
PDF-OUTPUTJournal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 1»

Appl Intell
DOI 10.1007/s10489-007-0056-0

1 55

2 56

3 57

4 58

5 59

6 60

7 61

8 62

9 63

10 64

11 65

12 66

13 67

14 68

15 69

16 70

17 71

18 72

19 73

20 74

21 75

22 76

23 77

24 78

25 79

26 80

27 81

28 82

29 83

30 84

31 85

32 86

33 87

34 88

35 89

36 90

37 91

38 92

39 93

40 94

41 95

42 96

43 97

44 98

45 99

46 100

47 101

48 102

49 103

50 104

51 105

52 106

53 107

54 108

Learning implicit user interest hierarchy for context
in personalization

Hyoung-Rae Kim · Philip K. Chan

Received: 10 April 2007 / Accepted: 12 April 2007
© Springer Science+Business Media, LLC 2007

Abstract To provide a more robust context for personaliza-
tion, we desire to extract a continuum of general to specific
interests of a user, called a user interest hierarchy (UIH). The
higher-level interests are more general, while the lower-level
interests are more specific. A UIH can represent a user’s in-
terests at different abstraction levels and can be learned from
the contents (words/phrases) in a set of web pages book-
marked by a user. We propose a divisive hierarchical cluster-
ing (DHC) algorithm to group terms (topics) into a hierarchy
where more general interests are represented by a larger set
of terms. Our approach does not need user involvement and
learns the UIH “implicitly”. To enrich features used in the
UIH, we used phrases in addition to words. Our experiment
indicates that DHC with the Augmented Expected Mutual
Information (AEMI) correlation function and MaxChildren
threshold-finding method built more meaningful UIHs than
the other combinations on average; using words and phrases
as features improved the quality of UIHs.

Keywords Clustering algorithm · Correlation function ·
User interest hierarchy · User modeling · User profile

H.-R. Kim (�)
Korea Employment Information Service, Information Strategy
Team, 77-11 Mullae-dong 3-ga, YeongDeungPo-gu, Seoul,
South Korea
e-mail: goddoes8@gmail.com

P.K. Chan
Department of Computer Sciences, Florida Institute of
Technology, 150 West University Blvd., Melbourne,
FL 32901, USA
e-mail: pkc@cs.fit.edu

1 Introduction

When a user browses the web at different times, s/he could
be accessing pages that pertain to different topics. For ex-
ample, a user might be looking for research papers at one
time and airfare information for conference travel at an-
other. That is, a user can exhibit different kinds of interests
at different times, which provides different contexts under-
lying a user’s behavior. However, different kinds of interests
might be motivated by the same kind of interest at a higher
abstraction level (computer science research, for example).
That is, a user might possess interests at different abstraction
levels—the higher-level interests are more general, while the
lower-level ones are more specific.

More general interests can correspond to passive inter-
ests, while more specific interests correspond to active inter-
ests. During a browsing session, general interests are in the
back of one’s mind, while specific interests are the current
foci. Unlike News Dude [3], which generates a long-term
and a short-term model, we model a continuum of general
to specific interests. We believe identifying the appropriate
context underlying a user’s behavior is important in more
accurately pinpointing her/his interests.

The web is not static—new documents and new words/
phrases are created every day. Most clustering methods clus-
ter objects (documents) [6, 7, 25, 27]. This representation
is inadequate in a dynamic environment like the web. Suf-
fix Tree Clustering [28] does not rely on a fixed vector of
word features in clustering documents. We use a similar
approach—instead of clustering documents, we cluster fea-
tures (terms) in the documents; documents are then assigned
to the clusters. Terms are defined as words and phrases. Con-
sider how a librarian forms a taxonomy of subjects for all the
books in the library. She would first identify the subject(s)

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 2»

H.-R. Kim, P.K. Chan

109 163

110 164

111 165

112 166

113 167

114 168

115 169

116 170

117 171

118 172

119 173

120 174

121 175

122 176

123 177

124 178

125 179

126 180

127 181

128 182

129 183

130 184

131 185

132 186

133 187

134 188

135 189

136 190

137 191

138 192

139 193

140 194

141 195

142 196

143 197

144 198

145 199

146 200

147 201

148 202

149 203

150 204

151 205

152 206

153 207

154 208

155 209

156 210

157 211

158 212

159 213

160 214

161 215

162 216

of a book (e.g., Operating Systems (OS), Programming Lan-
guages (PL), Statistics (Stats), Calculus (Cal)) and then cre-
ate a taxonomy of the subjects (e.g., group OS and PL un-
der CS, and Stats and Cal under Math). Finally, books are
categorized according to the taxonomy, where not all terms
in the books are in the book catalog system. As the book
catalog system is hierarchical, we propose to model general
and specific interests (web browsing interests of a user) with
a concept hierarchy called User Interest Hierarchy (UIH),
while suffix tree clustering (STC) provides flat clusters.

Most search engines are not sensitive to a user’s inter-
ests. An improved interface for the user would rank results
according to the user’s profile [13]. A UIH represents the
user’s specific as well as general interests, which can help
rank results returned by a search engine. Pages that match
the more specific interests receive a higher score than those
that only match the more general interests. Furthermore, the
UIH provides a context to disambiguate words that could
have multiple meanings in different contexts. For example,
“java” is likely to mean the programming language, not the
coffee, for a UIH that is learned from a user who has been
reading computer science related pages. This helps a user in
searching relevant pages on the web.

The most common and obvious solution for building a
UIH is for the user to specify interests explicitly. However,
the explicit approach includes these disadvantages: it takes
time and effort to specify interests, and user interest may
change over time. Alternatively, an implicit approach can
identify a user’s interests by inference. Leaf nodes of the
UIH generated by our algorithm represent a list of specific
user interests. Internal nodes represent more general inter-
ests. For example, a graduate student in computer science
is looking for a research paper in web personalization. The
short-term specific interest is web personalization, but the
general interest is computer science. The web pages the stu-
dent is interested in could all be related to computer science
and hence words and phrases from these pages would ap-
pear in the root node of the UIH. Some of the pages he is
interested in could be related to web personalization, and
the words (e.g., profile, user, and personalization) might be
at the leaf of the UIH. Between the root and the leaves, “in-
ternal” tree nodes represent different levels of generality and
duration of interest.

The main objective of this research is to build UIH’s that
capture general to specific interests without the user’s in-
volvement (implicitly). We propose a divisive hierarchical
clustering (DHC) algorithm that constructs such a hierar-
chy. We believe our approach has significant benefits and
possesses interesting challenges. We can improve the UIH
by using phrases in addition to words. A term composed of
two or more single words (called “phrase”) usually has more
specific meaning and can disambiguate related words. For
instance, “apple” has different meanings in “apple tree” and

in “apple computer”. Therefore, we used phrases collected
by a variable-length phrase-finding algorithm (VPF) [12].

The main contributions of this work are:

• we represent user interest hierarchy (UIH) at different ab-
straction levels (general to specific), which can be learned
implicitly from the contents (words/phrases) in a set of
web pages bookmarked by a user;

• we devise a divisive graph-based hierarchical clustering
algorithm (DHC), which constructs a UIH by grouping
terms (topics) into a hierarchy instead of the flat cluster
used by STC;

• DHC automatically finds the threshold for clusters of
terms (words and phrases) whereas STC needs to spec-
ify the threshold;

• we use a more sophisticated correlation function, AEMI,
than STC’s conditional probability;

• our experimental results indicate that 64% of the gener-
ated UIH’s are quite meaningful.

We also observed that DHC with an AEMI (Augmented Ex-
pected Mutual Information) correlation function and Max-
Children threshold-finding method made a more meaningful
UIH than the other combinations.

Section 2 of this paper discusses related work in build-
ing the UIH; Sect. 3 introduces user interest hierarchies
(UIH’s); Sect. 4 details our approach towards building im-
plicit UIH’s; Sect. 5 discusses our empirical evaluation re-
garding the meaningfulness of UIH; Sect. 6 presents and an-
alyzes generated UIHs; Sect. 7 summarizes our findings and
suggests possible future work.

2 Related work

We discuss related work in two areas: user profiles and clus-
tering algorithms. Since we are proposing a new represen-
tation of a user profile, we will review previous represen-
tations of user profiles. The DHC algorithm for building a
UIH is a divisive hierarchical clustering algorithm. We will
explain why we need to devise a new clustering algorithm
by reviewing relevant clustering algorithms. Note that build-
ing UIH is different from other methods in document clus-
tering since they take a large corpus of labeled (e.g., news
categories) documents as input and then cluster the docu-
ments [19].

User profiles A user profile can be built based on the user’s
behavior, the contents of a web page, or both. A human be-
havior based user model can be learned by observing the
user’s actions such as web log file, path, click, downloads,
or frequency. Pazzani and Billsus [18] state that a web site
should be augmented with an intelligent agent to help visi-
tors navigate the site and should learn from the visitors to the

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 3»

Learning implicit user interest hierarchy for context in personalization

217 271

218 272

219 273

220 274

221 275

222 276

223 277

224 278

225 279

226 280

227 281

228 282

229 283

230 284

231 285

232 286

233 287

234 288

235 289

236 290

237 291

238 292

239 293

240 294

241 295

242 296

243 297

244 298

245 299

246 300

247 301

248 302

249 303

250 304

251 305

252 306

253 307

254 308

255 309

256 310

257 311

258 312

259 313

260 314

261 315

262 316

263 317

264 318

265 319

266 320

267 321

268 322

269 323

270 324

web site. An agent can learn common access patterns of the
site both by analyzing web logs and by inferring the visitor’s
interests from actions of the visitor. Mobasher et al. [17] pro-
pose an approach to usage-based web personalization taking
into account both the offline tasks related to mining of us-
age data and the online process of automatic web page cus-
tomization. Their technique captures common user profiles
based on association-rule discovery and usage-based clus-
tering. The advantage of this approach is that it can predict
visited web pages well, but is not good for predicting unvis-
ited web pages.

Content-based user models are generated from the con-
tents of web pages that a user has visited. This technique
usually has higher dimensional vectors and needs a greater
number of training data. The advantage is that it can predict
unvisited web pages by users. Syskill and Webert [19] is an
intelligent agent that learns user profiles. After identifying
informative words from web pages to use as Boolean fea-
tures, it learns a Naive Bayesian classifier to determine the
interest of a page to a user. It converts the HTML source
of a web page into a Boolean feature vector that indicates
whether a particular word is present or absent in a particular
web page. Hybrid models are learned by observing user’s
actions and the contents of web pages visited by a user.
Mobasher et al. [17] combine site usage-based clustering
and a site content-based approach to obtain uniform rep-
resentation, in which the user preference is automatically
learned from web usage data and integrated with domain
knowledge and the site content. These profiles could be used
to perform real-time personalization. Their experimental re-
sults indicate that the integration of usage and content min-
ing increases the usefulness and accuracy of the resulting
recommendations. Trajkova and Gauch [24] build user pro-
files automatically from the web pages visited by a user
without user intervention. Their work focuses on improv-
ing the accuracy of the user profile based on concepts from
a predefined ontology. The experimental results show that
the user profile can achieve average accuracy of 69% when
no concepts are pruned.

Our method in this paper is only concerned with the text
but allows overlapping clusters, since once we get a user
profile based on contents, we can extend it to combining
human behavior based methods. A news agent called News
Dude [3], learns which stories in the news a user is interested
in. The news agent uses a multi-strategy machine learn-
ing approach to create separate models of a user’s short-
term and long-term interests. They use the Nearest Neigh-
bor algorithm for modeling short-term interests and a Naive
Bayesian classifier for long-term interests.

Clustering algorithms STC [28] is a document-clustering
algorithm using a suffix tree. By using a suffix tree with
words that are not too few (3 or less) or too many (more than

40% of the collection), STC (suffix tree clustering) finds
phrases and document frequency of terms (words/phrases).
After finding the terms, STC calculates the similarity be-
tween terms using the document frequency and MIN func-
tion. The connection between terms is determined by the
strength of the similarity values. STC applies graph-based
partitioning to group the terms connected only once, thus re-
sults in flat clusters. Given the desirable number of clusters,
AutoClass [5] estimates the interclass probability (an object
belonging to a certain cluster) and intraclass probability (the
object’s attribute values if the object belongs to the cluster)
to calculate the probabilities of an object being a member of
the different clusters. That is, each object does not belong
to exactly one cluster, which is the case for most clustering
algorithms. Furthermore, AutoClass does not generate hier-
archical clusters. The disadvantages of flat clusters are they
cannot represent different abstraction levels of clusters.

Agglomerative (bottom-up) hierarchical clustering
(AHC) algorithms initially put every object in its own clus-
ter and then repeatedly merge similar clusters together,
resulting in a tree shape structure that contains clustering
information on many different levels [26]. Merges are usu-
ally binary—merging two entities, which could be clusters
or initial data points. Hence, each parent is forced to have
two children in the hierarchy. Divisive (top-down) hierarchi-
cal clustering (DHC) algorithms are similar to agglomera-
tive ones, except that initially all objects start in one cluster
which is repeatedly split. These algorithms find the two fur-
thest points, which are the two initial clusters. Then, the
rest of the points are assigned to those two clusters depend-
ing on which one is closer. Hence, a binary tree is generated.
These algorithms are very sensitive to the stopping criterion.
Several stopping criteria for AHC algorithms have been sug-
gested, but they are typically predetermined constants—one
common stopping criterion is the desired number of clus-
ters [8, 15]. The web documents, however, could be ex-
tremely varied (in the number, length, type and relevance
of the terms/documents). When these algorithms mistak-
enly merge multiple “good” clusters due to the predeter-
mined constraint, the resulting cluster could be meaningless
to the user [28]. Another characteristic of the terms in web
documents is that there reside many outliers. These outliers
(sort of “noise”) reduce the effectiveness of commonly used
stopping criteria. COBWEB [8] is an incremental system
for hierarchical conceptual clustering, which carries out a
hill-climbing search through a space of hierarchical clas-
sification schemes. The heuristic evaluation measure used
to guide the search is the similarity of objects within the
same class and dissimilarity of objects in different classes.
This measure uses the expected number of correct guesses
for attributes’ values. Each cluster records the probability of
each attribute and value, and the probabilities are updated
every time an object is added to a cluster. Since our prob-
lem domain has only one attribute (document frequency of

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 4»

H.-R. Kim, P.K. Chan

325 379

326 380

327 381

328 382

329 383

330 384

331 385

332 386

333 387

334 388

335 389

336 390

337 391

338 392

339 393

340 394

341 395

342 396

343 397

344 398

345 399

346 400

347 401

348 402

349 403

350 404

351 405

352 406

353 407

354 408

355 409

356 410

357 411

358 412

359 413

360 414

361 415

362 416

363 417

364 418

365 419

366 420

367 421

368 422

369 423

370 424

371 425

372 426

373 427

374 428

375 429

376 430

377 431

378 432

terms), COBWEB would group objects with the same at-
tribute value in one cluster and no further divisions are nec-
essary. Thus, COBWEB generates flat clusters.

For measuring the similarity between a pair of terms, we
apply AEMI instead of MIN unlike STC (more details in
Sect. 4.2). Suffix tree clustering (STC) sets a threshold to
differentiate strong from weak connections between a pair of
terms; weak connections are removed by applying MaxChil-
dren threshold finding method in our method (in Sect. 4.3).
We recursively group the sub-clusters and build hierarchi-
cal clusters instead of flat clusters. Our DHC algorithm can
generate multiple branches from one node depending on the
data (instead of only two branches), which is the advantage
of using a graph-partitioning technique. Another difference
of our algorithm from other AHC/DHC algorithms is that all
objects in the root node may not be in the child nodes. It is
like the book catalog system, where all terms in the books
are not in the catalog.

3 Problem

A user interest hierarchy (UIH) organizes a user’s general to
specific interests. Towards the root of a UIH, more general
(passive) interests are represented by larger clusters of terms
while towards the leaves, more specific (active) interests are
represented by smaller clusters of terms. To generate a UIH
for a user, our clustering algorithm (details in Sect. 4) ac-
cepts a set of web pages bookmarked by the user as input.
That is, the input of DHC is documents that are interesting
to a user (e.g., bookmarks). We, however, are not clustering
documents but terms in documents. We use the words and
phrases in a web page and ignore link or image informa-
tion. The web pages are stemmed and filtered by ignoring
the most common words listed in a stop list (called “func-
tion words”) which are usually non-content words such as
conjunctions, determiners, and prepositions [21, 23]. The
phrases are extracted by variable-length phrase-finding al-
gorithm [12]. These processes are depicted in Fig. 1.

Table 1 contains a sample data set. Numbers on the
left represent individual web pages; the content has words

Fig. 1 Process diagram

stemmed and filtered through the stop list. These words in
the web pages can be represented by a UIH as shown in
Fig. 2. Each node (cluster) contains a set of words. The root
node contains all words that exist in a set of web pages.
The specificity of the root node may depend on the num-
ber of web pages. As the set of interesting web pages to a
user increases, the root node becomes more general. Each
node can represent a conceptual relationship if those terms
occur together at the same web page frequently, for exam-
ple, ‘perceptron’ and ‘ann’ (in italics) can be categorized as
belonging to neural network algorithms, whereas ‘id3’ and
‘c4.5’ (in bold) cannot. Words in this node (in the dashed
box) are mutually related to some other words such as ‘ma-
chine’ and ‘learning’. This set of mutual words, ‘machine’
and ‘learning’, performs the role of connecting italicized and
bold words.

Since one can easily identify phrases such as “machine
learning” and “searching algorithm” in the UIH, by locating
phrases from the pages, we can enrich the vocabulary for
building the UIH. For example, the phrase “machine learn-
ing” can be identified and added to Pages 1–6. If we can use
phrases as a feature in the UIH, each cluster will be enriched
because phrases are more specific than words. For example,
a user is interested in “java coffee” and “java language”. The
word “java” will be in the parent cluster of both “coffee” and

Table 1 Sample data set

Web Content

age

1 ai machine learning ann perceptron

2 ai machine learning ann perceptron

3 ai machine learning decision tree id3 c4.5

4 ai machine learning decision tree id3 c4.5

5 ai machine learning decision tree hypothesis space

6 ai machine learning decision tree hypothesis space

7 ai searching algorithm bfs

8 ai searching algorithm dfs

9 ai searching algorithm constraint reasoning forward checking

10 ai searching algorithm constraint reasoning forward checking

Fig. 2 Sample user interest hierarchy

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 5»

Learning implicit user interest hierarchy for context in personalization

433 487

434 488

435 489

436 490

437 491

438 492

439 493

440 494

441 495

442 496

443 497

444 498

445 499

446 500

447 501

448 502

449 503

450 504

451 505

452 506

453 507

454 508

455 509

456 510

457 511

458 512

459 513

460 514

461 515

462 516

463 517

464 518

465 519

466 520

467 521

468 522

469 523

470 524

471 525

472 526

473 527

474 528

475 529

476 530

477 531

478 532

479 533

480 534

481 535

482 536

483 537

484 538

485 539

486 540

“language”. Each child cluster would contain only “coffee”
or “language”, which is relatively less useful when not in
combination with “java”.

Note that our approach can indirectly cluster pages where
pages may belong to multiple clusters—overlapping clus-
ters of pages. Instead of directly clustering the original ob-
jects (web pages), this indirect cluster method first cluster
features (words) of the objects and then the objects are as-
signed to clusters based on the features in each cluster. Since
a document can have terms in different clusters, a document
can be in more than one cluster. Since the more challeng-
ing step is the initial hierarchical clustering of features, our
primary focus for this paper is on devising and evaluating
algorithms for this step. We call our hierarchical clustering
of features a UIH, because it represents a user’s general to
specific interests.

4 Building user interest hierarchy

We desire to learn a hierarchy of interest topics from a user’s
web pages bookmarked by a user, in order to provide a con-
text for personalization. Our divisive hierarchical cluster-
ing (DHC) algorithm recursively partitions the terms into
smaller clusters, which represent more related terms. We as-
sume terms occurring close to each other (within a window
size) are related to each other. We investigate correlation
functions that measure how closely two terms are related
in Sect. 4.2. We also study techniques that dynamically lo-
cate a threshold that decides whether two terms are strongly
related or not in Sect. 4.3. If two terms are determined to
be strongly related to each other, they will be in the same
cluster; otherwise, they will be in different clusters.

4.1 Algorithm

Our algorithm is a divisive graph-based hierarchical clus-
tering method (DHC), that recursively divides clusters into
child clusters until it meets the stopping conditions. We set
a minimum number of terms (MinClusterSize) in a cluster
as the stopping condition. In preparation for our clustering
algorithm, we extract terms from web pages that are interest-
ing to the user by filtering them through a stop list, stemming
them [21, 23], and adapting variable-length phrase-finding
(VPF) algorithm [12]. Figure 3 illustrates the pseudo code
for the DHC algorithm. Using a correlation function, we
calculate the strength of the relationship between a pair of
terms in line 1. The WindowSize is the maximum distance
(in number of words) between two related terms in calcu-
lating their correlation value. After calculating a threshold
to differentiate strong correlation values from weak corre-
lation in line 2, we remove all weak correlation values in
line 5. The FINDTHRESHOLD is a method that calculates
the cutoff value for determining strong and weak correlation
values. We then build a weighted undirected graph with each
vertex representing a term and each weight denoting the cor-
relation between two terms. Since related terms are more
likely to appear in the same document than unrelated terms,
we measure co-occurrence of terms in a document. Given
the graph, called a CorrelationMatrix, the clustering algo-
rithm recursively partitions the graph into subgraphs, called
Clusters, each of which represents a sibling node in the re-
sulting UIH in line 6.

At each partitioning step, edges with “weak” weights are
removed and the resulting connected components constitute
sibling clusters (we can also consider cliques as clusters, but

Fig. 3 DHC algorithm

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 6»

H.-R. Kim, P.K. Chan

541 595

542 596

543 597

544 598

545 599

546 600

547 601

548 602

549 603

550 604

551 605

552 606

553 607

554 608

555 609

556 610

557 611

558 612

559 613

560 614

561 615

562 616

563 617

564 618

565 619

566 620

567 621

568 622

569 623

570 624

571 625

572 626

573 627

574 628

575 629

576 630

577 631

578 632

579 633

580 634

581 635

582 636

583 637

584 638

585 639

586 640

587 641

588 642

589 643

590 644

591 645

592 646

593 647

594 648

more computation is required). The recursive partitioning
process stops when one of the stopping criteria is satisfied.
The first criterion is when the current graph does not have
any connected components after weak edges are removed.
The second criterion is a new child cluster is not formed if
the number of terms in the cluster falls below a predeter-
mined threshold.

Suppose we built a weighted undirected graph with the
running example in Table 1 where each vertex represents
a term and each weight (value) denotes the correlation
value. The undirected graph can be depicted as shown in
Fig. 4(a)—the left column shows graph partitioning and
the right column represents the corresponding tree. We pre-
sented only some vertices and edges as shown in (a)—those
edges whose value is low are hidden to reduce the com-
plexity of the graph. Once a threshold for differentiating
“strong” edges from “weak” edges is calculated by using
a Findthreshold method, we can remove weak edges. Those
removed edges are represented as dashed lines. After remov-
ing weak edges, DHC finds connected components, which
is shown in Fig. 4(b). If the number of elements in a cluster
is greater than the minimum number of elements in a clus-
ter (e.g., 4), then the correlation values are recalculated and
the algorithm repeats the process of removing “weak” edges
as shown in Fig. 4(c). Since DHC recursively partitions the
graph into subgraphs, called Clusters, the final result be-
comes hierarchical clusters as shown in Fig. 4(d). Note that
the edge between “ann” and “learning” does not appear in
(a) and (b). It appears only in (c) and (d) after the recalcu-
lation of the correlation values. This happens because when
we calculated the edge with the whole terms, the edge was
weak. When we calculated the correlation value for each sub
cluster, however, the correlation value became high in its sub
cluster.

The CalculateCorrelationMatrix function
takes a correlation function, cluster, and window size as
parameters and returns the correlation matrix, where the
window size affects how far two terms (the number of
words between two terms) can be considered as related.
The CalculateThreshold function takes a threshold-
finding method and correlation matrix as parameters and
returns the threshold. The correlation function (Sect. 4.2)
and threshold-finding method (Sect. 4.3) greatly influence
the clustering algorithm, and are discussed next.

4.2 Correlation functions

The correlation function calculates how strongly two terms
(words or phrases) are related. Since related terms are likely
to be closer to each other than unrelated terms, we assume
two terms co-occurring within a window size are related to
each other. To simplify our discussion, we have been assum-
ing the window size to be the entire length of a document.

That is, two terms co-occur if they are in the same document.
These functions are used in CalculateCorrelation-
Matrix function in Fig. 3.

4.2.1 AEMI

We use AEMI (Augmented Expected Mutual Information)
[4] as a correlation function. AEMI is an enhanced version
of MI (Mutual Information) and EMI (Expected Mutual In-
formation). Unlike MI which considers only one corner of
the contingency matrix and EMI which sums the MI of all
four corners of the contingency matrix, AEMI sums sup-
porting evidence and subtracts counter-evidence. Chan [4]
demonstrates that AEMI could find more meaningful multi-
word phrases than MI or EMI. Concretely, consider vari-
ables A and B in AEMI(A,B) are the events for the two
terms (a and b), where the capital A and B are variables and
lowercase a and b are the instances. P(A = a) is the proba-
bility of a document containing a term of a and P(A = ā) is
the probability of a document not having term a. For exam-
ple, if out of 100 documents 5 documents contain the term
of a, then P(A = a) is 0.05 and P(A = ā) is 0.95. P(B = b)

and P(B = b̄) is defined likewise. P(A = a,B = b) is the
probability of a document containing both terms a and b.
These probabilities are estimated from documents that are
interesting to the user. AEMI(A,B) is defined as:

AEMI(A,B)

= P(a, b) log
P(a, b)

P (a)P (b)

−
∑

(A=a,B=b̄)(A=ā,B=b)

P (A,B) log
P(A,B)

P (A)P (B)
. (1)

The first term computes supporting evidence that a and b

are related and the second term calculates counter-evidence.
Using our running example in Fig. 2, Table 2 shows a few
examples of how AEMI values are computed. The AEMI
value between ‘searching’ and ‘algorithm’ is 0.36, which
is higher than the AEMI value between ‘space’ and ‘con-
straint’, −0.09.

Table 2 AEMI values

P (a) P (ā) P (b) P (b̄) P (ab) P (āb) P (ab̄) AEMI(a, b)

a = searching, b = algorithm

0.4 0.6 0.4 0.6 0.4 0 0 0.36

a = space, b = constraint

0.2 0.8 0.2 0.8 0 0.2 0.6 −0.09

a = ann, b = perceptron

0.2 0.8 0.2 0.8 0.2 0 0 0.32

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 7»

Learning implicit user interest hierarchy for context in personalization

649 703

650 704

651 705

652 706

653 707

654 708

655 709

656 710

657 711

658 712

659 713

660 714

661 715

662 716

663 717

664 718

665 719

666 720

667 721

668 722

669 723

670 724

671 725

672 726

673 727

674 728

675 729

676 730

677 731

678 732

679 733

680 734

681 735

682 736

683 737

684 738

685 739

686 740

687 741

688 742

689 743

690 744

691 745

692 746

693 747

694 748

695 749

696 750

697 751

698 752

699 753

700 754

701 755

702 756

Fig. 4 An example of DHC
algorithm

4.2.2 AEMI-SP

Inspired by work in the information retrieval community, we
enhance AEMI by incorporating a component for inverse
document frequency (IDF) in the correlation function. The

document frequency of a term calculates the number of doc-
uments that contain the term. Terms that are commonly used
in many documents are usually not informative in charac-
terizing the content of the documents. Hence, the inverse
document frequency (the reciprocal of document frequency)

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 8»

H.-R. Kim, P.K. Chan

757 811

758 812

759 813

760 814

761 815

762 816

763 817

764 818

765 819

766 820

767 821

768 822

769 823

770 824

771 825

772 826

773 827

774 828

775 829

776 830

777 831

778 832

779 833

780 834

781 835

782 836

783 837

784 838

785 839

786 840

787 841

788 842

789 843

790 844

791 845

792 846

793 847

794 848

795 849

796 850

797 851

798 852

799 853

800 854

801 855

802 856

803 857

804 858

805 859

806 860

807 861

808 862

809 863

810 864

Table 3 AEMI-SP values

AEMI SP AEMI-SP

a = searching 0.36 0.62 0.113

b = algorithm

a = ann 0.32 0.85 0.137

b = perceptron

measures how informative a term is in characterizing the
content. While involving the IDF, we adapt sigmoid func-
tion in order to emphasize more specific (informative) terms.
The adjusted sigmoid function is called SP (specificity).

We estimate the probability of document frequency of
a term so that we can scale the quantity between 0 and 1.
We desire to give high values to terms with a probabil-
ity below 0.3 (approximately), gradually decreasing values
from 0.3 to 0.7, and low values above 0.7. This behavior
can be approximated by a sigmoid function, commonly
used as a smoother threshold function in neural networks,
though ours needs to be smoother. SP(m) is defined as:
1/(1 + exp(0.6 × (m × 10.5 − 5))), where m is defined as:
MAX(P (a),P (b)). We choose the larger probability so that
SP is more conservative. The factor 0.6 smoothes the curve,
and constants 10.5 and −5 shift the range of m from be-
tween 0 and 1 to between −5 and 5.5. The new range of −5
and 5.5 is slightly asymmetrical because we would like to
give a small bias to more specific terms. For instance, for
a = ‘ann’ and b = ‘perceptron’, m is 0.2 and SP(m) is 0.85,
but for a = ‘machin’ and b = ‘ann’, m is 0.6 and SP(m)

is 0.31.
Our correlation function AEMI-SP is defined as:

AEMI × SP/2. The usual range for AEMI is 0.1–0.45 and
SP is 0–1. To scale SP to a similar range as AEMI, we di-
vide SP by 2. For example, in Table 3 the AEMI-SP value
for ‘searching’ and ‘algorithm’ is lower than the value for
‘ann’ and ‘perceptron’ because the SP value for ‘ann’ and
‘percetpron’ is higher even though the AEMI value is lower.

4.2.3 Other correlation functions

We also investigated other existing correlation functions.
The Jaccard function [21] is defined as: P(a,b)

P (a∪b)
. When a

term describes a more general topic, we expect it to occur
quite often and appear with different, more specific terms.
Hence, we desire general (“connecting”) terms to exist only
at higher levels in the UIH. For example, ‘ai’ is general and
preferably should not appear at the lower levels. Using our
running example in Fig. 2, the Jaccard value between ‘ai’
and ‘machine’ is 0.6 and the value between ‘ai’ and ‘search’
is 0.5. If the threshold is 0.49, both pairs are in the same
cluster and ‘ai’ may perform the role to connect ‘machine’
and ‘search’. Even if the threshold is 0.55, ‘ai’ still remains

in the child cluster with ‘machine’ (since their correlation
value is over the threshold), which is a wrong decision. This
phenomenon tells us the Jaccard function is not proper for
making hierarchical clusters.

The MIN method in STC [28] can be defined as
MIN(P (a|b),P (b|a)). The idea is that if we assign the same
correlation value to connected terms and connecting terms,
they would go together. For instance, ‘ai’ connects ‘ma-
chine’ and ‘searching’, so they are grouped together in one
cluster. However, when they are divided into child clusters,
‘ai’ should be removed because ‘ai’ is too general. However,
due to the dominance of ‘ai’ over ‘machine’ and ‘search-
ing’, MIN(P (‘ai’|‘machine’), P(‘machine’|‘ai’)) may tend
to have higher value than MIN(P (‘machine’|‘searching’),
P(‘searching’|‘machine’)), which hinders ‘ai’ from being
removed. Alternatively, the MAX function, MAX(P (a|b),

P (b|a)), does not distinguish the value for ‘ai’ and ‘ma-
chine’, and the value for ‘machine’ and ‘learning’, even
though the latter pair has a much stronger relationship. Since
Jaccard, MIN, and MAX did not generate desirable cluster
hierarchies, we excluded them from further experiments.

4.3 Threshold-finding methods

Instead of using a fixed user-provided threshold (as in STC
[28] to differentiate strong from weak correlation values be-
tween a pair of terms, we examine methods that dynami-
cally determine a reasonable threshold value. Weights with
a weak correlation are removed from CorrelationMa-
trix and child clusters are identified.

4.3.1 Valley

To determine the threshold, we would like to find a sparse
region that does not have a lot of similar values. That is, the
frequency of weights in that region is low. We first deter-
mine the highest observed and lowest desirable correlation
values, and quantize the interval into ten regions of equal
width. The lowest desirable correlation value is defined as
the value achieved by a pair of terms that occur together only
in one document. We then determine the frequency of val-
ues in each region. Generally, lower weights have a higher
frequency and higher weights have a lower frequency. If the
frequency monotonically decreases with regions of higher
weights, picking the region with the lowest frequency will
always be the region with the highest weights. If, unfortu-
nately, the threshold is too high, then too many edges will
be cut. In this case, the threshold is set to be the average
plus standard deviation (biasing to remove more edges with
lower weights).

However, if the frequency does not decrease monotoni-
cally, we attempt to identify the “widest and steepest” val-
ley. A valley is defined as any region where the frequency

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 9»

Learning implicit user interest hierarchy for context in personalization

865 919

866 920

867 921

868 922

869 923

870 924

871 925

872 926

873 927

874 928

875 929

876 930

877 931

878 932

879 933

880 934

881 935

882 936

883 937

884 938

885 939

886 940

887 941

888 942

889 943

890 944

891 945

892 946

893 947

894 948

895 949

896 950

897 951

898 952

899 953

900 954

901 955

902 956

903 957

904 958

905 959

906 960

907 961

908 962

909 963

910 964

911 965

912 966

913 967

914 968

915 969

916 970

917 971

918 972

decreases and then increases. Steepness can be measured
by the slopes of the two sides of a valley and the width
of how many regions the valley covers. Since the regions
are of equal width, we calculate “quality” of a valley by:∑

i,j |freqi − freqj |, where i and j are successive regions
on the two sides of a valley. Once the widest and steepest
valley is located, we identify the threshold in the region that
constitutes the bottom (lowest frequency) of the valley.

For example, in Table 4, the first column is the id of each
region, the second column is the range of correlation val-
ues, the third column is the number of values resides in each
region, and the last column is the number of child nodes
that can be generated with the lowest value in each range
as a threshold. There are three valleys when a histogram is
drawn like Fig. 5: one from Region 0 through 3, (quality
is 17), another one from Region 3 through 5, (quality is 14),
and the last one from Region 5 through 9, (quality is 15).
Therefore, the widest and steepest valley is the first valley
and its bottom is in Regions 1 and 2, which is shown in
Fig. 6. To identify the threshold inside the bottom region,

Table 4 Distribution of frequency and number of children

Region Range Freq. # of Children

0 0.27 ≤ x < 0.28 16 Not counted

1 0.28 ≤ x < 0.29 0 Not counted

2 0.29 ≤ x < 0.30 0 Not counted

3 0.30 ≤ x < 0.31 1 Not counted

4 0.31 ≤ x < 0.32 0 Not counted

5 0.32 ≤ x < 0.33 13 6

6 0.33 ≤ x < 0.34 0 1

7 0.34 ≤ x < 0.35 0 1

8 0.35 ≤ x < 0.36 0 1

9 0.36 ≤ x 2 Not applicable

B
&

W
 IN

 P
R

IN
T

Fig. 5 Shown in a Histogram

we ignore the frequency information and find two clusters
of correlation values. In this case, it is a one-dimensional
two-cluster task, which can be accomplished by sorting the
weights and splitting at the largest gap between two succes-
sive weights (Largest gap). In our example, since the bottom
has zero frequency, any value between 0.28 and 0.30 can be
the threshold. If the bottom does not have zero frequency,
we recursively divide the bottom until the frequency is zero.

4.3.2 MaxChildren

The MaxChildren method selects a threshold such that max-
imum of child clusters are generated and the resulting tree
is shorter. This way we divide the strongly correlated val-
ues from weakly correlated ones. This also ensures that the
resulting hierarchy does not degenerate to a tall and thin
tree (which might be the case for other methods). This pref-
erence also stems from the fact that topics are generally
more diverse than detailed and the library catalog taxon-
omy is typically short and wide. For example, we want the
trees in Fig. 2 to be shorter and wider. MaxChildren calcu-
lates the number of child clusters for each boundary value
between two quantized regions. To guarantee the selected
threshold is not too low, this method ignores the first half of
the boundary values. For example, in Table 4, the boundary
value 0.33 (between Regions 5 and 6) of the Range column
generates the most children and is selected as the threshold.
This method recursively divides the selected best region un-
til there are no changes on the number of child clusters.

4.3.3 Other threshold-finding methods

There are some other threshold-finding methods that we ini-
tially studied, but we found them to be inferior to Valley
or MaxChildren, and subsequently they are not included in

B
&

W
 IN

 P
R

IN
T

Fig. 6 Find the widest and deepest valley

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 10»

H.-R. Kim, P.K. Chan

973 1027

974 1028

975 1029

976 1030

977 1031

978 1032

979 1033

980 1034

981 1035

982 1036

983 1037

984 1038

985 1039

986 1040

987 1041

988 1042

989 1043

990 1044

991 1045

992 1046

993 1047

994 1048

995 1049

996 1050

997 1051

998 1052

999 1053

1000 1054

1001 1055

1002 1056

1003 1057

1004 1058

1005 1059

1006 1060

1007 1061

1008 1062

1009 1063

1010 1064

1011 1065

1012 1066

1013 1067

1014 1068

1015 1069

1016 1070

1017 1071

1018 1072

1019 1073

1020 1074

1021 1075

1022 1076

1023 1077

1024 1078

1025 1079

1026 1080

this paper. LargestGap sorts the values and splits them at
the largest gap between two successive values (this method
can be used in the Valley method after the bottom of the
largest valley is found). Again this is motivated by trying
to form two clusters in a one-dimensional space. However,
in our initial experiments, the largest gap is close to the
largest observed value and thus the resulting tree is usually
too small. To prevent the threshold from being too large,
Top30% method selects a threshold that retains values in
the top 30%. However, this method generates tall and thin
trees. To retain ‘abnormally’ large values of a threshold, we
also studied Average+StandardDeviation, in order to select
a threshold larger than the average. This is later combined
into the Valley method.

4.4 Window size and minimum size of a cluster

The window size parameter specifies the maximum ‘physi-
cal’ distance (in terms of number of words) between a pair
of terms for consideration of co-occurrence. We have been
using the entire document length as the window size to sim-
plify our discussion. However, considering two terms oc-
curring in the same page as related might be too optimistic.
Hence, we investigated smaller window sizes that roughly
cover a paragraph (e.g., 100 words) or a sentence (e.g.,
15 words).

However, in our experiments the window size does not
make a significant difference. And, the minimum size of a
cluster affects the number of clusters. A larger number of
clusters makes the hierarchy less comprehensible and re-
quires more computation. We picked 4 as the minimum size
of a cluster, because this number of terms can represent a
concept that is sufficiently specific.

5 Experiments

We evaluate the UIH itself to see if it is meaningful using
real data. The quality of the UIH also describes the perfor-
mance of DHC. We then compare user interest hierarchies
using different methods. Furthermore, we compare the qual-
ity of UIHs of which one uses only words and the other in-
cludes phrases.

5.1 Evaluation data and procedures

Experiments were conducted on data obtained from our de-
partmental web server. By analyzing the server access log
from January to April 1999, we identified hosts that ac-
cessed our sever at least 50 times in the first two months
and also in the following two months. We filtered out proxy,
crawler, and our computer lab hosts, and identified “single-
user” hosts, which are at dormitory rooms and a local com-
pany [4]. This process yielded 13 different users and col-
lected the web pages they visited. The total number of pages

that we used is around 1400 and most of the pages contain
mostly regular text. The average number of words on a web
pages is 1918, with a minimum of 340, and a maximum of
3708.

To find phrases, we used the variable-length phrase-
finding (VPF) algorithm [12] because it finds more mean-
ingful phrases than other methods [1, 4]. Phrases are used
to enhance the representation of a UIH. We evaluated the
effectiveness of our algorithms by analyzing the generated
hierarchies in terms of meaningfulness and shape.

Separate experiments were conducted to evaluate the
effectiveness of different correlation functions, threshold-
finding methods, and window sizes. In order to remove the
authors’ bias, we randomly reordered whole clusters from
all approaches before we evaluated each cluster.

5.2 Evaluation criteria

To evaluate a UIH, we use both qualitative and quantita-
tive measures. Qualitatively, we examine if the cluster hier-
archies reasonably describe some topics (meaningfulness).
Quantitatively, we measure shape of the cluster trees by cal-
culating the average branching factor (ABF) [22]. ABF is
defined as the total number of branches of all non-leaf nodes
divided by the number of non-leaf nodes.

We categorized meaningfulness as ‘good’, ‘bad’, or
‘other’. Since the leaf clusters should have specific mean-
ing and non-leaf clusters are hard to interpret due to their
size, we only evaluated the leaf clusters for meaningfulness.
Our measure is based on interpretability and usability [10].
So, we checked two properties of the leaf clusters: the exis-
tence of related terms, and possibility of combining terms.
For instance, for related terms, consider ‘formal’, ‘compil’,
‘befor’, ‘graphic’, ‘mathemat’, and ‘taken’ are in a cluster,
even though ‘befor’ and ‘taken’ do not have any relationship
with the other terms. Since the terms, ‘formal’, ‘compil’,
‘graphic’, and ‘mathemat’, are classified as course titles re-
lated to the computer science major, this cluster is evaluated
as ‘good’. For the possibility of combining terms, consider
‘research’, ‘activ’, ‘class’, and ‘web’ to be in a cluster. In
this case, the meaning of the cluster can be estimated as ‘re-
search activity’ or ‘research class’ [29], so we regard this
cluster as ‘good’. A cluster is marked as ‘good’ when it has
more than 2/5 of the terms that are related or have more than
2 possible composite phrases as well. This is hard to mea-
sure, so we attempted to be as skeptical as possible. For ex-
ample, suppose a cluster has ‘test’, ‘info’, ‘thursdai’, ‘pleas’,
‘cours’, ‘avail’, and ‘appear’. In this case one can say ‘test
info’ or ‘cours info’ are possible composite phrases; how-
ever, since ‘test info’ does not have any conceptual meaning
in our opinion, we did not count that phrase. If a cluster con-
tains less then 15 terms and does not satisfy the criteria for
‘good’ cluster, it is marked as ‘bad’. A cluster is marked as

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 11»

Learning implicit user interest hierarchy for context in personalization

1081 1135

1082 1136

1083 1137

1084 1138

1085 1139

1086 1140

1087 1141

1088 1142

1089 1143

1090 1144

1091 1145

1092 1146

1093 1147

1094 1148

1095 1149

1096 1150

1097 1151

1098 1152

1099 1153

1100 1154

1101 1155

1102 1156

1103 1157

1104 1158

1105 1159

1106 1160

1107 1161

1108 1162

1109 1163

1110 1164

1111 1165

1112 1166

1113 1167

1114 1168

1115 1169

1116 1170

1117 1171

1118 1172

1119 1173

1120 1174

1121 1175

1122 1176

1123 1177

1124 1178

1125 1179

1126 1180

1127 1181

1128 1182

1129 1183

1130 1184

1131 1185

1132 1186

1133 1187

1134 1188

‘other’ when a leaf cluster has more than 15 terms because
a big leaf cluster is hard to interpret.

We categorized shape as ‘thin’, ‘medium,’ or ‘fat’. If a
tree’s ABF value is 1, the tree is considered a ‘thin’ tree
(marked as ‘T’ in the following tables). If the ABF value
of a tree is at least 10, the tree is considered a ‘fat’ tree
(marked as ‘F’). The rest are ‘medium’ trees (marked as
‘M’). We consider one more tree type: ‘conceptual’ tree
(marked as ‘C’), which subsumes ‘M’ or ‘F’ type trees.
A conceptual tree is one that has at least one node with
more than two child clusters and more than 70% of the
terms in each child cluster have similar meaning. For exam-
ple, Cluster 6 and 7 in Fig. 9 contains terms corresponding
to course titles in computer sciences and they are siblings:
Cluster 6 = {data structure, software engineering, network}
and Cluster 7 = {artificial intelligence, database, graphics,
and discrete mathematics}. Since we prefer a tree that can
represent meaningful concepts, ‘C’ type trees are the most
desirable. ‘T’ type trees are degenerate (imagine each node
in the hierarchy has only one child and the hierarchy resem-
bles a list, which is usually not how concepts are organized)
and hence undesirable. Based on these evaluation criteria,
we analyze different correlation functions, threshold-finding
methods and window sizes.

6 Results and analysis

In this section we analyze the results from the DHC. We first
evaluate the DHC algorithm with only words as features.
Then, we compare the results from DHC using only words
and the combination of words and phrases as features.

6.1 Building UIH with only words as features

6.1.1 Correlation functions

We compared two correlation functions: AEMI versus
AEMI-SP. We fixed the threshold-finding method to Valley
and the window size to ‘entire page’. Table 5 and Table 6
illustrate the results. The letter ‘U’ stands for user, ‘# of
L’ means the number of leaf nodes. ‘G %’ means ‘percent-
age of good’, which is calculated by dividing the number of
‘good’ leaves by the ‘# of L’. AEMI yielded significantly
more meaningful leaf clusters (59% good) than AEMI-SP
(41% good). The means of the two groups were significantly
different from each other according to the t-test at level 0.05
[14].

Both methods generated trees whose shapes were mostly
‘medium’. For U8, AEMI generated a conceptually related
tree as shown in Fig. 7. The tree has a node with two child
clusters, which contains words from course titles and hence
represents the concepts of different courses (in the dashed

Fig. 7 An example of a conceptual tree of U8 in Table 5

box). Cluster 1 represents the homepage of the Computer
Science Department. Cluster 3 illustrates academic degree
programs. Cluster 4 contains names of faculty members. For
U2 with AEMI-SP, the generated tree was ‘fat’ and had an
ABF value of 10.

6.1.2 Threshold-finding method

We compared two threshold-finding methods: Valley versus
MaxChildren. We fixed the correlation function to AEMI
and the window size to entire page. Table 5 and Table 7 illus-
trate the results. MaxChildren generated more meaningful
leaf clusters (59% good) than Valley (47% good). However,
the means of two groups were not statistically different from
each other according to the t-test at level 0.05. Tree shapes
are similar (medium) in both methods. However, generally,
trees generated by MaxChildren were shorter, which indi-
cates that MaxChildren reduces the number of iterations in
the DHC algorithm by dividing the cluster in an early stage.
Hence, MaxChildren is faster than Valley.

6.1.3 Window size

We compared the performance using different window sizes:
‘entire page’ versus 100 words (paragraph length). We fixed
the correlation function to AEMI and the threshold-finding
method to MaxChildren. Table 5 and Table 8 illustrate the
results. A window size of the entire page generated slightly
more meaningful clusters (59% good) than a window size
of 100 (57% good). However, a window size of 100 yielded
more tress (UIH) with 100% ‘good’ leaf clusters (6) than
a window size of the entire page (5). Hence, it is not
clear which window size produces more meaningful clus-
ters. Both methods resulted in ‘medium’ trees. A window
size of 100 generated one thin tree for U11. The ‘T’ tree in
Table 8 has only two nodes (clusters): the root and one leaf.
These results indicate the differences are not significant.

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 12»

H.-R. Kim, P.K. Chan

1189 1243

1190 1244

1191 1245

1192 1246

1193 1247

1194 1248

1195 1249

1196 1250

1197 1251

1198 1252

1199 1253

1200 1254

1201 1255

1202 1256

1203 1257

1204 1258

1205 1259

1206 1260

1207 1261

1208 1262

1209 1263

1210 1264

1211 1265

1212 1266

1213 1267

1214 1268

1215 1269

1216 1270

1217 1271

1218 1272

1219 1273

1220 1274

1221 1275

1222 1276

1223 1277

1224 1278

1225 1279

1226 1280

1227 1281

1228 1282

1229 1283

1230 1284

1231 1285

1232 1286

1233 1287

1234 1288

1235 1289

1236 1290

1237 1291

1238 1292

1239 1293

1240 1294

1241 1295

1242 1296

Table 5 Combination of
AEMI, MaxChildren, and entire
page

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59

Good 3 2 2 5 3 2 2 6 3 2 1 3 1 35

Bad 1 2 1 1 1 2 1 6 7 1 1 24

Other 0

G % 75 50 67 83 75 50 100 100 75 25 13 75 50 59

ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2

Shape M M M M M M M C M M M M M

Table 6 Combination of
AEMI-SP, MaxChildren, and
entire page

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 10 10 5 10 9 7 7 5 10 13 17 8 4 115

Good 2 6 1 3 3 3 3 3 4 5 6 4 4 47

Bad 8 4 4 7 6 4 2 2 4 5 8 4 58

Other 2 2 3 3 10

G % 20 60 20 30 33 43 43 60 40 38 35 50 100 41

ABF 2.8 10 2.3 3.3 3 3 2.5 3 4 2.7 2.8 3.3 2.5

Shape M F M M M M M M M M M M M

Table 7 Combination of
AEMI, Valley, and entire page User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 6 6 4 6 5 5 4 3 3 8 11 4 7 72

Good 4 4 1 5 2 3 4 1 1 1 2 3 3 34

Bad 2 1 3 1 2 2 2 2 7 7 1 4 34

Other 1 1 2 4

G % 67 67 25 83 40 60 100 33 33 13 18 75 43 47

ABF 2.7 2 2 2.7 2.3 2.3 2 2 3 2.5 2.4 2.5 2.5

Shape M M M M M M M M M M M M M

Table 8 Combination of
AEMI, MaxChildren, and
100 words

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 5 2 12 9 4 4 2 7 8 13 1 6 4 77

Good 5 2 3 5 4 3 2 7 3 2 1 3 4 44

Bad 8 4 1 5 11 3 32

Other 1 1

G % 100 100 25 56 100 75 100 100 38 15 100 50 100 57

ABF 3 2 4.7 3.7 2.5 2.5 2 3 3.3 3.4 1 3.5 4

Shape M M M M M M M M M M T M M

6.2 Building UIH with words and phrases as features

If we can add phrases as a feature in the UIH, each clus-
ter will be enriched because phrases are more specific than
words. We compared two different data sets: one consisting
of only words and the other consisting of words and phrases.
Table 5 and Table 9 illustrate the results. Results from the
data with phrases presented more meaningful leaf clusters

(64%) than results with only words (59%). Tree shapes were
similar (medium) in both methods.

UIHs learned from a user (U1) are depicted in Fig. 8 and
Fig. 9. The one from only words has three ‘good’ leaf clus-
ters (1, 3, and 4) and one ‘bad’ leaf cluster (5). Cluster 1
shows “research activity” and “research class”. Cluster 0 de-
notes root nodes, which has all words or phrases. The right
one which is learned from both words and phrases has all

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 13»

Learning implicit user interest hierarchy for context in personalization

1297 1351

1298 1352

1299 1353

1300 1354

1301 1355

1302 1356

1303 1357

1304 1358

1305 1359

1306 1360

1307 1361

1308 1362

1309 1363

1310 1364

1311 1365

1312 1366

1313 1367

1314 1368

1315 1369

1316 1370

1317 1371

1318 1372

1319 1373

1320 1374

1321 1375

1322 1376

1323 1377

1324 1378

1325 1379

1326 1380

1327 1381

1328 1382

1329 1383

1330 1384

1331 1385

1332 1386

1333 1387

1334 1388

1335 1389

1336 1390

1337 1391

1338 1392

1339 1393

1340 1394

1341 1395

1342 1396

1343 1397

1344 1398

1345 1399

1346 1400

1347 1401

1348 1402

1349 1403

1350 1404

Table 9 Use words and phrases
User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 6 2 13 8 4 5 3 10 8 15 1 6 4 85

Good 6 2 3 4 2 4 3 10 5 8 1 2 4 54

Bad 9 4 2 1 3 7 4 30

Other 1 1

G % 100 100 23 50 50 80 100 100 63 53 100 33 100 64

ABF 3.5 2 5 3.4 2.5 3 2 5.5 3.4 3.8 1 3.5 4

Shape C M M M M M M C M M T M M

Fig. 8 UIH with words

‘good’ clusters; furthermore, it is more descriptive because
Clusters 6 and 7 in Fig. 9 contain terms corresponding to
course titles in computer science while Cluster 3 in Fig. 8
alone describes course titles. We can say Clusters 6 and 7
in Fig. 9 are conceptually related because both are course
titles. We cannot explain why some specific interests in one
UIH do not exist in the other UIH. For example, Cluster 4
in Fig. 8 shows that the user (U1) is interested in a Master’s
or Doctoral degree program, but the interest in the Master’s
degree does not exist in the UIH in Fig. 9. Cluster 4 in Fig. 9
contains names of faculty members, but they do not appear
in the UIH in Fig. 8. Though the difference between the re-
sults is not significant, results with phrases achieved higher
performance on average.

7 Concluding remarks

To create a context for personalization, we proposed estab-
lishing a user interest hierarchy (UIH) that can represent a
continuum of general to specific interests from a set of web
pages interesting to a user. We used bookmarks for the set of
web pages. The bookmarks were assumed to be updated as
the user interests change. The UIH should get updated by re-
calculating bookmarks once in a while. Instead of using the
bookmarks, however, the interesting web pages can be col-
lected by other implicit user interest detection techniques.

Fig. 9 UIH with words and phrases

This approach is non-intrusive and allows web pages to be
associated with multiple clusters/topics. We proposed our
divisive hierarchical clustering (DHC) algorithm and eval-
uated it based on data obtained from 13 users (1400 web
pages) on our web server. We also introduced correlation
functions and threshold-finding methods for the clustering
algorithm. Our empirical results suggested that the AEMI
correlation function and the MaxChildren threshold-finding
method yielded more meaningful leaf clusters. In addition,
by using phrases found by VPF algorithm [12], we improved
performance up to 64% of interpretable clusters. We did not
analyze differences among the UIHs’ obtained from various
users because of the large numbers of web pages used in our
experiments. Results from experiments not reported here in-
dicated that stemmed words were more effective than whole
words. The minimum cluster size affected the number of leaf
clusters; size 4 was easy to use and seemed to produce rea-
sonable results. We faced several problems in evolving this
approach such as finding the threshold of DHC and window
size. The most difficult part was finding the threshold au-
tomatically. We had applied several methods examining the
data carefully.

Currently, we are investigating how to apply the gener-
ated UIH’s to improve the results returned by Google [9].
Based on a user’s UIH, pages returned by Google are scored
and reranked. For each term that appears in a page as well as

Journal ID: 10489, Article ID: 56, Date: 2007-05-21, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« APIN 10489 layout: Large reference style: basic file: apin56.tex (DL) aid: 56 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:21/05/2007; 11:28 p. 14»

H.-R. Kim, P.K. Chan

1405 1459

1406 1460

1407 1461

1408 1462

1409 1463

1410 1464

1411 1465

1412 1466

1413 1467

1414 1468

1415 1469

1416 1470

1417 1471

1418 1472

1419 1473

1420 1474

1421 1475

1422 1476

1423 1477

1424 1478

1425 1479

1426 1480

1427 1481

1428 1482

1429 1483

1430 1484

1431 1485

1432 1486

1433 1487

1434 1488

1435 1489

1436 1490

1437 1491

1438 1492

1439 1493

1440 1494

1441 1495

1442 1496

1443 1497

1444 1498

1445 1499

1446 1500

1447 1501

1448 1502

1449 1503

1450 1504

1451 1505

1452 1506

1453 1507

1454 1508

1455 1509

1456 1510

1457 1511

1458 1512

in the UIH, we use the tree level in the UIH, the number of
words in the term, the frequency of the term in the page, and
the emphasis of the term in the page (whether a term is in
the title, bold, or italic) to calculate the term score. The per-
sonalized score of a web page is the sum of the term scores.
The experimental results in [13] indicate that the personal-
ized ranking methods, when used with a popular search en-
gine, can yield more relevant web pages for individual users.
The precision/recall analysis shows that our weighted term
scoring function can provide more accurate ranking for po-
tentially interesting web pages than Google on average.

Acknowledgements We thank the members of the Laboratory for
Learning Research (LLR, http://www.cs.fit.edu/~pkc/llr/) for their
comments.

References

1. Ahonen H, Heinonen O, Klemettinen M, Verkamo AI (1998) Ap-
plying data mining techniques for descriptive phrase extraction in
digital document collections. In: Proceedings of the advances in
digital libraries conference, pp 2–11

<unc> 2. Bellegarda JR (1998) Exploiting both local and global constraints
for multi-span statistical language modeling. In: Proceedings of
the IEEE international conference on acoustics, speech, and signal
processing, vol 2, pp 677–680

3. Billsus D, Pazzani MJ (1999) A hybrid user model for news story
classification. In: Proceedings of the 7th international conference
on user modeling. Springer, New York, pp 99–108

4. Chan PK (1999) A non-invasive learning approach to building web
user profiles. In: KDD workshop on web usage analysis and user
profiling, pp 7–12

5. Cheeseman P, Stutz J (1996) Bayesian classification (AutoClass):
theory and results. In: Advances in knowledge discovery and data
mining. AAAI/MIT, Menlo Park, pp 153–180

6. Croft WB, Turtle HR, Lewis DD (1991) The use of phrases and
structure queries in information retrieval. In: Proceedings of the
SIGIR conference on research and development in information re-
trieval, pp 32–45

7. Fagan JL (1987) Automatic phrase indexing for document re-
trieval. In: Proceedings of the 10th annual ACM SIGIR conference
on research & development in information retrieval, pp 91–101

8. Fisher DH (1987) Knowledge acquisition via incremental concep-
tual clustering. Mach Learn 2:139–172

9. Google (2004) http://www.google.com/
10. Han J (ed) (2001) Data mining: concepts and techniques. Kauf-

mann, San Francisco, p 338
<unc> 11. Kim H, Chan PK (2003) Learning implicit user interest hierar-

chy for context in personalization. In: Proceedings of the interna-
tional conference on intelligent user interfaces. ACM, New York,
pp 101–108

12. Kim H, Chan PK (2004) Identifying variable-length meaningful
phrases with correlation functions. In: Proceedings of the inter-
national conference on tools with artificial intelligence (ICTAI).
IEEE, New York, pp 30–38

13. Kim H, Chan PK (2005) Personalized ranking of search results
with implicitly learned user interest hierarchies. In: Proceedings
of the 11th international conference on knowledge discovery and
data mining (ACM SIGKDD WebKDD) workshop on knowledge
discovery in the web, Chicago, IL. ACM, New York

14. Lind DA, Marchal WG, Mason RD (2002) Statistical techniques
in business & economics, 11th edn. McGraw–Hill, Irwin, pp 377–
412

15. Milligan GW, Cooper MC (1985) An examination of procedures
for detecting the number of clusters in a data set. Psychometrika
50:159

<unc> 16. Mitchell T (1997) Machine learning. McGraw–Hill, New York,
pp 81–126 and 154–199

17. Mobasher B, Cooley R, Srivastave J (1999) Creating adaptive web
sites through usage-based clustering of URLs. In: Proceedings of
the 1999 IEEE knowledge and data engineering exchange work-
shop, pp 19–25

18. Pazzani M, Billsus D (1997) Learning and revising user profiles:
the identification of interesting Web sites. Mach Learn 27(3):313–
331

19. Pazzani M, Muramatsu J, Billsus D (1996) Syskill & Webert: iden-
tifying interesting web sites. In: Proceedings of the national con-
ference on artificial intelligence, pp 54–61

<unc> 20. Perkowitz M, Etzioni O (2000) Towards adaptive web sites: con-
ceptual framework and case study. Artif Intel 118:245–275

21. Rasmussen E (1992) Clustering algorithms. In: Frakes WB,
Baeza-Yates R (eds) Information retrieval: data structures and al-
gorithms. Prentice–Hall, Englewood Cliffs

22. Russell S, Norvig P (eds) (1995) Artificial intelligence: a modern
approach. Prentice–Hall, New York, p 74

23. Salton G (1989) Automatic text processing. Addison–Wesley,
Reading

24. Trajkova J, Gauch S (2004) Improving ontology-based user pro-
files. In: Proceedings of the RIAO, Vaucluse, France, pp 380–389

25. Turpin A, Moffat A (1999) Statistical phrases for vector-space in-
formation retrieval. In: Proceedings of the SIGIR, pp 309–310

26. Voorhees EM (1986) Implementing agglomerative hierarchical
clustering algorithms for use in document retrieval. Inf Process
Manag 22(6):465–476

27. Wu H, Gunopulos D (2002) Evaluating the utility of statistical
phrases and latent semantic indexing for text classification. In:
Proceedings of IEEE international conference on data mining,
pp 713–716

28. Zamir O, Etzioni O (1998) Web document clustering: a feasibility
demonstration. In: Proceedings of the SIGIR conference on re-
search and development in information retrieval, pp 46–54

29. Zamir O, Etzioni O (1999) Groper: a dynamic clustering interface
to web search results. Comput Netw 31:1361–1374

	Learning implicit user interest hierarchy for context in personalization
	Abstract
	Introduction
	Related work
	User profiles
	Clustering algorithms

	Problem
	Building user interest hierarchy
	Algorithm
	Correlation functions
	AEMI
	AEMI-SP
	Other correlation functions

	Threshold-finding methods
	Valley
	MaxChildren
	Other threshold-finding methods

	Window size and minimum size of a cluster

	Experiments
	Evaluation data and procedures
	Evaluation criteria

	Results and analysis
	Building UIH with only words as features
	Correlation functions
	Threshold-finding method
	Window size

	Building UIH with words and phrases as features

	Concluding remarks
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

