

Using A Personalized Anomaly Detection Approach with

Machine Learning to Detect Stolen Phones

Huizhong Hu and Philip K. Chan

Florida Institute of Technology, Melbourne, FL 32901
hhu2013@my.fit.edu , pkc@cs.fit.edu

Abstract

We devise an anomaly detection system that detects stolen
phones. In this system, we use a mining algorithm to extract
sequential patterns from a user’s past behavior to construct a
personalized model. We then put forward scoring functions
and threshold setting strategies to detect stealing events. We
evaluate our approach with a data set from the MIT Reality
Mining project. Experimental results indicate that our ap-
proach can detect 87% of simulated stealing events with an
average false positive rate of 0.9%.

 Introduction

Smartphones have become ever more functional and users

are more dependent on their smartphones. If your phone is

lost or stolen, a nightmare will soon begin. One will worry

about not only losing the phone hardware, but also losing

personal information, which might lead to identity theft or

worse consequences. With the global growth in the usage

of smartphones, phone theft has become an increasingly

significant problem. In the United States, 113 phones are

lost or stolen every minute. According to the U.S. Federal

Communications Commission, nearly one third of rob-

beries involve smartphones. In 2012, smartphone crimes

cost 1.6 million Americans about 30 billion dollars. The

figure almost doubled in 2013—3 million Americans be-

came victims of smartphone crimes. (US-FCC).

 “How to detect a stolen phone?” has become a difficult

but urgent issue. To solve this problem, the U.S. govern-

ment and the Mexican government have developed some

countermeasures. In 2012, a number of communication

companies including AT&T collaborated and built a central

database of stolen smartphones. Every time a mobile phone

is reported to be missing and registered in the database, its

unique serial number will be recorded. Then the mobile

operator can block any connection to that number. Apple

and Samsung use a different way to handle this issue. They

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

provide a service that sends back the phone’s location to

the owner or restores factory settings of the phone.

 Solutions above require the phone owner’s awareness of

losing the phone. Is there a way to alert the owner more

promptly as soon as the stealing happens? We resort to

machine learning to realize self detection. Based on loca-

tion data collected from the phone sensors, we use a pattern

mining approach to construct a personalized model of cus-

tomary behaviors. Comparing patterns of the model with

those of the current behavior, we can generate a score for

detecting anomalies. Our achievements include:

 Building a personal profile of the user’s mobility

with a pattern mining algorithm,

 Methods for calculating anomaly scores and

thresholds for detecting anomalies, and

 Experimental results indicating that our approach

can detect 87% of the anomalous behavior with

only 0.9% false positive rate.

Related Work

To detect suspicious behavior under WLAN connections,

(Tandon and Chan 2009) applied an algorithm for temporal

location anomaly detection to learn the distributions of

location probability, specifically by using a combination of

sequence of time and location. To discern anomalies, a

modified Markov model was employed to calculate

anomalous scores that represent differences and similarities

of summarized location probability distributions.

 To track lost phones, (Zhang et al 2010) used a one-

hour record of Cell Tower ID as location data and generat-

ed Cell ID Entropy, which represented how fast or how far

the cell phone moves within a certain period of time. A

Feed Forward Neural Network used hourly call counts to

detect whether the phone is statically lost (e.g. left it in a

library), dynamically lost (e.g. left it in a moving taxi), or

being normally used. Farrahi et al. (2010) presented an

approach for large-scale unsupervised learning and predict-

ing people’s routines through the joint modeling of human

mailto:hhu2013@my.fit.edu

locations and proximity interactions by using the Latent

Dirichlet Allocation probabilistic topic model.

 Lu et al. (2014) used GPS data and application data to

predict which applications will be used next. First, they

preprocessed location data and transformed the GPS geo-

graphic locations into semantic locations. Then Lu et al

utilized a density-based clustering algorithm to find the

motion path and then built a Mobile App Sequential Pat-

tern Tree to represent the correlations between locations

and applications with path data. Liao et al. (2012) com-

bined the launch time and previous application data to pre-

dict and advise applications. The App Usage Predictor

component, based on Chebyshev’s inequality, provides a

probability-based scoring function. Liao et al (2013) ex-

tracted three features from App Usage Predictor and calcu-

lated the usage probability of each app. The Global Usage

feature gives a probability statistic of the app, derived from

the total number of times that the app is used during the

whole time. The Temporal Usage feature gives another

probability statistic of the app usage within a period of

time. The Periodical Usage feature indicates usage habit,

which measures how frequently the app is in use. At the

end, the Min Entropy Selection counts the entropy of each

feature and selects the best one for prediction. Shin et al.

(2012) used more data from smartphone sensors to perform

a comprehensive analysis of the context related to mobile

app use, and built prediction models to calculate the proba-

bility of an app in different contexts.

 In this study, instead of generating only one attribute

that describes phone loss in locational facts (Zhang 2010),

we analyze behavioral patterns that detect phone loss. In-

stead of reacting to loss events three hours later, our ap-

proach aims to predict a loss within an hour.

Approach
Our goal is to use machine learning algorithms to personal-

ize user behavior in order to automatically detect phone

loss and protect owners’ property and privacy. Our ap-

proach contains two parts: behavior learning and anomaly

detection. To learn user behaviors, we use the SPAM pat-

tern mining algorithm (Ayres et al. 2002) to identify a be-

havior pattern set from raw location data, and then we

merge and process them into a personalized model set. This

is different from the work by Farrahi et al. (2010) which

uses unsupervised learning to cluster a user’s past behavior.

To detect anomalies, we associate the input data with the

current behavior. After extracting behavior patterns, we

find correlations between the current pattern and the rec-

orded personalized profile, and derive an anomaly score.

Based on previous data we determine a threshold for the

anomaly score. Patterns with scores above the threshold are

considered anomalous. Due to space limitations, some

details are left out. More details are in (Hu 2015).

Data Preprocessing
The raw data contains time record and location infor-

mation, that is, the area ID and the cell tower ID, which

connect the phone. We remove data that are identified as

non-compliant (such as no signal, only time record, or lo-

cation info with either only area ID or only tower ID). We

categorize these data into a date ordered format to build

seven daily models, from Monday through Sunday. The

underlying reason is that most people schedule weekly and

they usually repeat similar schedules every seven days.

 Furthermore, we use a modified version of the sliding-

window to separate one-day dataset into 24 hourly subsets.

The hourly subsets are used to build individual hourly

models that describe human daily behavior in each time

slot. Moreover, this window covers a two-hour time period,

including one current hour, one half hour before, and one

half hour after the current hour.

 Additionally, the main reason we set one hour as the

basic unit is that we want to detect a stolen phone within

one hour after the phone is stolen. Naturally, the earlier one

detects a stolen phone, the more possible one can recover

it. In this sense, late detection would be meaningless. Sec-

ondly, we use two half-hour shifted datasets because one

cyclical activity may not always occur within exactly that

hour, so we want to relax the data range.

Figure 1 — The whole structure of the Personalized

Model.

Behavior Learning

The structure of our personalized model is shown in Figure

1. We explain each level in bottom-up manner. The first

level is the pattern level, which contains a number of pat-

terns and each pattern contains a sequence and its frequen-

cy, which are identified by the SPAM algorithm (Ayres et

al. 2002). Given sequences of itemsets, the SPAM algo-

rithm identifies frequent sequential itemsets, which might

include gaps as patterns. The second level is the pattern set

level, which we merge patterns in the three one-hour da-

tasets. Hourly model sets are level 3, which has 24 hourly

model sets and each model set is constructed from three

pattern sets from level 2. Furthermore, level 4 is daily

models generated by multiple sets of daily data. The last

level is daily model sets which contain seven model sets

through the whole week from Monday to Sunday. Each

model set contains multiple daily models through the

whole data interval. For scoring purposes, we merge all

daily models into one daily model and discuss it specifical-

ly in the next section (We do not merge them in the first

place because we apply the K-Fold Cross Validation ap-

proach in all daily models to set thresholds). Our personal-

ized model is composed of all of these seven models.

Scoring Functions of Behaviors for Anomaly De-

tection

The previous section explains how a personalized model is

constructed. In this section we demonstrate how the model

is used to detect anomalous behaviors. Given a personal-

ized model, via a scoring function, we calculate how simi-

lar/dissimilar the current behavior is to the model. Here we

suggest two scoring methods as follows.

Scoring Similarity in Behaviors
One way to score a new behavior is to evaluate the simi-

larity between the new and previous behaviors. More spe-

cifically, we calculate the score of similarity between the

test pattern sets and the corresponding hourly model in the

personalized model.

 Firstly, we merge all corresponding model sets from the

personalized model into one model set. Later we use the

merged personalized model to calculate the score. To use

the Monday model set (level 5) as an example, we merge

all Monday daily models (level 4) into one Monday model.

Additionally, we merge hourly model sets (level 3) corre-

spondingly, and the three pattern sets (level 2) into one

model. On level 1, if two patterns are the same, we sum up

all frequencies; otherwise we simply copy the pattern and

frequency into the merged pattern set and all the frequen-

cies are divided by the number of days in the end.

 To score new data in the one-hour time period, firstly,

we extract a pattern set by applying the SPAM algorithm to

the new data. Then we compare this pattern set with the

merged personalized model. Here we discuss three cases:

Case 1 is when a pattern appears in both the model and the

test pattern set. Case 2 is when a pattern occurs only in the

model (hence absent from the test pattern set). Case 3 is

when a pattern appears in only the test pattern set (hence

absent from the model).

 We define the similarity scoring function SF1 as below:

𝑂𝑖 = min(𝐹𝑝(𝑖), 𝐹𝑡(𝑖)) (1)

𝑆𝑜 = ∑ 𝑂𝑖
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑡𝑒𝑟 𝑖𝑛 𝐶𝑎𝑠𝑒1

𝑖=1
 (2)

𝑆𝐹1 =

𝑆𝑜
𝑆𝑝

 +
𝑆𝑜
𝑆𝑡

2
 (3)

 𝐹𝑝(𝑖) is the frequency of pattern i in the personalized mod-

el and 𝐹𝑡(𝑖) is the frequency of pattern i in the test pattern

set, so 𝑂𝑖 means the frequency of overlapping pattern i. 𝑆𝑜

is the sum of all overlapped pattern frequency values. Cas-

es 2 and 3 are not considered because the overlapped pat-

tern frequency is always zero. 𝑆𝑝 is the total frequency

value in the personalized model; similarly, 𝑆𝑡 is the total

frequency value in the test pattern set. Consequently, SF1

represents the percentage of overlapped pattern frequency

in the training and test sets, and then the value is normal-

ized.

Scoring Difference in Behaviors
Another way to score a new behavior is to evaluate the

difference between the new and previous behaviors. It is

almost the opposite of similarity but calculated by a differ-

ent set of formulas, which we call SF2. We calculate the

score of difference between the test pattern sets and the

corresponding hourly model in the personalized model. We

define SF2 as below:

𝐷𝑖 = |𝐹𝑝(i) − 𝐹𝑡(𝑖)| (4)

𝑆𝐷 = ∑ 𝐷𝑖
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑡𝑒𝑟 𝑖𝑛 𝐶𝑎𝑠𝑒1,2and3

𝑖=1
 (5)

𝑆𝐹2 =
𝑆𝐷

𝑆𝑝+𝑆𝑡
 (6)

 𝐷𝑖 is the difference in frequency of pattern i between the

personalized model and the test set. We subtract the test

pattern frequency 𝐹𝑡(i) from the training pattern frequency

𝐹𝑝(i), for pattern i, and then take the absolute value. More-

over, the difference of pattern frequency for Case 2 and 3 is

its frequency subtracted by zero which equals to itself.

𝑆𝑝and 𝑆𝑡 are defined the same as in the previous section.

Score Thresholds of Anomaly

After a score for the current behavior is obtained, we need

to mark thresholds to identify if the current behavior is

anomalous or not. This section discusses two scenarios. In

the first scenario, only data from the user (negative exam-

ples) are available for training. In our case, this scenario

proposes an anomaly detection problem. In the second sce-

nario, in addition to data from the user (negative exam-

ples), data from other users (positive examples) are also

available for training.

Anomaly detection (with only user data during train-

ing)

In this scenario, the user’s smartphone can collect the us-

er’s behavioral data, build a personalized model, and detect

anomalous behaviors. That is, user data need not be shared

to any other entities. To identify anomaly, we use K-Fold

Cross Validation to find a threshold. In the personalized

model, one of the daily model sets (level 5) has multiple

daily models (level 4). Additionally, if there are k models,

we merge k-1 models as a training mode by using the scor-

ing strategy that we introduce in the previous section to

score the remaining model. After doing k times of itera-

tions with a different k, we can get k score lists. More spe-

cifically, each score list has 24 scores since each daily

model has 24 models (level 3), which correspond to 24

hours a day. Now we take the 24 lowest scores across all

score lists as our threshold list (the lower score is, the few-

er similarities exist between training and test). We refer to

it as 𝑇𝑢𝑖 (0 <= i <= 24), which represents each hour’s

threshold. Therefore, when a new behavior comes, we cal-

culate the score by merging all models in the personalized

model and using it as a training model. Once the score is

lower than the corresponding threshold, we report it as an

anomalous event. We call this Strategy 1. Furthermore, we

devise a refined strategy that adjusts the threshold to re-

duce false positive rate, and we call it Strategy 2. Instead of

using the fixed threshold, we reduce threshold from 𝑇𝑢𝑖‘ (0

<= i <= 24) to 𝑇𝑚𝑖𝑛𝑖
’ (0 <= i <= 24) every time it detects a

new normal activity as stolen.

Using behaviors of other users to help determine

thresholds

In this subsection, we explore the scenario when behavior

data from other users are also available. In a real-world

setting, behavior models from participating users can be

uploaded and stored in an external central database/server.

To preserve the privacy of participating users, the central

server determines the score thresholds without sending

behavior models to any user. Since behaviors of other users

(potentially thieves) are not desirable, we would like to

determine another score threshold (𝑇𝑜𝑖) for behavior of

other users. Figure 2 illustrates the relationship between

the two thresholds. On the left panel of Figure 2, only the

user data are used and 𝑇𝑢𝑖 is identified. On the right panel

of Figure 2, we also identify 𝑇𝑜𝑖 from other users’ data.

Behaviors between the two thresholds are in the “gray ar-

ea”, and will be classified as “unknown”--neither the user

(normal) nor others (anomalous).

Figure 2 —Setting thresholds with data from the user,

and with data from both the user and other users in an

external database.

More specifically, the external dataset with behavior from

other users must have enough user data and then be used in

a similar way to set𝑇𝑜𝑖 . Firstly, we find the highest score

for other users from the database (behaviors from the other

users are considered anomalous) and then set a threshold

between this and the closest higher user score. Moreover,

as is shown in Figure 2, we set 𝑇𝑢𝑖′ to be not the lowest

user score, but between this user score and the closest low-

er validation score. Then we predict events, of which the

score is over 𝑇𝑜𝑖 , as a normal activity, those of which the

score is between 𝑇𝑜𝑖 and 𝑇𝑢𝑖′ as unknown behavior, and

those below will be reported as stolen. This is Strategy 3.

Dynamically adjusting the thresholds
 To dynamically adjust the threshold during detection,

similar to Strategy 2, we use the false positives to decrease

𝑇𝑢𝑖 , rendering Strategy 4.

 Table 1 summarizes our four strategies. They all use user

data only during the training process, but Strategies 1 and 2

only use user data to set the threshold, while Strategies 3

and 4 use both user and other data to set the thresholds.

Moreover, Strategies 1 and 3 use static thresholds during

detection, while Strategies 2 and 4 adjust thresholds dy-

namically during detection to reduce false alarms.

Table 1 —Overview of Strategies on setting and adjust-

ing the threshold.

Experimental Evaluation

The dataset we use is sourced from Reality Mining (Eagle

et al. 2009), a project conducted at the MIT Media Labora-

tory. The data were collected from the smartphones of 94

individuals working or studying at a university from Sep-

tember 2004 to June 2005. We are provided with call logs,

Bluetooth devices’ connection data, cell tower IDs, appli-

cation usage, and status of mobile phones. Of these 94 sub-

jects, 68 were working or studying in the same general

location on the main campus. The other 26 subjects were

new students from the business school in the university.

The dataset contains 90% graduate students and 10% staff.

 For each user, after preprocessing, we have three types

of data: (1) the cell tower transition time and cell tower ID

pair (e.g., 26-Jan-2005 16:42:35, 24127.0011), which rep-

resents location information, (2) log time and application

name pair (e.g., 26-Jan-2005 16:39:51, Menu), and (3) time

and activity pair (e.g., 26-Jan-2005 16:57:30, 1), which

uses 1 and 0 to represent whether the phone is being used

or not. Since Type 2 and 3 are quite sparse in the dataset,

we only use the first type of data in this study. That is, we

focus on the spatio-temporal behavior of the users. To en-

sure sufficient data for building and evaluating our models,

we removed users with fewer than 120 days of data in the

sampling period. Data for 42 users remained valid. How-

ever, some of the users have long periods of no activities.

 To evaluate our system, we use several criteria:

1. True Positive Rate (TPR)

No adjustment
during test

Adjust during test

Setting user data
only

Strategy 1 Strategy 2

Setting with user
and other data

Strategy 3 Strategy 4

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

2. False Positive Rate (TPR)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (8)

3. Area Under the ROC Curve (AUC)

TP is denoted as True Positive and is counted only when

the phone is defined as stolen and the algorithm predicts

correctly. FN means False Negative and is counted when

the algorithm cannot detect stolen status. Similarly, FP

represents False Positive and is counted when the algo-

rithm gives an false alarm, and TN means True Negative

and is counted when the algorithm recognizes the owner’s

identity. A summary is in Figure 3.

 When the incoming user’s behavior score is between 𝑇𝑜𝑖

and 𝑇𝑢𝑖′ , the behavior is classified as UN (unknown nega-

tive) and when the other users’ behavior score between

these two thresholds is classified as UP (unknown posi-

tive). Since our algorithms can choose not to make predic-

tion, we modify TPR and FPR to include unknown predic-

tions in Equation 9 and 10. Additionally, Equation 11 and

12 calculate the unknown positive and negative rates.

 All modified formulas are shown below:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝑈𝑃
 (9)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁+𝑈𝑁
 (10)

Unknown Positive Rate (UPR)

𝑈𝑃𝑅 =
𝑈𝑃

𝑇𝑃+𝐹𝑁+𝑈𝑃
 (11)

Unknown Negative Rate (UNR)

𝑈𝑁𝑅 =
𝑈𝑁

𝐹𝑃+𝑇𝑁+𝑈𝑁
 (12)

AUC is the area under the Receiver Operating Characteris-

tic (ROC) Curve, the X axis of ROC represents FPR, and

the Y axis represents TPR. We use different thresholds to

plot the ROC and calculate the AUC for that curve.

Figure 3 —Classifications table with unknown prediction

Results for Anomaly Detection Algorithms

For anomaly detection, the training set has only data from

the phone owner (negative class). We first compare the

outputs of our scoring functions SF1 and SF2. We then

compare the outputs of SF1 and SF2 with that of Hidden

Markov Model, which estimates the probability of se-

quence. Finally, we compare the outputs of using Strategy

1 and Strategy 2. To compare the outputs of the scoring

functions with that of HMM, we use AUC, which provides

a single measurement for comparison. Since high false

positive rates could be annoying to users and might cause

the user to ignore the alerts, we measure AUC up to 1%

FPR. That is, we measure the performance of the algo-

rithms with FPR at 1% or below. Table 2 shows the AUC

values for the three algorithms. We observe that SF1 and

SF2 are similar, but both are more than twice as effective

as HMM-R with FPR under 1%.

Table 2 —AUC for SF1, SF2 and HMM (FPR under

1%)

 SF1 SF2 HMM

AUC 0.008005 0.008007 0.003235

 Table 3 shows the average TPR and FPR of Strategy 1 and

2. As we expect, Strategy 2, with an adjustable threshold,

is more effective than Strategy 1 with a fixed threshold.

Table 3 —Average TPR and FPR for all users

Results for Classification

While anomaly detection algorithms uses a training set that

contains data from only the phone owner (negative class),

classification algorithms uses a training set that contains

data from both the phone owner (negative class) and other

users (positive class). In this section, we evaluate Strategy

3 that uses a fixed threshold and Strategy 4 that uses an

adjustable threshold. Both strategies use two thresholds

and output an unknown prediction when the score is be-

tween the two thresholds. Table 4 shows the results for

each strategy. Comparing Table 4 with Table 3, we observe

that the TPR rates are similar for anomaly detection (Strat-

egies 1 and 2) and classification (Strategies 3 and 4), but

the FPR rates are significantly lower for classification. The

improvement is mainly due to the availability of data from

the positive class (other users), which helps set a second

threshold to detect “thieves”. Strategies 3 and 4 have an

UPR rate of about 9%, which means 9% of the positives

are predicted as unknown.

Table 4 —Strategy 3 versus Strategy 4

Though Strategy 4 achieves a 0.9% FPR which represents

roughly 1 false alarm every five days, we would like to

investigate the best-case scenario when the FPR is 0%.

That is, the phone owner would not experience any false

alerts. We manually find the threshold value, 𝑇𝑚𝑖𝑛 , that

TPR FPR
Strategy 1 88% 7%
Strategy 2 87% 5%

TPR FPR UPR UNR
Strategy 3 87.5% 1.0% 9.8% 46.1%
Strategy 4 87.3% 0.9% 9.4% 46.3%

achieves a 0% FPR and measure the TPR. Table 5 shows a

TPR of 86.1%, which is only about 1% lower than Strate-

gies 3 and 4. Moreover, because 𝑇𝑚𝑖𝑛 is the best threshold

we can achieve with respect to FPR, we can compare 𝑇min

(best-case scenario) with 𝑇u (in Strategy 2) and 𝑇𝑢′ (in

Strategy 4) to see how close they are to the best of circum-

stances. In Table 5, both strategies find thresholds that are

close to the best threshold—1.6% higher for Strategy 2 and

4.1% higher in Strategy 4.

Table 5 —Performance of using 𝑻𝒎𝒊𝒏𝒊

Comparison with Classification Algorithms

We would like to compare our approach in Strategies 3 and

4 with other machine learning algorithms for classification,

in which positive and negative examples are both available

for training. Particularly, we use Decision Trees (C4.5),

Decision Tree with Rule Post-pruning (C4.5 –P), Random

Forests (RF), Artificial Neural Networks. We extract four

features for each data record. Feature 1 and 2 are number

of patterns that are common to both the user and the other

users. Feature 3 is the number of patterns that occur only to

the user. Feature 4 is the number of patterns that occur only

to the other users.

 Table 6 shows the results of our approach and other

machine learning algorithms. Other learning algorithms

have a higher TPR, but also a higher FPR than our two

algorithms. As we discussed before, we prefer the FPR to

be 1% or lower since a user might get annoyed by frequent

false alerts and disable the system. Also the likelihood of

getting a phone stolen is generally not high. Thus, a low

FPR is more desirable than a high TPR in practice. Our

two algorithms have the two lowest FPRs compared with

the other algorithms, and still achieve more than 87% TPR.

Table 6 —Performance of different classification algs.

Conclusions

In this paper, we propose an approach to detect stolen

phones. First, we preprocess data into hourly subsets. Sec-

ond, we apply a modified sequential pattern mining algo-

rithm to extract sequential behavioral patterns from the

data. Third, from those patterns generated from hourly da-

ta, we construct a personalized model with five levels of

abstractions. To analyze the similarities between a current

pattern and a pattern in the model, we propose scoring

functions to calculate how similar a new behavior is to the

past behavior. We use user data and K-Fold Cross valida-

tion to find the threshold and adjust it when alerts are con-

firmed to be false during the detection phase. Alternatively,

we can add external data from other users to find the

threshold and similarly adjust it when alerts are confirmed

to be false. Our experimental results indicate that our ap-

proach achieves 87.9% TPR with 0.9% FPR on detecting

stolen phones. Moreover, because the training time of our

algorithm for one year’s data is less than 20 seconds and

test time is far less than one second, our system can easily

run on mobile phones. Since there is no other existing sto-

len phone self-detection system, this is the most viable

approach up to date.

References

J Ayres, J Flannick, J Gehrke, T Yiu. Sequential pattern mining

using a bitmap representation. Proceedings of the eighth ACM

SIGKDD 2002, Pages: 429-435.

N. Eagle, A. Pentland, and D. Lazer. Inferring Social Network

Structure using Mobile Phone Data. Proc. National Academy of

Sciences (PNAS). 2009, Pages: 15274-15278

K. Farrahi, Gatica-Perez, D.. Probabilistic Mining of Socio-

Geographic Routines from Mobile Phone Data. IEEE Journal of

Selected Topics in Signal Processing. 2010, Pages 745 – 755.

Hu, H. Using a Personalized Machine Learning Approach to De-

tect Stolen Phone. 2015, MS Thesis, Florida Tech.

ZX Liao, PRey Lei, TJ Shen, SC Li, WC Peng, AppNow: Predict-

ing Usages of Mobile Applications on Smart Phones. Conference

on Technologies and Applications of AI. 2012, pages: 300 – 303.

ZX Liao, YC Pan, WC Peng, PR Lei. On Mining Mobile Apps

Usage Behavior for Predicting Apps Usage in Smartphones. Proc

22nd ACM intl conf on information & knowledge management.

2013, Pages: 609 – 618.

E. Lu, Y- Lin and J-B Ciou. Mining mobile application sequential

patterns for usage prediction. IEEE International Conference on

Granular Computing. 2014, Pages: 185 – 190.

C Shin, JH Hong, A D Anind. Understanding and Prediction of

Mobile Application Usage for Smart Phones. Proceedings of

ACM Conference on ubiquitous computing. 2012, pp. 173 – 182.

G. Tandon & P. Chan. Tracking User Mobility to Detect Suspi-

cious Behavior. Proc. SIAM Intl. Conf. on Data Mining. 2009, p.

871-882.

C. Zhang, R. Fisher, J. Wei. I Want to Go Home: Empowering the

Lost Mobile Device. IEEE 6th Intl Conf Wireless and Mobile

Computing, Networking and Communications. 2010, p. 64 - 70.

Tu / Tmin 1.016
Tu' / Tmin 1.041

TPR of Tmin 86.1%

FPR of Tmin 0%

TPR FPR
SF1 87.9% 0.9%
SF2 87.6% 1.0%

C4.5 92.0% 7.6%

C4.5 - P 92.0% 8.0%
RF 93.0% 6.5%
ANN 89.0% 10.0%

http://cs.fit.edu/~pkc/theses/hu15.pdf
http://cs.fit.edu/~pkc/theses/hu15.pdf

