
Learning to Identify Known and Unknown Classes:
A Case Study in Open World Malware Classification

Mehadi Hassen, Philip K. Chan
School of Computing, Florida Institute of Technology

Melbourne, USA
mhassen2005@my.fit.edu

pkc@cs.fit.edu

Abstract

In this paper we propose an open world malware classifica-
tion. Our approach is not only able to identify known families
of malware but is also able to distinguish them from malware
families that were never seen before. Our proposed approach
is more accurate and scales better on two evaluation datasets
when compared to existing algorithms.

Introduction
In a classification problem, we are given a set of classes be-
tween which the model has to learn to discriminate. There
are many cases in which we know the possible classes in the
problem domain beforehand and simply learning to distin-
guish between these classes is sufficient. This can be thought
of as the “closed world” scenario. In other problem domains,
however, we are aware of only some number of classes dur-
ing training and instances that belong to classes not present
in the training set can be present in a test set. In this paper
we will refer to this as the “open world” scenario.

This is especially true in the domain of malware family
classification, in which we want to identify the family of a
malware sample. There are a variety of reasons why this is
the case. One reason is that it’s not possible to collect all
samples from every existing malware class/family for train-
ing. Even if we were able to do so, because of the adversarial
nature of this problem domain, malware authors constantly
release new malware families. Therefore, it is important to
have a classifier that is not only capable of discriminating be-
tween instances from known malware families but one that
is also able to determine if samples do not belong to any of
the known families and label them as unknown. In this pa-
per we present a classifier system that achieves this goal. Our
proposed approaches combine a classifier and an outlier de-
tector to build a system where the outlier detector is trained
on new features extracted from the output of the classifier.
The following points summarize our main contributions:

• We present a different look from the majority of the re-
search in the malware classification domain by addressing
classification in an open world.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• We propose the extraction of new features from classifier
output which transforms the problem of identifying un-
known class instances into a new feature space.

• We provide an approach that is more accurate and scales
better than previous open world classification approaches
on the evaluation datasets.

Related Works
To the best of our knowledge there are very few works in the
malware classification domain that focus on having the capa-
bility to operate in an open world scenario. One such work in
the malware domain comes from K. Rieck et al.(Rieck et al.
2011) in which malware samples are clustered into families
and then the distance of a test instance to the closest cluster
centroids is used as an outlier score. The limitation of this
approach comes from the use of unsupervised methods for
identifying between the known families which does not take
advantage of label information that might be present for the
known classes.

Open world classification has aspects similar to anomaly
detection problems. Anomaly detection is a well researched
area and has found application in the security realm such
as intrusion detection. For example to mention a few, Ra-
maswamy et al. (Ramaswamy, Rastogi, and Shim 2000)
propose a distance based approach which looks at the dis-
tance of an instance from its kth nearest neighbor to iden-
tify outliers. Breunig et al. (Breunig et al. 2000) propose
a density based approach that looks at the local density
of a point to determine its anomaly score. Many more
approaches have been proposed for this problem; we di-
rect the reader to (Chandola, Banerjee, and Kumar 2009;
Tan, Steinbach, and Kumar 2006; Zhang 2013) for a more
detailed survey of the different anomaly detection tech-
niques. The similarity of anomaly detection to open world
problem is that in both cases there is an interest in iden-
tifying outlier samples. However, there are two main differ-
ences. First, the learning task in anomaly detection is in only
detecting anomalous samples and not learning to discrimi-
nate the normal samples into different classes. Second, the
assumption which is taken in anomaly detection is that out-
lier instances are rare (Tan, Steinbach, and Kumar 2006).
This assumption, however, does not hold in the case of the
open world problem.

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

26

Scheirer et al. (Scheirer et al. 2013) propose a modifica-
tion to one-class SVM, called 1-vs-set SVM, to handle a
one class open world problem for image recognition. Multi-
class anomaly detection without classification called Ker-
nel Null Foley-Sammon Transform (KNFST) proposed in
(Bodesheim et al. 2013) shares one of the objectives of the
open world problem, which is to identify instances that do
not belong to any of the known classes. Bodesheim et al.
(Bodesheim et al. 2015) build on this idea by taking a local
approach where they only considering k closest elements to
an instance when deciding the novelty on a test instances.
In (Jain, Scheirer, and Boult 2014), Jain et al. present a
multi-class open set classifier framework PI SVM for fitting
a single-class probability model over the known class scores
from a discriminative binary classifiers.

Approach
The prediction of a classifier can be obtained in the form of
predicted class probabilities Pr(yi = c | �xi), where c ∈ Ck

is a class label among the known classes in a training set, �xi

is the feature vector of instance i, and yi is the class label
of instance i. Each of these probabilities can be interpreted
as the confidence of the classifier labeling an instance as be-
longing to that class.

Our approaches are based on the intuition that class prob-
abilities predicted by a classifier can help distinguish un-
known class instances from known class instances. We ex-
pect the classifier to be less confident when making a pre-
diction about instances from an unknown class as compared
to instances from the known class.

New Derived Features
We propose extracting features from the output of a multi-
class classifier to help identify known class instances from
unknown class instances. The first feature we extract is
Pmax = maxc∈Ck Pr(yi = c | �xi). We aim to capture
the confidence of the classifier by extracting the Pmax.

In addition to Pmax we also want to capture another
perspective on the prediction confidence by observing how
spread out the predicted class probabilities are. For exam-
ple assume a classifier trained to classify between 3 classes
makes prediction for instance A with probabilities of 0.8,
0.1 and 0.1 for classes c1, c2 and c3 respectively. Also as-
sume that for instance B it makes prediction with probabil-
ities 0.8, 0.2 and 0.0. Although their maximum prediction
probabilities for both example instances are the same at 0.8,
the fact that the classifier predicts A as possibly belonging to
all three classes, albeit with low probabilities for class c2 and
c3, gives more insight about the classifiers confidence on its
prediction. We try to capture this by measuring the entropy
of the predicted class probabilities. Entropy quantifies the
diversity in the predicted class probabilities(in other words
it tells us how unevenly distributed the predicted class prob-
abilities are.) The entropy for probability distribution p over
|Ck| classes is defined as entropy(p) = −∑|Ck|

j pj log pj .
Algorithm 1 outlines the procedure used to extract new

features from predicted class probabilities. The algorithm
starts by splits the training set into T segments (line 1).

Algorithm 1: Use T-fold cross validation to generate an
outlier detector training set with the new features.

Input :
D: Training set consisting of feature matrix X

and class labels Y. The class labels are from the known
class Ck.
Output:

Xinlier: Training data represented in terms of
new prediction probability based features.

1 Split D into T segments;
2 Initialize Xinlier as empty;
3 for t = 1 to T do
4 Train multi-class classifier model Mtmp on D

without Dt;
5 Pinlier ← Predict class probabilities for Dt using

Mtmp;
6 Xtmp ← extract features from Pinlier;
7 Xinlier ← Xinlier ∪ Xtmp;
8 return Xinlier;

For each segment, first a classifier is trained on data D ex-
cluding the instances in Dt (line 4). Then, predictions are
made on the instances in Dt. Afterwards, two features are
extracted from the predicted class probabilities: the maxi-
mum predicted class probability Pmax and the entropy of
the predicted class probabilities. Finally, the extracted fea-
tures Xtmp for each instance in Dt are added to Xinlier,
which holds the representation of the training set in terms of
the new features.

Classification in an Open World (COW)
By considering different aspects of a classifiers output, such
as Pmax and entropy, we should be able to distinguish be-
tween instance belonging to known classes Ck from those
belonging to unknown classes Cu. One of the challenges
of trying to recognize instances from classes in Cu comes
from the fact that we can only get training data representing
classes in Ck. In our case this means that during training we
can get only the predicted class probabilities for instances
from classes in Ck. To address this, we use an outlier de-
tection method trained on predictions of the instances from
Ck.

Our proposed approach uses a classifier and an outlier de-
tector to build an open world classification system (COW).
Algorithm 2 outlines the procedure for training COW. The
algorithm starts by calling Algorithm 1 to extract the new
features which will be used to train the outlier detector in
COW. An outlier detector Moutlier is then trained using
Xinlier (line 2). Finally, a multi-class classifier is trained
on the original dataset D, and the two models are returned
(lines 3-4). During testing, the multi-class classifier Mmulti

is first used to make predictions about a test instance. Then
the outlier detector Moutlier is used to determine if the in-
stance is an inlier in which case the predicted class label is
used. Otherwise it is labeled unknown.

27

Algorithm 2: Training COW
Input :

D: Training set consisting of feature matrix X
and class labels Y. The class labels are from the known
classes Ck.
Output:

Mmulti: Multi-class classifier model
Moutlier: Outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Train outlier detector model Moutlier on Xinlier;
3 Train multi-class classifier model Mmulti on D;
4 return Mmulti and Moutlier;

Per Class Classification in an Open World (COW PC)
COW trains one global outlier detection model for all the
known classes. This, however, might face challenges in sce-
narios in which a classifier is not equally good in identify-
ing all the known classes. In such a case the classifier might
make predictions about certain classes with ease while strug-
gling for other classes. So predictions made about the diffi-
cult classes might be confused for predictions of instances
from an unknown class. In trying to address such a sce-
nario we present a modified version of COW which we call
COW PC. COW PC trains separate outlier detection mod-
els per each class in Ck. By doing so we aim to address the
aforementioned challenges.

The training procedure for COW PC, Algorithm 3, is a
modified version of Algorithm 2. Similar to COW, new fea-
tures are extracted (line 1) and a classifier Mmulti is trained
using the original dataset (line 7). The difference between
the two approaches lies in training of the outlier detector
(lines 2-6). In case of COW PC separate outlier detection
models, one for each class in Ck, are trained and then added
to the list of outlier detectors.

During testing, similar to COW, the multi-class classifier
Mmulti is first used to make a prediction. In the case of
COW PC, if the instance is predicted as class c ∈ Ck then
the outlier detector for class c (Moutlierc) is then used to de-
termine if the instance is an inlier in which case the predicted
class label is used. Otherwise it is labeled unknown.

Experimental Evaluation
Evaluation Datasets
We used two datasets for evaluating the proposed ap-
proaches. The first is the Microsoft Malware Classification
Challenge (MS-Challenge) dataset (msc 2015). This dataset
contains 10,867 disassembled and labeled windows malware
binaries from 9 malware families/classes. Our disassembled
file parser was able to properly parse 10,260 of the samples
used in the following experiments.

We also evaluate on the Android Malware Genome
Project (mal) dataset which contains different families of
malicious android apps. The original dataset contained some
classes with very few samples. This presented a challenge
when performing the evaluation because we setup the open
world experiments resulting in too few training samples. For

Algorithm 3: Training COW PC
Input :

D: Training set consisting of feature matrix X
and class labels Y. The class labels are from the known
class Ck.
Output:

Mmulti: Multi-class classifier model
ListMoutlier: List of outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Initialize ListMoutlier as empty;
3 foreach class c in Ck do
4 Xinlier c ← Xinlier rows corresponding to

instances correctly predicted as c;
5 Train outlier detector model Moutlier c using

Xinlier c;
6 Add Moutlier c to ListMoutlier;
7 Train multi-class classifier model Mmulti on D;
8 return Mmulti and ListMoutlier;

this reason we use only those classes which have at least 40
samples. This results in a dataset that consists of 986 sam-
ples from 9 classes.

Simulating Open World Scenario
To simulate an open world scenario we first take a dataset
and randomly designate |Cu| number of classes to consti-
tute Cu and the remaining classes constitute Ck. We add all
the instances belonging to classes in Cu to the test set. We
randomly added 75% of instances belonging to classes in
Ck to the training set and the remaining 25% to the test set.

Malware Features and Learning Algorithms
The malware features we used to train our classifier mod-
els in these experiments are based on the research of Has-
sen and Chan (Hassen and Chan 2017). These are features
extracted from the function call graph (FCG) of windows
and android applications. During the extraction of these fea-
tures, the functions in the FCG are first clustered using Lo-
cality Sensitive Hashing (LSH) and the resulting cluster ids
are used to label the functions. Then a vector representation
of the FCG is created. Even though the original paper uses
a two-level classifier system with these features, we use a
single classifier in our experiments.

All the experiments involving COW and COW PC were
preformed with Random Forest (RF) (Breiman 2001) as the
classifier model and KD-Tree based Kernel Density Estima-
tion as the outlier detector.

Discriminating Known Class Instances from
Unknown Class Instances
To evaluate the ability to discriminate known class instances
from unknown class instances, we use Area Under Curve of
the ROC as a measurement metric. We use the outlier score
and compute the True Positive Rate and False Positive Rate.
When generating these ROC figures, we treat identifying the

28

Table 1: TPR at a very low FPR of 0% for all four methods
on both datasets.

TPR at 0% FPR
MS-Challenge Dataset Android dataset

COW 42.41% 81.21%
COW PC 69.81% 76.90%
PI SVM 23.97% 72.11%
KNFST 9.94% 77.25%

known classes as positive class and identifying the unknown
class as the negative class. We chose to present the results
algorithm in this manner because the main objective of the
system is in classifying malware. Therefore, doing so in an
open world scenario involves first identifying if an instance
is indeed from a known class.

We compare our approaches with two other previous ap-
proaches on open set recognition: PI SVM (Jain, Scheirer,
and Boult 2014; lib 2017) and KNSFT (Bodesheim et al.
2013; knf 2017). For the sake of completeness we also re-
port the performance of using an outlier detector, trained on
the original data input space rather than on the prediction
probability features we recommend in this paper, to identify
unknown class instances. The results for this outlier detec-
tor are reported under the name ”Original Input” in figures
1a and 1b. For PI SVM and KNFST we use the original au-
thors implementation of the algorithms.

We performed 10 experiments for each approach. In each
experiment the training and test sets are created to simulate
an open world scenario by setting the number of unknown
classes |Cu| to be 3. We then use the learned model to gen-
erate an outlier score for each test instance to indicate the
degree to which the model believes the instance does not
belong to any of the classes in Ck. Figure 1a shows the re-
sult of these experiments carried out on the MS-Challenge
dataset in the form of the average ROC. Figure 1b, on the
other hand, shows the result of similar experiments on the
Android Malware Genome Project dataset.

We would like to highlight two observations from the re-
sults in Figures 1a and 1b. First, our proposed approaches
perform better compared to PI SVM and KNFST. For ex-
ample on the MS-Challenge dataset, at a 10% false positive
rate (i.e. where 10% of instances from unknown classes get
predicted as belonging to one of the known classes) our two
approaches COW and COW PC achieve a true positive rate
(i.e. percentage of instances from known classes that are de-
tected as known) of 95.36% and 95.61% respectively. This
results in an area under the curve(AUC) up to 10% FPR of
0.0917 and 0.0923. At the same point the PI SVM and KN-
FST achieve TPR of 82.76% 81.89%, respectively.

Second, our approach achieves a relatively high TPR even
at 0% FPR. Table 1 shows, for instance, in case of MS-
Challenge dataset our approach COW PC achieves 69.81%
TPR compared to PI SVM’s 23.97%. Similarly, for the
Android dataset COW achieves 81.21% TPR compared to
77.25% TPR of KNFST.

Table 2: Weighted average precision, recall and f-score.

MS-Challenge Dataset
Precision Recall F-score

COW 0.94 0.90 0.91
COW PC 0.92 0.90 0.90
PI SVM 0.94 0.80 0.85

Android Dataset
Precision Recall F-score

COW 0.95 0.86 0.89
COW PC 0.93 0.84 0.87
PI SVM 1 0.66 0.78

Table 3: Comparing the training and test times. The MS
dataset has average training and test size of 5151 and 5110,
respectively. The android dataset has training size of 480 and
test size of 506 on average.

Algorithm
MS Dataset Android Dataset

Average Time (sec) Average Time (sec)
Training Test Training Test

COW 9.15 2.11 4.11 0.24
COW PC 7.42 1.42 4.06 0.41
PI SVM 79.06 34.87 3.41 1.90
KNFST 577.50 202.10 3.96 2.21

Discriminating Among Known Classes
The results presented so far show how well the different
approaches perform on the task of distinguishing between
known class instances and unknown class instances. In ad-
dition to this, an open world classifier also needs to be able
to discriminate between the known classes.

To evaluate this we run experiments on training and test
sets created to simulate an open world scenario. In each ex-
periment we set the number of unknown classes |Cu| to be 3,
which means |Ck| will be 6 for both datasets. To make sure
that all possible

(|Ck|+|Cu|
|Cu|

)
=

(
9
3

)
combinations of classes

are used in Cu, 84 such experiments are performed. Hence,
each class in the two datasets gets to be in the known class
set exactly 56 times. In each experiment we recorded the
weighted average precision, recall and f-score values of each
class in the known class. This is obtained by first calculat-
ing the average of these three metrics for each known class.
Then further calculating the average across all the known
classes while weighting the values of these metrics by the
fraction of the size of each known class in the test sets.

Since KNFST does not have the capability to discrimi-
nate between the known classes, we report results for COW,
COW PC, and PI SVM Table 2. All three algorithms have
one hyperparameter that specifies the threshold for discrim-
inating between known and unknown class instances. We
propose using a validation set to perform binary search over
the hyperparameter space using f-score as the search met-
rics.

Efficiency Comparison with other Approaches
To compare the time efficiency of our approaches with
PI SVM and KNFST, we record the training and test times
when running the experiments. Table 3 presents the average

29

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

PI_SVM (auc=0.9)

COW_PC (auc=0.98)

COW (auc=0.98)

OriginalInput(auc=0.67)

KNFST (auc=0.9)

(a) Average ROC up to 100% FPR on MS Dataset

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.5

0.6

0.7

0.8

0.9

1.0

T
P
R

PI_SVM (auc=0.84)

COW_PC (auc=0.91)

COW (auc=0.94)

OriginalInput(auc=0.6)

KNFST (auc=0.9)

(b) Average ROC up to 100% FPR on Andriod Dataset

Figure 1: Average ROC from 10 runs for distinguishing between instances from known and unknown classes.

training and test time of 10 runs on MS and android datasets.
These experiments were carried out on a machine with an
Intel-i7 2.60GHz processor and 20GB RAM. As the results
in Table 3 show, our two approaches, COW and COW PC,
seem to scale better compared to the other two algorithms.

Effect of Number of Known Classes

Another interesting phenomenon to study is how our ap-
proaches perform as the number of known classes varies
while keeping the number of unknown classes constant. The
purpose of these experiments is to try to understand whether
gathering more malware families for training can help im-
prove performance of the open world classifiers.

We set up the experiment in the following manner for both
of the evaluation datasets. First, we select the original test
and training data to simulate an open world scenario. Af-
terwards, we chose t number of classes at random from the
known classes Ck in the training set, and create a new train-
ing set from the previously created training set that contains
instances from the t selected classes. As for the test dataset
we select all the instances from the unknown class that are
in the previously created test set together with the instances
from the t selected known classes. We then train a model on
the new training set and evaluate it on the new test set. We
record the performance of the model in terms of the AUC up
to a FPR of 10%.

Another way to understand these experiments is in terms
of the percentage of opennes defined by (Scheirer et al.
2013), Equation 1. For a closed world scenario where the
same classes are seen both during training and testing, we
get an openness value of 0. On the other hand a higher
openness value indicates a more open problem. In the con-
text of these experiments, increasing the number of known
classes during training while keeping the number of un-
known classes seen during testing constant will result in de-
creasing openness. We expect that this decrease in openness
should in turn result in improved performance. This expec-
tation aligns with what Jain et al. (Jain, Scheirer, and Boult

2014) show in their experiments.

openness = 1−
√

2 × | training classes |
| test classes | + | target classes |

(1)
The result for MS-Challenge dataset indeed agrees with

the expectation that as the openness decreases (i.e. number
of known classes increases) the performance of our approach
improves, Figure 2a. The more surprising result comes in the
case of the Android dataset, Figure 2b. In this case we see
that performance actually degrades as openness decreases
(i.e. as number of known classes increases).

We hypothesize that the unexpected results have to do
with the number of instances in each class. When we com-
pare the class distributions of the MS-challenge dataset with
the Android dataset, we see that the number of instances per
class in the android dataset is considerably smaller. Gen-
erally, the classification task becomes more difficult as the
number of classes to classify increases and also as the num-
ber of training instances gets smaller. Since our approach
depends on the predicted class probabilities generated by
the classifier, we believe the smaller size of the Android
dataset has resulted in decreased performance as the number
of classes increases (openness decreases). This hypothesis
also helps explain why our approach records lower AUC in
case of the android dataset as presented in previous Sections.

We evaluated this hypothesis by down-sampling the MS-
Challenge dataset to have a comparable number of instances
for each class with the Android dataset. The results in Fig-
ure 3 show the average AUC up to a 10% FPR of 10 runs.
We observe that the AUC generally decreases as the number
of known class increase (i.e. as openness decreases).This re-
sult is consistent with our hypothesis that smaller number of
instances in each class can degrade performance. This phe-
nomenon needs to be studied further with more datasets. The
implications of this result is that knowing more classes is not
enough but sufficient amount of data samples for each class
is also needed.

Conclusion
In this paper we present an open world classification ap-
proach used for malware family classification. The approach

30

2 3 4 5 6

Number of Known Class

0.070

0.075

0.080

0.085

0.090

0.095

A
U

C

COW_PC

COW_PC - Trendline

COW

COW - Trendline

0.24 0.18 0.15 0.12 0.11

Opennes

(a) Average area under ROC up to 10% FPR on MS-
Challenge Dataset

2 3 4 5 6

Number of Known Class

0.080

0.082

0.084

0.086

0.088

0.090

0.092

0.094

0.096

A
U

C

COW_PC

COW_PC - Trendline

COW

COW - Trendline

0.24 0.18 0.15 0.12 0.11

Opennes

(b) Average area under ROC up to 10% FPR on Android
dataset

Figure 2: The relationship between the performance of
openset classifier and number of known classes.

uses features extracted from the predicted class probabilities
received from a classifier to train an outlier detector. The
classifier and the outlier detector together form a system that
is not only capable of distinguishing between known classes
but is also capable of identifying instances arising from un-
known (never before seen) classes. The evaluation results
show that our approach compares favorably in accuracy with
previous works on open world classification and multi-class
outlier detection techniques. The evaluation also shows that
our approach takes less time for both training and test.

References

Bodesheim, P.; Freytag, A.; Rodner, E.; Kemmler, M.; and
Denzler, J. 2013. Kernel null space methods for novelty
detection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 3374–3381.

Bodesheim, P.; Freytag, A.; Rodner, E.; and Denzler, J.
2015. Local novelty detection in multi-class recognition
problems. In 2015 IEEE Winter Conference on Applications
of Computer Vision, 813–820. IEEE.

2 3 4 5 6

Number of Known Class

0.076

0.077

0.078

0.079

0.080

0.081

0.082

0.083

0.084

0.085

A
U

C

COW_PC

COW_PC - Trendline

COW

COW - Trendline

0.24 0.18 0.15 0.12 0.11

Opennes

Figure 3: Experiment carried out on an down-sampled MS-
Challenge dataset so as to have a comparable number of per
class instances with the android dataset.

Breiman, L. 2001. Random forests. Machine learning
45(1):5–32.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. Lof: identifying density-based local outliers. In ACM
sigmod record, volume 29, 93–104. ACM.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR)
41(3):15.
Hassen, M., and Chan, P. K. 2017. Scalable function call
graph-based malware classification. In 7th Conference on
Data and Application Security and Privacy, 239–248. ACM.
Jain, L. P.; Scheirer, W. J.; and Boult, T. E. 2014. Multi-class
open set recognition using probability of inclusion. In Euro-
pean Conference on Computer Vision, 393–409. Springer.
2017. Knfst. https://github.com/cvjena/knfst.
2017. Libsvm-openset. https://github.com/ljain2/libsvm-
openset.
Android malware genome project.
http://www.malgenomeproject.org/.
2015. Microsoft malware classification challenge (big
2015). https://www.kaggle.com/c/malware-classification.
[Online; accessed 27-April-2015].
Ramaswamy, S.; Rastogi, R.; and Shim, K. 2000. Efficient
algorithms for mining outliers from large data sets. In ACM
SIGMOD Record, volume 29, 427–438. ACM.
Rieck, K.; Trinius, P.; Willems, C.; and Holz, T. 2011. Auto-
matic analysis of malware behavior using machine learning.
Journal of Computer Security 19(4):639–668.
Scheirer, W. J.; de Rezende Rocha, A.; Sapkota, A.; and
Boult, T. E. 2013. Toward open set recognition. IEEE
transactions on pattern analysis and machine intelligence
35(7):1757–1772.
Tan, P.-N.; Steinbach, M.; and Kumar, V. 2006. Introduction
to data mining. Pearson Education India.
Zhang, J. 2013. Advancements of outlier detection: A sur-
vey. EAI Endorsed Trans. Scalable Information Systems
1(1):e2.

31

