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Abstract

Many factors inuence a learning process and the per-

formance of a learned classi�er. In this paper we in-

vestigate the e�ects of class distribution in the training

set on performance. We also study di�erent methods

of measuring performance based on cost models and

the performance e�ects of training class distribution

with respect to the di�erent cost models. Observations

from these e�ects help us devise a distributed multi-

classi�er meta-learning approach to learn in domains

with skewed class distributions, non-uniform cost per

error, and large amounts of data. One such domain

is credit card fraud detection and our empirical results

indicate that our approach can signi�cantly reduce loss

due to illegitimate transactions.

Introduction

Inductive learning research has been focusing on devis-

ing algorithms that generate highly accurate classi�ers.

Many factors contribute to the success of a learning pro-

cess and hence the quality of the learned classi�er. One

factor is the class distribution in the training set. Us-

ing the same algorithm, di�erent training class distribu-

tions can generate classi�ers of di�erent quality. That

is, using the \natural" (or \given") class distribution

might not yield the most e�ective classi�er. How do we

characterize the e�ects of training class distribution on

performance? Furthermore, in some domains the class

distribution is highly skewed; for instance, the number

of fraudulent cellular phone calls is much smaller that

legitimate ones. Using the \natural" (highly skewed)

class distribution for training, some learning algorithms

might treat the minority class as noise or simply pro-

duce a classi�er that always predict the majority class.

Hence, given a learning algorithm, how do we select a

class distribution that can produce the most e�ective

classi�er?

The most common measure for evaluating perfor-

mance is the error rate (or accuracy), which assumes

that each mistake is equally important. However, in

many real-world domains di�erent types of mistakes or

di�erent individual errors have varying severity. For

example, in medical diagnosis an error that misses a

disease diagnosis could be fatal, while a mistake on di-

agnosing an illness the patient does not have could be

much less serious. How can we characterize the cost of

each type of error (or each individual error) and eval-

uate a learning system based on those characteristics?

And how do we generate more e�ective classi�ers based

on di�erent error or cost models?

Furthermore, with the wide proliferation of computer

automation and rapid advance in communication net-

works, data have become increasingly abundant. For

instance, millions of phone calls are made each day

and valuable tra�c and customer characteristics can

be discovered. How can we e�ciently learn from large

amounts of data?

Answers to the above questions could help us devise

methods to e�caciously and e�ciently learn from do-

mains with skewed class distributions, non-uniform cost

per error, and massive amounts of data. Our approach

is based on creating data subsets with the appropriate

class distribution, applying learning algorithms to the

subsets independently and in parallel, and integrating

to optimize cost performance of the classi�ers by learn-

ing (meta-learning) from their classi�cation behavior.

Empirical results from the credit card fraud detection

domain that we have been studying indicate that our

approach can reduce loss due to illegitimate transac-

tions in an e�cient manner.

The paper is organized as follows. We �rst investi-

gate the e�ects of training class distribution on classi�er

performance. Performance metrics based on di�erent

cost models are detailed next. We study the e�ects

of training class distribution in the credit card fraud

detection domain. We then describe and evaluate our

multi-classi�er meta-learning approach. In closing, we

discuss related work and summarize our observations

and future directions.

Class Distribution during Training

We hypothesized that the distribution of examples with

di�erent classi�cations inuences the performance of

classi�ers generated by learning algorithms. For highly

skewed data sets, a learning algorithm could treat the

minority class instances as noise or generate classi�ers

that always predict the majority class. We tested this

hypothesis.



Experiments were performed on four learning al-

gorithms (C4.5, CART, RIPPER, and BAYES) and

three bimodal (two-class) data sets (Credit Card Fraud,

Adult Census, and Protein Coding Regions). We ob-

tained C4.5 (Quinlan 1993) and CART (Breiman et al.

1984) as part of the IND package (Buntine & Caruana

1991) from NASA Ames Research Center; both algo-

rithms compute decision trees. RIPPER (Cohen 1995)

is a rule learning algorithm and was obtained from W.

Cohen. BAYES is a naive Bayesian learning algorithm

that is based on computing conditional probabilities us-

ing the Bayes Rule as described in (Clark & Niblett

1989). The credit card fraud data set was obtained

from the Chase Manhattan Bank and contains half a

million transactions from 10/95 to 9/96, about 20% of

which are fraudulent (the real distribution is much more

skewed (fortunately)|the 20:80 distribution is what we

were given). The adult census data set (courtesy of R.

Kohavi and B. Becker) contains records from the 1994

Census. We use a subset which has 45,000 records, 25%

of which has more than $50K in income. The protein

coding region data set (courtesy of Craven and Shavlik

(1993)) contains 20,000 records of DNA nucleotide se-

quences and their binary classi�cations (coding (50%)

or non-coding (50%)).

In this set of experiments the training class distribu-

tion varied from 10% to 90% and 10-fold CV was used.

Since the natural distribution is �xed, generating dis-

tributions from 10% to 90% is achieved by excluding

some instances from training in each CV fold. We also

want to �x the training set size for each distribution.

Using the fraud data as an example, we describe how

we calculate the �xed training set size that allows the

distribution to vary from 10% to 90%. Let n be the

total number of examples, the training set at each fold

has :9n records and hence there are :2� :9n fraudulent

records (20% are fraudulent). To allow up to 90% of

fraudulent records, the training set size is

:2�:9n

:9

, which

is :2n. That is, at each fold, only :2n records out of

:9n records are used for training and :1n records are for

testing and has the \natural" 20:80 distribution.

In Figure 1 each plot depicts the results from a learn-

ing algorithm and a data set. The x-axis represents the

percentage of minority class in the training set. Con-

sidering:

[Number of Actual Positive Actual Negative

instances] (fraudulent) (legitimate)

Predicted Positive True Positive False Positive

(fraudulent) (Hit) [a] (False Alarm) [b]

Predicted Negative False Negative True Negative

(legitimate) (Miss) [c] (Normal) [d]

the false-negative rate (FN ) is de�ned as

c

a+c

and the

false-positive rate (FP) is de�ned as

b

b+d

. The y-axis

indicates FN , FP, FN + FP, and the error rate (1 -

accuracy).

As expected, our empirical results demonstrate that

the error rates vary with the class distributions in the

training set. In the fraud domain (only 29K records

from Jan 96 were used) the error rate generally increases

with the amount of fraud (minority class) in the train-

ing set, but minimizes at around 20% fraud (natural

percentage). Similarly, in the census domain the error

rate generally increases with the amount of minority

class instances, but minimizes at around 20% (close to

the natural percentage). In the protein domain, which

has the same number of instances in each class, the er-

ror rate minimizes at around 50% (natural percentage).

That is, from our experiments, if the error rate is the

measurement of performance, using the natural distri-

bution in training would generally yield the most accu-

rate classi�ers. This is intrinsic in the design of most

learning algorithms since error rate is commonly used

to measure performance and tune algorithms. (Note

that in the fraud and census domains BAYES is not

quite sensitive to the varying class distributions|the

reasons have yet to be determined; we suspect the way

we are treating attributes with real values in BAYES is

not appropriate for the fraud domain.)

Is error rate (or accuracy) always an appropriate met-

ric for performance evaluation? If the minority class

percentage is 10% in training and the learned classi-

�er always predicts the majority class, it has an error

rate of 10%, which is quite low. However, the classi�er

does not carry much information. In the fraud domain,

this translates to predicting all transactions to be le-

gitimate and missing all the fraudulent ones (which is

the same as not using fraud detection). In order words,

the false-positive (or false-alarm) rate is zero, but the

false-negative (or miss) rate is one. (For the rest of the

paper, let the minority class be positive.) In Figure 1,

as expected, the false-negative rate decreases when the

negative (minority) percentage increases. That is, in-

creasing the number of minority instances in training

produces fewer errors on the minority instances. Con-

versely, the false-positive rate has the opposite trend.

In the fraud domain BAYES is quite insensitive to the

class distributions|the FN rate remains high, the FP

rate stays low, and the error rate remains at around .2.

This suggests that, in this case, the BAYES classi�er

tends to predict the majority class.

Figure 2 plots FN versus FP in the three domains

and each curve, composed of data points from di�erent

distributions, represents a learning algorithm. These

curves are the same as the ROC curves (Provost &

Fawcett 1997) since T P is 1 � FN (we chose to use

FN because T P is not used for our discussion in this

paper). The plot allows us to compare the FN and FP

performance of di�erent algorithms. The ideal classi-

�er would appear at the lower left corner (0,0). In the

fraud domain we observe that BAYES is less sensitive

to training class distributions since its curve is shorter

and CART generally performs better than the others

since its curve is closer to the lower left corner. BAYES

is also less sensitive to distributions in the census do-

main, but the curves are too close together to delin-

eate. Moreover, in the fraud domain, just by varying



0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Credit Card Fraud (C4.5)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Credit Card Fraud (CART)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Credit Card Fraud (RIPPER)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Credit Card Fraud (BAYES)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Adult Census (C4.5)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Adult Census (CART)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Adult Census (RIPPER)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Adult Census (BAYES)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Protein Coding Region (C4.5)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Protein Coding Region (CART)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Protein Coding Region (ripper)

FN
FP

FN + FP
Error

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F
N

/F
P

/E
rr

or
 R

at
e

Distribution of minority class

Protein Coding Region (BAYES)

FN
FP

FN + FP
Error

Figure 1: Percentage of minority class in training vs. FN=FP=FN + FP/error rate

the class distribution, a lower FN is harder to achieve

than a lower FP since more data points \bundle" on

the left than at the bottom.

An alternative metric to error rate is the sum of FN

and FP. This sum considers both types of errors. From

Figure 1, in the fraud domain, except for BAYES, the

sum minimizes at around 30% (close to the natural per-

centage). In the protein domain, the sum minimizes at

around 50% (natural percentage). More interestingly,

in the census domain, the sum minimizes at 50%, which

is not the natural distribution. In other words, if the

sum of FN and FP is used as the performance metric,

using the natural distribution might not yield the best

classi�er.

Next we discuss how the error rate, the sum of FN

and FP, and some other performance metrics can be

uni�ed in a set of cost models.

Cost Models

The regular error rate measures the percentage of in-

correctly classi�ed instances and has the implicit as-

sumption that each error is equally important. To con-

sider the di�erent costs of false-negative's and false-

positive's, we de�ne the average cost (or expected cost)

function as:

AverageCost = P (P )� Cost(FN)� FN+

P (N)� Cost(FP )�FP; (1)

where P (P ) and P (N) are the probabilities of positive's

and negative's, Cost(FN) and Cost(FP ) are the re-

spective costs of a false-negative and a false-positive,

FN and FP are the respective FN and FP rates.

This function was also de�ned by Provost and Fawcett

(1997). We further de�ne the cost ratio as:

CostRatio =

Cost(FN)

Cost(FP )

(2)

Three cases can be derived from Equation 1:

1. Error rate:

ErrorRate = P (P )�FN + P (N)�FP (3)

From Equations 1 and 3:

P (P )�Cost(FN) = P (P ); P (N)�Cost(FP ) = P (N)

) Cost(FN) = Cost(FP ) = 1

)

Cost(FN)

Cost(FP )

= 1

That is, error rate assumes each error incurs the same

cost.

2. FN + FP :

FN + FP (4)
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Figure 2: FN versus FP

From Equations 1 and 4:

P (P )� Cost(FN) = P (N)� Cost(FP ) = 1

)

Cost(FN)

Cost(FP )

=

P (N)

P (P )

That is, the relative cost of each type of error is deter-

mined by the relative prior class distribution. Since

P (N)

P (P )

is 4 in the credit card domain, FN + FP im-

plicitly assumes that the cost ratio is 4.

3. Weighted FN + FP:

weightedFN + FP = w

FN

�FN +w

FP

�FP (5)

where w

FN

and w

FP

are the weights on a false-

negative and a false-positive respectively. From

Equations 1 and 5:

P (P )�Cost(FN) = w

FN

; P (N)�Cost(FP ) = w

FP

)

w

FN

w

FP

=

P (P )� Cost(FN)

P (N)� Cost(FP )

)

Cost(FN)

Cost(FP )

=

w

FN

w

FP

�

P (N)

P (P )

That is, the relative cost of each type of error is de-

termined by the relative prior class distribution mul-

tiplied by a weight ratio. Therefore, in the credit

card domain weightedFN + FP assumes that the

cost ratio is 4 � the weight ratio (

w

FN

w

FP

).

Experiments were performed to observe the e�ects of

training class distributions on cost measured by the dif-

ferent models described in the previous section. As we

learned from the previous experiments, cost varies with

the class distribution used in training and the classi-

�er with the lowest cost might not be trained from the

\natural" class distribution in the data.

Figure 3 depicts the e�ects of training class distribu-

tion on weightedFN + FP using C4.5 on three data

sets (due to space limitation, the plots for the other

algorithms are not shown). From the �gure, we ob-

serve that with the di�erent cost models, the lowest-

cost classi�ers could be generated from training sets

with class distributions di�erent from the natural dis-

tribution. For instance, in the fraud domain, when

the weight ratio (

w

FN

w

FP

) increases, weightedFN + FP

minimizes at a larger percentage of minority instances

(positive's or fraudulent transactions). This is expected

since a larger percentage of positives reduces the FN

rate, which in turn lessens the e�ect of a heavier penalty

(w

FN

) on the FN's. In fact, if the weight ratio is higher

than 2 (or 8 in cost ratio), weightedFN + FP is min-

imized when the minority percentage is 90%. Using a

similar analysis, 90% is most e�ective when the weight

ratio is larger than 5 (5 in cost ratio) in the protein do-

main and larger than 5 (15 in cost ratio) in the census

domain.

Cost models in the Credit Card Fraud

Domain

Although the average cost equation (Eq. 1) allows dif-

ferent costs for di�erent types of errors (false-negative's

and false-positive's), it assumes each type of error in-

curs the same cost. However, due to the di�erent dollar

amount of each credit card transaction and other fac-

tors, the cost of failing to detect di�erent fraudulent

transactions is not the same. Hence we de�ne:

AverageAggregateCost =

1

n

n

X

i

Cost(i) (6)

where Cost(i) is the cost associated with instance i and

n is the total number of instances.

After consulting with a bank representative, we set-

tled on a simpli�ed cost model (the cost model used by

the bank is more complex and is still evolving). Since

it takes time and personnel to investigate a potential

fraudulent transaction, an overhead is incurred for each

investigation. That is, if the amount of a transaction

is smaller than the overhead, it is not worthwhile to

investigate the transaction even if it is suspicious. For

example, if it takes ten dollars to investigate a potential

loss of one dollar, it is more economical not to investi-

gate. Therefore, assuming a �xed overhead, we devised

the following cost model for each transaction:
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Figure 3: Percentage of minority class in training vs. weighted FN + FP

Cost(FN) tranamt

Cost(FP ) overhead if tranamt > overhead or

0 if tranamt � overhead

Cost(TP ) overhead if tranamt > overhead or

tranamt if tranamt � overhead

Cost(TN) 0

where tranamt is the amount of a credit card trans-

action. Based on this cost model, we next study the

e�ects of training class distributions on performance.

Experiments on the Credit Card Cost

Model

Experiments were performed to study the e�ects of

training class distributions on the credit card cost

model. We use data from the �rst 10 months (10/95

- 7/96) for training and the 12th month (9/96) for test-

ing. In order to vary the fraud distribution from 10%

to 90% for each month, we limit the size of the training

sets to 6,400 transactions, which are sampled randomly

without replacement. The results are plotted in Fig-

ure 4. Each data point is an average of 10 classi�ers,

each of which generated from a separate month. Each

curve represents a di�erent amount of overhead.

From Figure 4, as expected, the larger overhead leads

to higher cost. More importantly, we observe that when

the overhead is smaller, the cost minimizes at a larger

percentage of fraudulent transactions (minority class)

in the training set. When the overhead is smaller, the

bank can a�ord to send larger number of transactions

for investigation. That is, the bank can tolerate more

false-alarms (a higher FP rate) and aim for fewer misses

(a lower FN rate), which can be achieved by a larger

percentage of positive's (as we discussed in the section

on the e�ects of class distributions). Conversely, if the

overhead is larger, the bank should aim for fewer false-

alarms (a lower FP rate) and tolerate more misses (a

higher FN rate), which can be obtained by a smaller

percentage of positive's. (Note that, at some point, the

overhead can be large enough making fraud detection

economically unattractive.)

The test set (from 9/96) has 40,038 transactions and

17.5% of them are fraudulent. If fraud detection is not

available, on the average, $36.96 is lost per transaction.

Table 1 shows the maximum savings of each algorithm

with the most e�ective fraud percentage. Cost is the

dollars lost per transaction; fraud% denotes the most

Four 50:50 subsets

A 20:80 set

Figure 5: Generating four 50:50 data subsets from a

20:80 data set

e�ective fraud percentage for training; %saved repre-

sents the percentage of savings from the average loss

of $36.96; $saved shows the total dollars saved for the

month (9/96).

BAYES performed relatively poor (as observed in

earlier experiments and discussed earlier) and is ex-

cluded from the following discussion. Considering the

amount of overhead ranged from $50 to $100, the learn-

ing algorithms we used generally achieved at least 20%

in savings or at least $300K in savings. With an over-

head of $75 or less, at least half a million dollars in

savings can be attained. More importantly, maximum

savings were achieved 7 out of 9 times when the fraud

percentage used in training is 50%. Since the natural

distribution is 20:80, one way to achieve a 50:50 distri-

bution is to ignore 75% of the legitimate transactions

(or 60% of all the transactions), as we did in the ex-

periments above. The following section discusses an

approach that utilizes all the data.

A Distributed Multi-classi�er

Meta-learning Approach to

Non-uniform Distributions

As we discussed earlier, using the natural class distribu-

tion might not yield the most e�ective classi�ers, par-

ticularly when the distribution is highly skewed. Given

a skewed distribution, we would like to generate the

desired distribution without removing any data. Our

approach is to create data subsets with the desired

distribution, generate classi�ers from the subsets, and

integrate them by learning (meta-learning) from their

classi�cation behavior. For example, if the natural

skewed distribution is 20:80 and the desired distribu-

tion is 50:50, we randomly divide the majority instances

into 4 partitions and 4 data subsets are formed by merg-

ing the minority instances with each of the 4 partitions

containing majority instances. That is, the minority in-

stances are replicated across 4 data subsets to generate

the desired 50:50 distribution. Figure 5 illustrates this
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Figure 4: Training distribution vs. the credit card fraud cost model

Table 1: Cost and saving in the credit card fraud domain

Learning Overhead = $50 Overhead = $75 Overhead = $100

Alg. Cost fraud% %saved $saved Cost fraud% %saved $saved Cost fraud% %saved $saved

C4.5 23.85 50% 35% 525K 26.88 30% 27% 404K 28.46 30% 23% 341K

CART 20.80 50% 44% 647K 23.64 50% 36% 534K 26.05 50% 30% 437K

RIPPER 21.16 50% 43% 632K 24.23 50% 34% 510K 26.73 50% 28% 409K

BAYES 35.23 30% 5% 69K 35.99 20% 3% 39K 36.58 20% 1% 15K

process.

Formally, let n be the size of the data set with a

distribution of x : y (x is the percentage of the minority

class) and u : v be the desired distribution. The number

of minority instances is n�x and the desired number of

majority instances in a subset is nx �

v

u

. The number

of subsets is the number of majority instances (n � y)

divided by the number of desired majority instances

in each subset, which is

ny

nxv

u

or

y

x

�

u

v

. (When it is

not a whole number, we take the ceiling (d

y

x

�

u

v

e) and

replicate some majority instances to ensure all of the

majority instances are in the subsets.) That is, we have

y

x

�

u

v

subsets, each of which has nx minority instances

and

nxv

u

majority instances.

The next step is to apply a learning algorithm(s) to

each of the subsets. Since the subsets are independent,

each subset can be distributed to di�erent processors

and each learning process can be run in parallel. For

massive amounts of data, substantial improvement in

speed can be achieved for non-linear-time learning al-

gorithms.

The generated classi�ers are combined by learning

(meta-learning) from their classi�cation behavior. Sev-

eral meta-learning strategies are described in (Chan &

Stolfo 1993). To simplify our discussion, we only de-

scribe the class-combiner (or stacking (Wolpert 1992))

strategy. In this strategy a meta-level training set is

composed by using the (base) classi�ers' predictions on

a validation set as attribute values and the actual classi-

�cation as the class label. This training set is then used

to train a meta-classi�er. For integrating subsets, class-

combiner can be more e�ective than the voting-based

techniques (Chan & Stolfo 1995).

Experiments and Results

To evaluate our multi-classi�er meta-learning approach

to skewed class distributions, we performed a set of ex-

periments using the credit card fraud data. We used
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Figure 6: Training distribution vs. the credit card fraud

cost model

transactions from the �rst 8 months (10/95 - 5/96) for

training, the ninth month (6/96) for validating, and the

twelfth month (9/96) for testing. Based on the empir-

ical results from the e�ects of class distributions, the

desired distribution is 50:50. Since the natural distri-

bution is 20:80, four subsets are generated from each

month for a total of 32 subsets. We applied four learn-

ing algorithms (C4.5, CART, RIPPER, and BAYES) to

each subset and generated 128 base classi�ers. BAYES

was used to train the meta-classi�er.

Results from di�erent amounts of overhead are plot-

ted in Figure 6. Each data point is the average of ten

runs using a di�erent random seed. To demonstrate

that 50:50 is indeed the desired distribution, we also

ran experiments on other distributions and plotted the

results in the �gure. As expected, the cost is minimized

when the fraud percentage is 50%. Surprisingly, 50% is

the desired distribution for any of the overhead amount.

This is di�erent from the results obtained from previous

experiments when meta-learning was not used.

Furthermore, to investigate if our approach is indeed

fruitful, we ran experiments on the class-combiner strat-

egy directly applied to the original data sets from the

�rst 8 months (i.e., they have the natural 20:80 distribu-

tion). We also evaluate how individual classi�ers gener-

ated from each month perform without class-combining.

Table 2 shows the cost and savings from class-

combiner using the 50:50 distribution (128 base clas-

si�ers), the average of individual CART classi�ers gen-

erated using the desired distribution (10 classi�ers from

Table 1), class-combiner using the natural distribution

(32 base classi�ers|8 months � 4 learning algorithms),

and the average of individual classi�ers using the nat-

ural distribution (the average of 32 classi�ers). (We

did not perform experiments on simply replicating the

minority instances to achieve 50:50 in one single data

set because this approach increases the training set size

and is not appropriate in domains with large amounts

of data|one of the three primary issues we try to ad-

dress here.) Compared to the other three methods,

class-combining on subsets with a 50:50 fraud distribu-

tion clearly achieves a signi�cant increase in savings|at

least $110K for the month (6/96). When the overhead

is $50, more than half of the losses were prevented.

Surprisingly, we also observe that when the overhead

is $50, a classi�er (\single CART") trained from one's

month data with the desired 50:50 distribution (gen-

erated by throwing away some data) achieved signi�-

cantly more savings than combining classi�ers trained

from all eight months' data with the natural distribu-

tion. This rea�rms the importance of employing the

appropriate training class distribution in this domain.

Discussion and Concluding Remarks

The credit card fraud detection domain presents a num-

ber of challenging issues to machine learning|it has

skewed class distributions, non-uniform cost per error,

and large amounts of data, each of which has not been

widely studied in the machine learning research com-

munity. Our approach attempts to address all three

issues.

In Dec 96 Fawcett (1996) summarized the responses

to his inquiry on learning with skewed class distribu-

tions. The number of responses was amazingly few

given skewed distributions are not rare in the real world.

Kubat and Matwin (1997) acknowledged the perfor-

mance degradation e�ects of skewed class distribution

and investigated techniques for removing unnecessary

instances from the majority class. Instances that are

in the borderline region, noisy, or redundant are candi-

dates for removal. Cardie and Howie (1997) stated that

skewed class distributions are \the norm for learning

problems in natural language processing (NLP)." In a

case-based learning framework, they studied techniques

to extract relevant features from previously built deci-

sion trees and customize local feature weights for each

case retrieval. Our approach keeps all examples and

does not change the underlying learning algorithms.

Error rate (or accuracy) is commonly used in eval-

uating learning algorithms; cost-sensitive learning has

not been well investigated. (In a bibliography collected

by Turney (1998) on cost-sensitive learning, 34 articles

were published between 1974 and 1997|an average of

fewer than 1.5 articles per year.) Assuming the errors

can be grouped into a few types and each type incurs

the same cost, some studies (for example, (Pazzani et al.

1994)) proposed algorithms that aim to reduce the to-

tal cost. Another line of cost-sensitive research tries to

reduce the cost in using a classi�er. For instance, some

sensing devices are costlier in the robotics domain (Tan

1993) and some medical tests are more expensive in the

medical diagnosis domain. Fawcett and Provost (1997)

considered non-uniform cost per error in their cellular

phone fraud detection task and exhaustively searched

(with a �xed increment) for the Linear Threshold Unit's

threshold that minimizes the total cost. Without mod-

ifying the learning algorithms, our approach handles

non-uniform cost per error and is cost-sensitive during

the learning process.



Table 2: Cost and savings in the credit card fraud domain using meta-learning

Overhead = $50 Overhead = $75 Overhead = $100

Method Cost fraud% %saved $saved Cost fraud% %saved $saved Cost fraud% %saved $saved

Class combiner 17.96 50% 51% 761K 20.07 50% 46% 676K 21.87 50% 41% 604K

Single CART 20.80 50% 44% 647K 23.64 50% 36% 534K 26.05 50% 30% 437K

Class combiner 22.61 natural 39% 575K 23.99 natural 35% 519K 25.20 natural 32% 471K

Avg. single classi�er 27.97 natural 24% 360K 29.08 natural 21% 315K 30.02 natural 19% 278K

Until recently, researchers in machine learning have

been focused on small data sets. E�ciently learning

from large amounts of data has been gaining attention

due to the fast growing �eld of data mining, where

data are abundant. Sampling (e.g., (Catlett 1991))

and parallelism (e.g., (Han, Karypis, & Kumar 1997;

Provost & Aronis 1996)) are the two main directions

in scalable learning. Much of the parallelism work fo-

cuses on parallelizing a particular algorithm on a par-

ticular parallel architecture. That is, a new algorithm

or architecture requires substantial amount of paral-

lel programming work. Although our architecture and

algorithm-independent approach is not as e�cient as

the �ne-grained parallelization approaches, it allows dif-

ferent \o� the shelf" learning programs to be \plugged"

into a parallel and distributed environment with rela-

tive ease.

This study demonstrates that the training class dis-

tribution a�ects the performance of the learned classi-

�er. We also analyze the performance e�ects of train-

ing class distributions using a set of uni�ed cost mod-

els. In the credit card fraud detection domain our em-

pirical results indicate that our multi-classi�er meta-

learning approach using a training class distribution of

50:50 can signi�cantly reduce the amount of loss due to

illegitimate transactions. Furthermore, this approach

provides a means for e�ciently handling learning tasks

with skewed class distributions, non-uniform cost per

error, and large amounts of data. Not only is our

method e�cient, it is also scalable to larger amounts

of data.

Although downsampling instances of the majority

class is not new for handling skewed distributions

(Breiman et al. 1984), our approach does not dis-

card any data, allows parallelism for processing large

amounts of data e�ciently, and permits the usage of

multiple \o�-the-shelf" learning algorithms to increase

diversity among the learned base classi�ers. Besides,

how the data are sampled is based on the cost model,

which might dictate downsampling instances of the mi-

nority class instead of the majority class. Furthermore,

we provide empirical evidence of the e�ectiveness of our

approach.

One limitation of our approach is the need of running

preliminary experiments to determine the desired dis-

tribution based on a de�ned cost model. This process

can be automated but it is unavoidable since the desired

distribution is highly dependent on the cost model and

the learning algorithm.

Using four learning algorithms, our approach gener-

ates 128 classi�ers from a 50:50 class distribution and

eight months of data. We might not need to keep all

128 classi�ers because some of them could be highly

correlated and hence redundant. Also, more classi�ers

are generated when the data set is larger or additional

learning algorithms are incorporated. Metrics for ana-

lyzing an ensemble of classi�ers (e.g., diversity, corre-

lated error, and coverage) can be used in pruning unnec-

essary classi�ers (Margineantu & Dietterich 1997). Fur-

thermore, the real distribution is more skewed than the

20:80 provided to us. We intend to investigate our ap-

proach with more skewed distributions. As with a large

overhead, a highly skewed distribution can render fraud

detection economically undesirable. More importantly,

since thieves also learn and fraud patterns evolve over

time, some classi�ers are more relevant than others at a

particular time. Therefore, an adaptive classi�er selec-

tion method is essential. Unlike a monolithic approach

of learning one classi�er using incremental learning, our

modular multi-classi�er approach facilitates adaptation

over time and removal of out-of-date knowledge.

Since transactions with amounts smaller than the

overhead are generally automatically approved, they

might contribute little to evaluating transactions with

amounts larger than the overhead. Excluding the small

transactions during training reduces the training time,

which is particularly bene�cial in this domain when

large amounts of data are present. In addition, al-

though banks do not share credit card data for fear

of losing valuable customers to competitors or violating

the customers' privacy, a bank can import \black-box"

classi�ers from other banks to improve its local perfor-

mance (Chan & Stolfo 1996).
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