” database that contains all possible short sequangesof length 11) of system calls
for each programséendmail, Ipr, etc.) that needs to be guarded. The normal database is then used to
examine the behavior of a running program (e.g., an instansendinail). If the total number (or
percentage) of abnormal sequences, which are those that can not benfthmadormal database, is
above an empirically established threshold value, then the current flagged as abnormal, i.e., a
misuse or intrusion is detected.

We have been studying the application of machine learning (and raetate(Chan & Stolfo 1993)) to
fraud and intrusion detection in financial information systems f(s&ilal.1997). Here we consider the
means of applying our technologies to explore other closely related t@skshanie Forrest has
provided us a set of traces of thedmail program to experiment with. These traces were used in the
experiments reported in (Forrest et al. 1996). Our goal héveingestigate whether a machine learning
approach can be used to learn the normal and/or abnormal patterndrdata, thus generalizing the
“rote” learning of static “normal only” sequence information. Momgportantly, we want to study
whether our approach can produce more accurate and/or more effitigsion detection capabilities to
perhaps improve upon what Forrest et al. have reported.

Experiments on thesendmail System Call Data

System Call Data

We have obtained two sets sshdmail system call data. The procedures of generating these traces are
described in (Forrest et al. 1996). Each file of the tracel@gstawo columns of integers, the first is the
process ids and the second is the system call “hnumbers” (seel)ableese numbers are indices into a
lookup table of system call names. For example, the number “SSsmpuis system calbpen”. Since
sendmail canfork, its child processes are traced separately, but theisteaeall included in the trace of
the current run afendmail. The set of traces include:

* Normal traces: a trace of tBendmail daemon and a concatenation of several invocatiossdimail.

» Abnormal traces: 3 traces of tk&p intrusion, 2 traces of thgdog-remote intrusion, 2 traces of the
sydog-local intrusion, 2 traces of thdecode intrusion, 1 trace of thambx intrusion and 1 trace of
the sm565a intrusion. These are the traces of (various kinds of) “abnormal” etinlse sendmail
program.



Thesendmail daemon deals with incoming mail and all other processes disabutgoing mail.

pids 282 282 ... 291 291...
systemcalls | 4266664 1386652345427 ... 155104 106 105 104 104 106 56 19555 83

Table 1. System Call Data. Each file has two columns, the giéind the system call numbers.

Pre-processing to Create Training Data

Intuitively, the temporal ordering of system calls are importantacieristics of a program’s normal
behavior. The simplest way of representing the (short distanceptahmnformation is to use a sliding
window to create sequences of consecutive system calls so tleah $ls that are close to each other
(in time steps) are in a single unit. Following (Forrest d98I6), a sliding window of length 11 seemed
to give the best predictive performance. Therefore, we als@ wsbieling window of length 11 with
sliding (shift) step of 1 to create sequences of system oafisthe traces.

We first use a sliding window to scan the normal traces (ob¢h@dmail daemon andendmail) and
create a list of uniqgue sequences of system calls, 1,082 inWatall this list the “normal” list. Next,
we scan each of the intrusion traces. For each sequence of ddnadjgstem calls, we first look it up in
the “normal” list. If a match can be found then the sequencabeldd as “normal”. Otherwise it is
labeled as “abnormal”. See Table 2 for an example of the lalselgdences. Needless to say all
sequences in the normal traces are labeled as “normal”. It sbeudted that for an intrusion trace not
all the sequences are “abnormal” since the illegal activatiysoccur in several places within a trace.

System Call Sequences (length 11) Class Lahels
426666413866523454 “normal”
104 106 105 104 104 106 56 19 155 83 155 “abnormal”

Table 2. Pre-processed System Call Data. System call sequenof length 11 are labeled as
“normal” or “abnormal”.

Experimental Setup

We applied RIPPER (Cohen 1995), a rule learning program, to oumgaiiaita. RIPPER is fast and
generates concise rule sets. It is very stable and has shiwerctmsistently one of the best algorithms
in our past experiments (see Stolfo 1997).

We formulate our learning task as followings:

» Each record has 11 (positional) attributes, p_5, p_4, ..., p0, p1, ... p5, aexfoof the positions in
a system call sequence of length 11; plus a class label, “noom@bnormal”.

» The values of each attribute are specified as symbolic rathentimaerical.

» The training data is composed of all normal sequences, plus the abisequences from 2 traces of
the sscp intrusion, 1 trace of thgysog-local intrusion, and 1 trace of tlegslog-remote trace.

* The testing data is all the sequences (normal and abnormal)iimrtieon traces not included in the
training data.

RIPPER outputs a set of if-then rules for the “minority” adassand a default “true” rule for the



remaining class. The following exemplar RIPPER rules were gedeiram the system call data:

[covers 84 positive and 0 negative examples; here positive="ahfhamdanegative="normal’]
abnormal:- p_5="112’, p1="112", p3="128".
[meaning: if p_5 and pl are 12race) and p3 is 128flock) then the sequence is “abnormal’]

[covers 75 positive and 0 negative examples]
abnormal:- p0="128’, p2="112".
[meaning: if p0 is 128 and p2 is 112 then the sequence is “abnormal’]

[covers 4188 positive and 0 negative examples; here positive="ri@nuhhegative="abnormal”]
normal:- true.
[meaning: if none of the above, the sequence is “normal”]

The RIPPER rules can be used to predict whether a sequence istfalimmr “normal”. But what the
intrusion detection system needs to know is whether the trace bded)itean intrusion or not. Can we
say that whenever there is an “abnormal” sequence in the ttdasean intrusion? It depends on the
accuracy of the rules when classifying a sequence as “abnormaBsdJitlis close to 100%, it is
unlikely that a predicted “abnormal” sequence is always part ofitamsion rather than just an error.
Unlike the cases of fraud detection in mobile phone or credit tcandactions, where false positives
(false alarms) can be resolved by human intervention, false salafrma trace here may result in a
program being terminated. This is a highly undesirable outcome sinee data of the program can be
lost permanently.

Post-processing for Intrusion Detection

We use the following post-processing scheme to detect whetheadieeigran intrusion based on the

RIPPER predictions of its constituent sequences:

1.Use a sliding window of lengthn21, e.g., 7, 9, 11, 13, etc., and a sliding (shift) step ¢d scan the
predictions made by RIPPER.

2.For each of the regions (of RIPPER predictions) generated in Stepbre thann predictions are
“abnormal” then the current region of predictions is an “abnormal'brediNote than is an input
parameter)

3. If the percentage of “abnormal” regions (of RIPPER predictionabdve a threshold value, say 5%,
then the trace is an intrusion.

This scheme is an attempt to filter out the spurious mistakes@ly classified “abnormal” sequences).
The intuition behind this scheme is that when an intrusion actually dtugenerates a number of
abnormal system calls, and as a result, the neighboring sequengesteai salls will not match the
normal sequences. Therefore the RIPPER rules would predidhé¢haiaiority of the adjacent sequences
are “abnormal”. However, the prediction errors tend to be ighlate, the (false) abnormal predictions
are sparse. Note that we could have used a sliding step of 1, botigipyva step greater than 1 is much
more efficient. In fact, a sliding step nfensures that a “majority” group (greater tmaoccurrence) of
“abnormal” predictions of any region @h+1 consecutive predictions will not be missed as the window
slides.

In (Forrest et al. 1996), the percentage of the mismatchedrnsegu@ut of the total number of matches
(lookups) performed for the trace) is used to distinguish normal &bnormal. The “mismatched”



sequences are the “abnormal” sequences in our context. Our schdifferént in that we look for
“abnormal regions” that contains more “abnormal” sequences than thedfiamnes, and calculate the
percentage of abnormal regions (out of the total number of regionsyceme is more sensitive to the
temporal information, and is less sensitive to noise (mistakes).

Results

We now analyze the results of our experiments. We only report ierexperiments that show results
that improve upon other methods. We demonstrate that our machine lesppnogch is indeed viable
in detecting misuse and intrusions. We also highlight the limitatizaiswte hope to overcome in our
future research.

Recall that RIPPER only outputs rules for the “minority” cldss. example, in our experiments, if the
training data has fewer “abnormal” sequences than the “normal” threesutput RIPPER rules can be
used to identify “abnormal” sequences, and the default (everything pksaiction is “normal”. We
want to compare the results of using different distributions of “abribrmeasus “normal” in the
training data. We conjecture that a set of specific rules'formal” sequences can be used as the
“identity” of a program, and thus can be used to detect any known and unknowgiomg (anomaly
intrusion detection). Whereas having only the rules for “abnormal’ secguiemdg gives us the
opportunity to identify known intrusions (misuse intrusion detection).

Thus the training data needs to have both “normal” and “abnormal” seguéineously we need to
include all the unique normal sequences (total 1,082). The abnormal segaemdaken fronsscp-1,
sscp-2, syslog-local-1, andsysdog-remote-1. We compare the results of the following experiments that
have different distributions of “abnormal” versus “normal” sequencdgitraining data:
1.Experiment A: 1 copy of all unique normal sequences and 1 copy of therers@quences.
2.Experiment B: 5 copies of all unique normal sequences and 1 copy of thenabseguences. (Note
that the frequency distribution is artificially biased here al &s in the next two experiments)
3.Experiment C: 4 copies of all uniqgue normal sequences and 3 copiesabhtirenal sequences.
4.Experiment D: 3 copies of all uniqgue normal sequences and 3 copiesatintbrenal sequences.

Each copy of the abnormal sequences has 1,315 sequences. Therefore,eBkperand D output
classifiers with specific rules for the “normal” sequencebemas Experiment B and C generate
classifiers with specific rules for the “abnormal” sequenédso note that Experiment B has a very
skewed distribution (15% “abnormal”).

We test the performance of the RIPPER generated classifieesery intrusion trace by supplying all
the sequences (abnormal and normal) of the trace to the classitier post-processing scheme, with a
sliding window of length 9, is applied to the predictions of the dlassi Note that the window length
here specifies the size of the regions of predictions, which cadiffeeent from the length of the
sequences of system calls. We also test the classifiedseolst of 1,082 unique normal sequences.
Table 3 shows the anomaly detection results of these experimengside the results from Forrest et
al. (1996).

From Table 3, we can see that the classifier from Experiddenivhich has rules for “normal”
sequences, is not acceptable because it classifies everyiticdadingsendmail) as an intrusion. This is
due to too few examples of “normal” and “abnormal” in the traininga daach unique “normal”
sequence only appears once). The classifier from Experiment Bh wiais rules for “abnormal”



sequences, is an improvement. It predicts correctlgsgn3, sydog-local-2, andsysog-remote-2, but
missegdecode-1, decode-2, smb65a, Smbx, because the percentages are below the threshold value of 5%.
The classifier from Experiment C, which also has rules for “abairsequences, does a little bit better
than the classifier from Experiment B. Therefore a more batholess distribution does help improve
the performance (confirming our results on other fraud data (Stodb £997)). It is important to note
that the classifiers from Experiment B and C perform quitd welknown intrusions, i.e.sscp-3,
sydog-local-2, andsys og-remote-2, because the training data includes the abnormal sequences from the
traces of the same types of intrusions. But they perform relatpaarly on unknown intrusions (the
abnormal sequences of the traces of these types of intrusions amethmotraining data), i.edecode-

1& 2, sm565a, andsmbx. This confirms our conjecture that classifiers with ruledkaown) “abnormal”
sequences are only good for detecting known intrusions and hence don’t generatizer “unseen”
intrusions. The classifier from Experiment D, which has rule$rformal”, has the best performance. It
correctly classifies every trace of known and unknown intrusions. Buscanfirms our conjecture that
classifiers with rules for the “normal” sequences can be usedrfomaly intrusion detection, thus
generalizing the notion of normalcy. The results from Forrest ¢1996) showed that their methods
require a very low threshold in order to correctly detectddwede andsmb65a intrusions. The results
from our experiments showed that our approach generates much “strigmgds”sof anomalies from

the intrusion traces. It should also be noted that Forrest 4986) did not use the sequences from the
intrusion traces except for testing, whereas the training datarirexperiments contains (abnormal)

sequences from several intrusion traces.

Traces Forrest et al.| Experiment D| Experiment C Experiment B| Experiment A
(percentage | (percentage of (percentage of (percentage of (percentage of
of abnormall abnormal abnormal abnormal abnormal
sequences) | regions) regions) regions) regions)

*sscp-1 5.2 47.8 44.5 41.2 46.7

*sscp-2 5.2 48.3 43.8 41.6 47.2

*sscp-3 5.2 48.3 43.8 41.6 47.2

syslog-remote-1 51 47.1 32.1 29.1 60.8

syslog-remote-2 1.7 42.4 28.6 25.4 56.2

syslog-local-1 4.0 27.9 19.3 15.5 52.8

syslog-local-2 5.3 38.5 22.3 18.0 52.0

*decode-1 0.3 7.6 4.6 3.5 40.9

*decode-2 0.3 7.6 4.9 3.0 41.1

sm565a 0.6 15 5 0 33.3

sm5x 2.7 22.8 6.6 3.6 43.3

*sendmail 0 0 0 0 50.9

Table 3. Comparing Detection of Anomalies. Forrest et al. (1996¢ported sscp and decode each as
a single trace, whereas we report here each available trace tbiese intrusions.sendmail is the list

of all unique normal sequences of system calls.

We also vary the sliding window length (the length of the regions) irposi-processing scheme. We
have used lengths of 7, 11, and 13, and see very little change (ledsatha percentage point) in the
percentage of “abnormal” regions for each trace. This verifiesirduition of the post-processing
scheme: when an intrusion occurs, there tends to be a high conoartfaibnormal” sequences.



Discussion and Future Work

The most important lesson we learned from these experimertstisnt order to detect anomalous
behavior (where the nature of the intrusion is unknown), it is imper#ttat a model of the normal
behavior of the program be used. This confirms the intuition of Foetest (1996) as well. For real-
time detection systems to work efficiently, the models have tanbeles and efficient. Forrest et al.
(1996) demonstrated a novel and simple approach of using short sequencesnoficalistto define the
normal behavior of a program. They constructed, fos¢hdmail program, a database of ~1,500 entries
of legal system call sequences. The system call sequencea fromofsendmail can be compared with
the entries of the database. The percentages of mismatchsearn® classify whether the current run is
an intrusion. Their experiments show that the traces from otherapnege.g.ls, ping, pine, etc.) have
high percentages of mismatches. This result supports the cldithehshort sequences of system calls
are indeed program-specific. The weakness of their model may beéhéhaecorded (rote learned)
sequence database may be too specific. Here we note that RWRRESRIe to generalize this sequence
information to a set of rules. We hence conjecture that thé¥@HER rules may be able to cover normal
sequences from other traces of the same programsendmail, not yet seen. Future experiments will
include unseen normal sequences in the test data to evaluate thdityesfedRAPPER rules on normal
behavior of the same program.

However, both approaches suffer a common drawback: neither can phetliah intrusion is about to
occur or is actually unfolding. Both approaches can detect thatrasiamt has occurred after analyzing
the trace of program execution. Although we can imagine that, itimealintrusion detection, if the
percentage of mismatches (abnormal sequences) is high enough mid-eua ttire execution, we can
determine that it is an intrusion. But this does not actually sblg@toblem. What is needed here is a
model that includes the stronger temporal relations, yefgllows x in time stepgl, of the sequences of
system calls. Such a model can predict what should follow laé&ng seen past system calls. Such
models of both the normal behavior and the known intrusions can be usatitimeadetection. If the
temporal relations of the current trace match that of a knowasiatr, then the current trace is an
intrusion; otherwise if at some point the temporal relations stateviate from the normal ones, it may
also be flagged as an intrusion. In (Oates and Cohen 1996), MSDDtvaakiced as an algorithm that
finds dependency rules for patterns of values that occur in multipknstrof categorical data. We plan
to apply MSDD and other related algorithms to the system call dat

The success of these approaches depends upon the fact that the rqueradeseare nearly exhaustive
in characterizing all normal behaviors for a program. This paintiset difficulties of our tasks: we need
to gather enough trace data to provide the full coverage of normakyeatl to have trace data for
other programs (e.dtp) to verify our approach as well. Another related issue isittihady be favorable

to also have information on the resource access patterns of arpragy that the cost of damage by
abnormal calls can be estimated. With the cost informatemgio traces can be detected as intrusions
(and thus terminated) once a high-cost abnormal system call seigienceuntered.

Conclusions

We applied a machine learning approach to learn normal and abnorneahpatt program behavior
from its execution trace to generalize upon the method introducednmreg$Eet al. 1996). The resultant
normal patterns (classifiers) are shown to be able to aclyurddtect anomalous intrusions. Our
experiments demonstrate that machine learning can indeed play atambpole in intrusion detection
of computer systems. Much more research needs to be pursued itodyddd a system that can much



more rapidly and correctly detect intrusions.
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