
COW: Malware Classification in an Open World

Abstract—A large number of new malware families are
released on a daily basis. However, most of the existing works
in the malware classification domain are still designed and
evaluated under a closed world assumption in which the
families of malware seen during testing are the same as the
kind seen during training. In this paper we propose an open
world malware classification algorithm. Our approach is not
only able to identify known families of malware but is also able
to distinguish them from malware families that were never seen
before. We use a new feature space to help identify unknown
malware families. Our proposed approach is more accurate
and scales better on two evaluation datasets when compared
to existing algorithms.
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I. INTRODUCTION

In a classification problem, we are given a set of classes
between which the model has to learn to discriminate. There
are many cases in which we know the possible classes
in the problem domain beforehand and simply learning to
distinguish between these classes is sufficient. This can be
thought of as the “closed world” scenario. In other problem
domains, however, we are aware of only some number of
classes during training and instances that belong to classes
not present in the training set can be present in a test set. In
this paper we will refer to this as the “open world” scenario.

This is especially true in the domain of malware family
classification, in which we want to identify the family of
a malware sample. There are a variety of reasons why this
is the case. One reason is that it’s not possible to collect
all samples from every existing malware class/family for
training. Even if we were able to do so, because of the
adversarial nature of this problem domain, malware authors
constantly release new malware families. For instance, ac-
cording to AV-Test Institute[2] more than 120 million new
malware instances were registered in 2016.

When working in this domain it is, therefore, important
to have classifiers that are not only capable of identifying if
a malware sample belongs to a known malware family but
able to determine if a sample does not belong to any of the
unknown families and label it as unknown.

In this paper we present a classifier system that in addition
to discriminating between the known classes is also capable
of identifying instances that arise from unknown classes
it did not see during training. Our proposed approaches
combine a classifier and an outlier detector to build a
system where the outlier detector is trained on new features

extracted from the output of the classifier. The following
points summarize our main contributions:
• We present a different look from the majority of the

research in the malware classification domain by ad-
dressing classification in an open world.

• We propose the extraction of new features from classi-
fier output which transforms the problem of identifying
unknown class instances into a new feature space.

• We provide an approach that is more accurate and
scales better than previous open world classification
approaches on the evaluation datasets.

The rest of this paper is organized in the following man-
ner. We start with the discussion of related research works
in Section II. Then we present our proposed approach in
Section III. Finally, we discuss the results from experimental
evaluation in Section IV.

II. RELATED WORKS

To the best of our knowledge there are very few works in
the malware classification domain that focus on having the
capability to operate in an open world scenario. One such
work in the malware domain comes from K. Rieck et al.[16]
in which malware samples are clustered into families. The
authors use the distance of a test instance to cluster centroids
to determine which class a malware sample belongs. If the
distance to the closest cluster centroid is greater than some
threshold, then that instance is deemed to be an outlier.
The limitation of this approach comes from the use of
unsupervised method for identifying between the known
families which does not take advantage of label information
that might be present for instances of the known classes.

Open world classification has aspects similar to anomaly
detection problems. The main similarity is that in both
cases there is an interest in identifying outlier samples.
Anomaly detection is a well researched area and has found
application in the security realm such as intrusion detection.
For example, Ramaswamy et al. [15] propose a distance
based approach which looks at the distance of an instance
from it kth nearest neighbor. Instances are ranked based on
this distance and n furthest instances are determined to be
anomalous.

An interesting observation pointed out by Breunig et al.
[10] is that previous techniques such as the one discussed
above take a global view of anomalies (i.e. the same
threshold is use for identifying anomalies applies to all
points.) However, some points that appear to be normal when
considering a global view can be anomalous relative to their



neighborhood. The density based approach proposed by [10]
accounts for such anomalies. They first define the density of
a point as inverse of the average distance to the kth nearest
points. Then the anomaly score of that point is the ratio
of the density of the point to the average density of the k
nearest points. Many more approaches have been proposed
for this problem; we direct the reader to [11], [18], [19] for
a more detailed survey of the different anomaly detection
techniques.

However, there are two main differences between the open
world classification and anomaly detection problems. The
first difference arises from the learning task. In anomaly
detection the task is only detecting anomalous samples and
not in learning to discriminate the normal samples into
different classes. The second difference comes from the
assumption which is taken in anomaly detection that outlier
instances are rare [18]. This assumption, however, does not
hold in the case of the problem we are trying to solve as
the number of instances from unknown classes is bound to
be many.

A research that relates anomaly detection and open world
classification is proposed for the image recognition domain
by Scheirer et al. [17]. They propose a modification to
one-class SVM, called 1-vs-set SVM, to handle an open
world scenario for image recognition. Although their work
is very close to the open world problem we are interested
in addressing, it is not an exact solution. In our problem
domain we are interested in having multi-class classifiers
that in addition to classifying between the known classes
are also capable of rejecting samples from unknown classes,
which means that there are more than one known classes.
In their case, however, they are solving the problem where
their is one known class and the unknown instances can arise
from several classes.

Multi-class anomaly detection called Kernel Null Foley-
Sammon Transform (KNFST) proposed in [8] shares one
of the objectives of the open world classification problem,
which is to identify instances that do not belong to any of the
known classes. It, however, does not determine to which of
the known classes the instance belongs. In this approach all
training instances that belong to the same class are projected
to a single point in a new space, resulting in one target point
per class. To determine if a test instance is an outlier the
instance is first projected in to this new space and its distance
to each class’s target point is computed. The distance to
the closest target point is then used as the anomaly score.
Bodesheim et al. [7] build on this idea by taking a local
approach where they only considering k closest elements to
an instance when deciding the novelty on a test instances.

A multi-class open set classifier framework PI SVM is
presented by Jain et al. [13]. They present an approach for
fitting a single-class probability model over the known class
scores from a discriminative binary classifier. A collection
of binary classifiers are used, one for each known class. The

resulting per-class probability inclusion model is used as an
outlier measure.

III. APPROACH

Generally speaking the prediction of a classifier can
be obtained in the form of predicted class probabilities
Pr(yi = c | ~xi), where c ∈ Ck is a class label among
the known classes in a training set, ~xi is the feature vector
of instance i, and yi is the class label of instance i. Each
of these probabilities can be interpreted as the confidence of
the classifier labeling an instance as belonging to that class.

Our approaches are based on the intuition that class
probabilities predicted by a classifier can help distinguish
unknown class instances from known class instances. To
verify this we conducted an experiment in which we trained
a classifier on a set of known classes Ck and then tested
it on both new instances from the known classes as well
as instances from unknown classes Cu . Figure 1 shows a
histogram of the maximum predicted class probability for
instances from Ck and Cu. Where the maximum predicted
probability is defined as:

Pmax = max
c∈Ck

Pr(yi = c | ~xi) (1)

In case of instances from known classes, the figure on
the left shows that the classifier makes prediction with max
probability of 1.0 for more than half of the instances. In case
of unknown class instances, the figure on the right shows
that max probability is lower. This can be interpreted as the
classifier generally displays less confidence when making
predictions for instances from unknown classes as opposed
to known classes.

A. New Derived Features

Based on these observations we propose extracting fea-
tures from the output of a multi-class classifier to help iden-
tify known class instances from unknown class instances.
The first feature we extract is Pmax defined in Equation
1. We aim to capture the confidence of the classifier by
extracting the Pmax.

In addition to Pmax we also want to capture another
perspective on the prediction confidence by observing how
spread out the predicted class probabilities are. For example
assume a classifier trained to classify between 3 classes
makes prediction for instance A with probabilities of 0.8, 0.1
and 0.1 for classes c1, c2 and c3 respectively. Also assume
that for instance B it makes prediction with probabilities
0.8, 0.2 and 0.0. Although their maximum prediction prob-
abilities for both example instances are the same at 0.8, the
fact that the classifier predicts A as possibly belonging to
all three classes, albeit with low probabilities for class c2
and c3, gives more insight about the classifiers confidence
on its prediction. We try to capture this by measuring the
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Figure 1: Histogram of maximum predicted class probabilities when a classifier classifies instances from known and unknown
classes. In case of known class instances the classifier makes a prediction with higher confidence reflected in terms of high
maximum predicted class probability. Whereas in the case of unknown class instances the predictions are made with a lower
confidence. Note the two plots have different scale in the y-axis.

entropy of the predicted class probabilities. Entropy quanti-
fies the diversity in the predicted class probabilities(in other
words tells us how unevenly distributed the predicted class
probabilities are.) The entropy for probability distribution p
over | Ck | classes is defined as:

entropy(p) = −
|Ck|∑
j

pj log pj (2)

Algorithm 1: Use T-fold cross validation to generate an
outlier detector training set with the new features.

Input :
D: Training set consisting of feature matrix X

and class labels Y. The class labels are from the known
class Ck.
Output:

Xinlier: Training data represented in terms of
new prediction probability based features.

1 Split D into T segments;
2 Initialize Xinlier as empty;
3 for t = 1 to T do
4 Train multi-class classifier model Mtmp on D

without Dt;
5 Pinlier ← Predict class probabilities for Dt using

Mtmp;
6 Xtmp ← extract features from Pinlier;
7 Xinlier ← Xinlier ∪ Xtmp;

8 return Xinlier;

Algorithm 1 outlines the procedure used to extract new
features from predicted class probabilities. The algorithm
starts by splits the training set into T segments (line 1).

For each segment, first a classifier is trained on data D
excluding the instances in Dt (line 4). Then, predictions
are made on the instances in Dt. Afterwards, two features
are extracted from the predicted class probabilities: the
maximum predicted class probability Pmax and the entropy
of the predicted class probabilities. Finally, the extracted
features Xtmp for each instance in Dt are added to Xinlier,
which holds the representation of the training set in terms
of the new features.

B. Classification in an Open World (COW)

By considering different aspects of a classifiers output,
such as Pmax and entropy, we should be able to distinguish
between instance belonging to Ck from those belonging
to classes from Cu. One of the challenges of trying to
recognize instances from unknown classes comes from the
fact that we can only get training data representing the
known classes. In our case this means that during training we
can get only the predicted class probabilities for instances
from classes in Ck. To address this, we use outlier detection
method to train a model on the the predictions on the
instances from Ck.

Our proposed approach uses a classifier and an outlier
detector to build an open world classification system (COW).
Algorithm 2 and Figure 2 outline the procedure for training
COW. The algorithm starts by calling Algorithm 1 to extract
the new features which will be used to train the outlier
detector in COW. Once Algorithm 1 finishes it returns
Xinlier, which is the training set represented in terms of the
new features. An outlier detector Moutlier is then trained
using Xinlier (line 2). Finally, a multi-class classifier is
trained on the original dataset D, and the two models are
returned (lines 3-4).

Figure 3 illustrates how predictions using COW are made.
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Figure 3: Making predictions using COW.

Algorithm 2: Training COW
Input :

D: Training set consisting of feature matrix X
and class labels Y. The class labels are from the known
class Ck.
Output:

Mmulti: Multi-class classifier model
Moutlier: Outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Train outlier detector model Moutlier on Xinlier;
3 Train multi-class classifier model Mmulti on D;
4 return Mmulti and Moutlier;

For example, let’s assume our training set consisted of
instances from classes c1, c2, and c3. During testing we
receive instances x1,x2, and x3. In this example, x1 and
x2 belong to known classes c1 and c2, respectively, while
x3 belongs to c5 which was not present in our training
data. First, Mmulti is used to predict the class labels and
class probabilities for each instance. Next, the new features,
Pmax and entropy, are extracted from the predicted class

probabilities. This is then given as input to Moutlier to make
a prediction on whether an instance belongs to a known
class or an unknown class. If an instance is predicted to be
an outlier, then an Unknown label will be assigned to it
as in the case of x3. Otherwise, the predicted class label by
Mmulti is going to be assigned to the instance as in the case
of x1 and x2.

C. Per Class Classification in an Open World (COW PC)

The reader might have noticed that COW trains one global
outlier detection model for all the known classes. This,
however, might face challenges in scenarios in which a
classifier is not equally good in identifying all the known
classes. In such a case the classifier might make predictions
about certain classes with ease while struggling for other
classes. So predictions made about the difficult to predict
classes might be confused for predictions of instances from
an unknown class. In trying to address such a scenario we
present a modified version of COW which we call COW PC.
COW PC trains separate outlier detection models, one for
each class in Ck. By doing so we aim to address the
aforementioned challenges.

The training procedure for COW PC, Algorithm 3, is



Algorithm 3: Training COW PC
Input :

D: Training set consisting of feature matrix X
and class labels Y. The class labels are from the known
class Ck.
Output:

Mmulti: Multi-class classifier model
ListMoutlier: List of outlier detection model

1 Xinlier ← Algorithm1 (D) ;
2 Initialize ListMoutlier as empty;
3 foreach class c in Ck do
4 Xinlier c ← Xinlier rows corresponding to

instances correctly predicted as c;
5 Train outlier detector model Moutlier c using

Xinlier c;
6 Add Moutlier c to ListMoutlier;

7 Train multi-class classifier model Mmulti on D;
8 return Mmulti and ListMoutlier;

a modified version of Algorithm 2. Similar to COW, new
features are extracted (line 1) and a classifier Mmulti is
trained using the original dataset (line 7). The difference
between the two approaches lies in training of the outlier
detector (lines 2-6). In case of COW PC separate outlier
detection models, one for each class in Ck, are trained and
then added to the list of outlier detectors.

During testing, similar to COW, the multi-class classifier
Mmulti is first used to make predictions about a test instance.
In the case of COW PC, if the instance is predicted as class
c ∈ Ck by Mmulti then the outlier detector for class c
(Moutlierc ) is then used to determine if the instance is indeed
from class c or if it is from an unknown class.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Datasets

In this paper we used two datasets for evaluating the
proposed approaches. The first is the Microsoft Malware
Classification Challenge (MS-Challenge) dataset [4]. This
dataset contains 10,867 disassembled windows malware
binaries (about 197GB) from 9 malware families/classes.
Our disassembled file parser were able to properly parse
10,260 of the samples. Table I shows the class distribution.

The second dataset used is from the Android Malware
Genome Project [1]. This dataset contains different families
of malicious android apps. The original dataset contained
classes with very few samples. This presented a challenge
when performing the evaluation because we setup the open
world experiments. For instances, when a class is used as
part of the known class set we add 75% of its instances to
training set and the remaining 25% to the test set. Therefore,
in the cases where a class that has smaller than 40 samples

Table I: Microsoft malware dataset class distribution

Malware Family Name Number of Samples
Ramnit 1513
Lollipop 2470
Kelihos ver3 2936
Vundo 446
Simda 34
Tracur 294
Kelihos˙ver1 387
Obfuscator.ACY 1168
Gatak 1012

the number of instance in both training and test sets will be
very small. For this reason we use only those families from
Andriod dataset which have at least 40 samples. The class
distribution is shown in Table II.

Table II: Class distribution of the subset of Android Malware
Genome project dataset used for evaluation.

Malware Family Name Number of Samples
DroidKungFu3 309
AnserverBot 187
BaseBridge 122
DroidKungFu4 96
Geinimi 69
Pjapps 58
KMin 52
GoldDream 47
DroidDreamLight 46

B. Simulating Open World Scenario

In an open world scenario a classifier is trained on
instances from a set of known classes Ck and tested on
data that contains instances from both known classes Ck

and unknown classes Cu (i.e. classes that the classifier was
not trained on).

To simulate this scenario we first take a dataset and
randomly designate |Cu| number of classes to constitute
Cu and the remaining classes constitute Ck. We add all the
instances belonging to these classes in Cu to the test set. As
for instances from classes in Ck, we randomly added 75%
of them to training set and the remaining 25% to the test
set.

C. Malware Features

The malware features we used to train our classifier
models in these experiments are based on the research of
Hassen and Chan [12]. These are features extracted from
the function call graph (FCG) of windows and android
applications. During the extraction of these features the
functions in the FCG are first clustered using Locality



Sensitive Hashing (LSH) and the resulting cluster ids are
used to label the functions. Then a vector representation of
the FCG is created. This representation consists of the vertex
and edge frequencies. Even though the original paper uses
a two-level classifier system with these features, we use a
single classifier in our experiments.

D. Choice of Classifier and Outlier Detection Algorithms

The design of our proposed approach allows for the use
of any off the shelf classifiers and outliers detectors for the
classifier and outlier detector component. In the following
evaluation experiments we use Random Forest (RF) [9]
for the multi-class classifier. Because of the relatively high
dimensionality of our two datasets RF is a good choice for a
classifier. RF tends to perform well when the set of features
is large. Each splitting feature at each node in each tree
of a random forest is selected from a random subset of
features. This property of RF makes it usually suitable for
high dimensional dataset. Another aspect of RF that made
it suitable for our application is its fast training speed.

For the outlier detector we experimented with two differ-
ent outlier detection algorithms: Isolation Forest [14] and an
outlier detector we built by extending KD-Tree based Kernel
Density Estimation algorithm in scikit-learn [3]. In our
experiments we observed that the KD-Tree based Density
Estimation performed slightly better than Isolation Forest.
Hence, all of our results presented in the following sections
use KD-Tree based Kernel Density Estimation as the outlier
detector.

E. Accuracy Identifying Known Classes Instances from Un-
known Class Instances

We start the evaluation of our work by comparing our
approaches with two other previous approaches on open
set recognition: PI SVM [13], [6] and KNSFT [8], [5].
For both of the previous approaches we use the original
authors implementation of the algorithms with a few wrapper
methods of our own to make them work with our experiment
framework. The authors implementation of KNSFT [5] only
provides output on whether an instances belongs to Ck

or Cu but does not provide prediction in which of the
known classes an instance belongs. Consequently, in these
experiments we report only result on determining whether
an instance belongs to Ck or Cu.

We performed 10 experiments for each approach. In each
experiment the training and test sets are created as described
in section IV-B by setting the number of unknown classes
|Cu| to be 3. The training set is used to train the models. We
then use the learned model to generate an outlier score for
each test instance to indicate the degree to which the model
believes the instance does not belong to any of the classes in
Ck. Figure 4 shows the result of these experiments carried
out on the Microsoft Malware Challenge dataset in the form
of the average ROC. Figure 5, on the other hand, shows
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Figure 4: Average ROC from 10 runs for distinguishing
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Microsoft Mawlare Challenge Dataset.



Table III: TPR at a very low FPR of 0% for all four methods
on both datasets.

TPR at 0% FPR
MS-Challenge Dataset Android dataset

COW 42.41% 81.21%
COW PC 69.81% 76.90%
PI SVM 23.97% 72.11%
KNFST 9.94% 77.25%

the result of similar experiments on the Android Malware
Genome Project dataset.

When generating these ROC figures, we treat identifying
the known classes as positive class and identifying the
unknown class as the negative class. We chose to present the
results algorithm in this manner because the main objective
of the system is in classifying malware. Therefore, doing
so in an open world scenario involves first identifying if an
instance is indeed from a known class.

We would like to highlight certain observations from the
results in Figures 4 and 5. First, our proposed approaches
perform better compared to PI SVM and KNFST. For ex-
ample on the MS-Challenge dataset, at a 10% false positive
rate (i.e. where 10% of instances from unknown classes get
predicted as belonging to one of the known classes) our
two approaches COW and COW PC achieve a true positive
rate (i.e. percentage of instances from known classes that
are detected as known) of 95.36% and 95.61% respectively.
This results in an area under the curve(AUC) up to 10%
FPR of 0.0917 and 0.0923. At the same point the PI SVM
and KNFST achieve TPR of 82.76% 81.89%, respectively.
Similarly, our approaches record better AUC and TPR for
1% and 100% FPR.

The second observation we would like to highlight is
that our approach achieves a relatively high TPR even at
0% FPR. Table III shows, for instance, in case of MS-
Challenge dataset our approach COW PC achieves 69.81%
TPR compared to PI SVM’s 23.97%. Similarly, for the
Android dataset COW achieves 81.21% TPR compared to
77.25% TPR of KNFST.

The final observation is that COW and COW PC perform
worse on the Android dataset than on the MS dataset. We
assume this is due to the smaller number of instances per
class on the Android dataset compared to the MS dataset.
The discussion in Section IV-J explains this assumption in
more detail.

F. Accuracy Discriminating Between Known Classes

The results presented so far show how well the different
approaches perform on the task of distinguishing between
known class instances and unknown class instances. In
addition to this, an open world classifier also needs to be
able to discriminate between the known classes. In other
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Figure 5: Average ROC from 10 runs for distinguishing
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words, the classifier needs to identify which of the known
classes, if any, a test instance belongs to.

To evaluate this we run experiments where the open
world dataset for each experiment is created in accordance
to Section IV-B. In each experiment we set the number
of unknown classes |Cu| to be 3, which means |Ck| will
be 6 for both datasets. To make sure that all possible(|Ck|+|Cu|
|Cu|

)
=
(
9
3

)
combinations of classes are used in Cu,

84 such experiments are performed. Hence, each class in
the two datasets gets to be in the known class set exactly 56
times. In each experiment we recored the precision, recall
and f-score values of each class in the known class. We then
calculate the final weighted average values of these metrics
by using the fraction of the size of each known class in the
test sets as weights. These results are reported in Table IV.

Since KNFST does not have the capability to discriminate
between the known classes, we report results for COW,
COW PC, and PI SVM. All three algorithms have one
hyperparameter that specifies the threshold for discrimi-
nating between known and unknown class instances. We
propose using validation set to perform binary search over
the hyperparameter space using f-score as the search metrics.
F-score is useful in this case because generally speaking f-
score will have a global maxima. Hence as long as the this
maxima is within the search space a value close to it can be
found using binary search.

We observe in Table IV that for both datasets our
approaches perform better in discriminating between the
known classes. On the MS-Dataset COW and COW PC
record an F-Score of 0.91 and 0.90 compared to 0.85 of
PI SVM. A similar observation can be made for the Android
dataset.

G. Why is our approach performing better?

In our opinion the main reason behind our approach’s
good performance comes from the fact that we transform
the feature space for the outlier detection problem into a
new feature space. This new feature space of our approach
consists of the entropy and the maximum value of the
predicted class probabilities (Pmax), discussed in Section
III-A.

Figure 6 shows a plot of a sample training data for the
outlier detector in terms of the maximum predicted class
probability and entropy. There are six subplots in the figure
one for each known class in the training set. Each subplot
shows a scatter plot of the instances that where correctly
predicted as belonging to the class in a 2d space of Pmax

and entropy. In case of COW PC each of these subplots
represent the training instances given to the outlier detector
of that class.

Because the instances in the scatter plots are tightly
packed, the outlier detector has an easier job of learning tight
boundaries to identify predictions that belong to a known
class. This in turn should translate to a good performance

in identifying known class instances from unknown class
instances.

This is also a good place to remark on the performance
comparison between COW and COW PC. The main motiva-
tion behind COW PC is to improve on COW by dedicating
separate outlier detector models for each class. However, we
observe mixed results so far. COW performs better in some
instances and COW PC in others. We hypothesize that one
reason could be that the region learned by the single outlier
detector of COW is overlapping with the regions learned but
the outlier detectors of each class in COW PC. For example,
when we look at the plot for classes Vundo and Gatak
in Figure 6 we see that regions that contain the instances
overlap. Of course this is not the case for all classes, but
if it for so for a considerable number of classes then the
advantage of COW PC might not become apparent.

H. Efficiency Comparison with other Approaches

Another important aspect to consider, apart from accuracy,
when choosing a Machine Learning method is efficiency. To
compare the time efficiency of our approaches with PI SVM
and KNFST, we record the training and test times when
running the experiments in Section IV-E. Table V presents
the average training and test time of 10 runs on MS and
android datasets. These experiments were carried out on
a machine with an Intel-i7 2.60GHz processor and 20GB
RAM.

The main observation to make from Table V is that
our two approaches, COW and COW PC, seem to scale
better compared to the other two algorithms. On the smaller
android dataset, all four algorithms seem to have comparable
training time and our approaches have a slightly faster test
time. On the larger MS dataset, however, while our two
approaches still scale well, both PI SVM and KNFST record
longer training and test times. Our two approaches record
only a doubling in training and test time for an almost 10
fold increase in size of the training and test set from the
Android dataset to the MS dataset.

I. Effect of Number of Known Classes

Another interesting phenomenon to study is how our
approaches perform as the number of known classes varies
while keeping the number of unknown classes as constant.
The purpose of these experiments is to try to understand
whether gathering more malware families for training can
help improve performance of the open world classifiers.

We set up the experiment in the following manner for
both of the evaluation datasets. First, we select the original
test and training data in the manner outlied in Section IV-B.
Afterwards, we chose t number of classes at random from
the known classes Ck in the training set, and create a new
training set from the previously created training set that
contains instances from the t selected classes. As for the
test dataset we select all the instances from the unknown



Table IV: Weighted average precision, recall and f-score of known classes.

MS-Challenge Dataset Android Dataset
Precision Recall F-score Precision Recall F-score

COW 0.94 0.90 0.91 0.95 0.86 0.89
COW PC 0.92 0.90 0.90 0.93 0.84 0.87
PI SVM 0.94 0.80 0.85 1 0.66 0.78
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Figure 6: The new feature space used as input the the outlier detector on the MS Dataset.

Table V: Comparing the training and test times. The MS
dataset has average training and test size of 5151 and 5110,
respectively. The android dataset has training size of 480
and test size of 506 on average.

Algorithm
MS Dataset Android Dataset

Average Time (sec) Average Time (sec)
Training Test Training Test

COW 9.15 2.11 4.11 0.24
COW PC 7.42 1.42 4.06 0.41
PI SVM 79.06 34.87 3.41 1.90
KNFST 577.50 202.10 3.96 2.21

class that are in the previously created test set together with
the instances from the t selected known classes. We then
train a model on the new training set and evaluate it on the
new test set. We record the performance of the model in
terms of the AUC up to a FPR of 10%.

Another way to understand these experiments is in terms
of the percentage of opennes defined in [17] as:

openness = 1−

√
2 × | training classes |

| test classes | + | target classes |
(3)

For a closed world scenario where the same classes are
seen both during training and testing, we get an openness
value of 0. On the other hand a higher openness value
indicates a more open problem.

In the context of these experiments, increasing the number

of known classes during training while keeping the number
of unknown classes seen during testing constant will result
in decreasing openness. We expect that this decrease in
openness should in turn result in improved performance.
This expectation aligns with what Jain et al. [13] show in
their experiments.

The result for MS-Challenge dataset indeed agrees with
the expectation that as the openness decreases (i.e. number
of known classes increases) the performance of our approach
improves. The more surprising result comes in the case of
the Android dataset, Figure 7b. In this case we see that
performance actually degrades as openness decreases (i.e. as
number of known classes increases). Next section attempts
to explain the possible reasons behind this result.

J. Relation between Class Size, Openness and AUC

In this section we present our hypothesis to explain the
unexpected decrease in AUC when we decrease openness
in the Android dataset in Section IV-I. This hypothesis also
helps explain why our approach records lower AUC in case
of the android dataset as presented in Section IV-E.

We hypothesis that the unexpected results have to do with
the number of instances in each class. When we compare
the class distributions of the MS-challenge dataset (in Table
I) with the Android dataset (in Table II), we see that
the number of instances per class in the android dataset
is considerably smaller. Generally, the classification task
becomes more difficult as the number of classes to classify
increases and also as the number of training instances gets
smaller. Since our approach depends on the predicted class
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Figure 7: The relationship between the performance of
openset classifier and number of known classes.

probabilities generated by the classifier, we believe the
smaller size of the Android dataset has resulted in decreased
performance as the number of classes increases (openness
decreases). This also results in decreased performance when
comparing results on MS-Challenge dataset with Android
dataset.

We carried out experiments to evaluate this hypothesis by
down-sampling MS-Challenge dataset to have a comparable
number of instances for each class with the Android dataset.
The results in Figure 8 show the average AUC up to a
10% FPR of 10 runs. We observe that the AUC generally
decreases as the number of known class increase (i.e. as
openness decreases).This result is consistent with our hy-
pothesis that smaller number of instances in each class can
degrade performance. This phenomenon needs to be studied
further with more datasets. The implications of this result

is that knowing more classes is not enough but sufficient
amount of data samples for each class is also needed.

V. CONCLUSION

In this paper we present an open world classification ap-
proach used for malware family classification. The approach
uses features extracted from the predicted class probabilities
received from a classifier to train an outlier detector. The
classifier and the outlier detector together form a system
that is not only capable of distinguishing between known
classes but is also capable of identifying instances arising
from unknown (never before seen) classes.

We evaluate our work by simulating an open world
scenario. The evaluation results show that our approach
compares favorably in accuracy with previous works on
open world classification and multi-class outlier detection
techniques. The evaluation also shows that our approach
takes less time for both training and test.

The two new features discussed in Section III-A can
be improved. As future work we plan to investigate more
features that can be derived from the predicted class proba-
bilities to improve the performance of COW and COW PC.
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