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Abstract. The objective of open set recognition (OSR) is to classify the
known classes as well as the unknown classes when the collected samples
cannot exhaust all the classes. This paper proposes a loss extension that
emphasizes features with larger and smaller magnitudes to find represen-
tations that can more effectively separate the known from the unknown
classes. Our contributions include: First, we introduce an extension that
can be incorporated into different loss functions to find more discrim-
inative representations. Second, we show that the proposed extension
can significantly improve the performances of two different types of loss
functions on datasets from two different domains. Third, we show that
with the proposed extension, one loss function outperforms the others in
training time and model accuracy.
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1 Introduction

The OSR problem aims to classify the multiple known classes for a multinomial
classification problem while identifying the unknown classes. The OSR problem
defines a more realistic scenario and has drawn significant attention in applica-
tion areas such as face recognition [12], malware classification [5] and medical
diagnoses [15].

In this paper, we introduce a loss extension to help the existing loss func-
tions better handle the open set scenario. The proposed extension is inspired
by Extreme Value Signatures (EVS) in [17]. Borrowing from a pre-trained neu-
ral network for regular classification, EVS uses only the top K activations (i.e.,
largest in magnitude) at one layer for calculating the distance between an in-
stance and a class. The EVS distance function can help identify the unknown
class. Instead of using a pre-trained network and the top K activations, we di-
rectly emphasize features with the largest, as well as smallest, magnitudes during
network training. We name our approach Min Max Feature (MMF). Although
the MMF extension is not a standalone loss function, it can be incorporated
into different loss functions. Our contribution in this paper is threefold: First,
we propose MMF as an extension to different types of loss functions for the OSR
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problem. Second, we show that MMF achieves statistically significant AUC ROC
improvement when applied to two types of loss functions (classification and rep-
resentation loss functions) on four datasets from two different domains (images
and malware). Third, our results indicate that the combination of MMF and the
ii loss function [5] outperforms the other combinations in both training time and
overall F1 score.

We organize the paper as follows. In section 2, we give an overview of related
work. Section 3 presents the MMF loss extension. Finally, section 4 shows that
the MMF extension can improve different types of loss functions significantly.

2 Related Work

The OSR problem is related to PU (Positive and Unlabeled) learning [10], which
can be regarded as a binary classification problem with the absence of negative
samples. The OSR problem extends the binary classification problem to a multi-
class classification problem, with some classes missing from the training set, and
will be recognized as an unknown class during testing. We can divide OSR tech-
niques into three categories based on the training set compositions. The first
category includes the techniques that borrow additional data in the training set.
Dhamija et al. [2] utilize the differences of feature magnitudes between known
and borrowed unknown samples as part of the objective function. Hendrycks
et al. [6] propose Outlier Exposure(OE) to distinguish between anomalous (un-
known) and in-distribution (known) examples. In general, although borrowing
and annotating additional data turns OSR into a common classification problem,
the retrieval and selection of additional datasets remain an issue.

The research works that generate additional training data fall in the second
category of open set recognition techniques. Most data generation methods are
based on GANs. Neal et al. [11] add another encoder network to traditional
GANs to map from images to a latent space. Lee et al. [9] generate “boundary”
samples in the low-density area of in-distribution acting as unknown samples.
While generating unknown samples for the OSR problem has achieved great
performance, it requires more complex network architectures.

The third category of open set recognition does not require additional data.
Most of the research works require outlier detection for the unknown class. Pid-
horskyi et al. [13] propose manifold learning based on training an Adversarial
Autoencoder (AAE) to capture the underlying structure of the distributions of
known classes. Hassen and Chan [5] propose ii loss for open set recognition. It
first finds the representations for the known classes during training and then
recognizes an instance as unknown if it does not belong to any known classes. In
EVS, Schultheiss et al. [17] investigate class-specific representations for novelty
detection tasks. The research work shows that each class’s mean representation
can capture discriminative information of both known and unknown classes.
EVS focuses on the top K activations via binarizing the activations; however,
choosing an appropriate K can be challenging. Also, EVS assumes that all the
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Fig. 1: An overview of the network ar-
chitectures of different types of loss
functions. The convolutional layers are
optional. The MMF module in red is
our proposed loss extension.
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Fig. 2: Squared differences of MAV val-
ues between the known and unknown
classes in Figure 3a. The x-axis is the ab-
solute feature values in six features, and
the y-axis is their corresponding squared
differences to the unknown class.

activation values are positive and only looks at the larger ones. We address both
limitations in our proposed approach.

While our approach can be incorporated into different loss functions, we fo-
cus on two types of loss functions in this paper: the classification loss functions
and the representation loss functions. The objective of classification loss, such
as cross-entropy loss, is to lower the classification error of the training data. The
representation loss functions are normally applied to the representation layers,
such as triplet loss in [16] and ii loss in [5]. Triplet loss intends to find an embed-
ding space where the distance between an anchor instance and another instance
from the same class is smaller by a user-specified margin than the distance be-
tween the anchor instance and another instance from a different class. Ii loss
aims to maximize the distance between different classes (inter-class separation)
and minimize the distance of an instance from its class mean (intra-class spread).

3 Approach

We propose the MMF extension to learn more discriminative representations
through known classes, thus better separating known and unknown classes. The
proposed MMF extension does not borrow or generate additional data for the
unknown class, and it can be incorporated into different loss functions. We focus
on classification loss functions such as cross-entropy loss and representation loss
functions, such as triplet loss and ii loss (Section 2).

A typical classification neural network consists of an input layer, hidden lay-
ers, and classification layer. We can consider the hidden layers as different levels
of representations of the input. We call the values of the last hidden layer activa-
tion vector (AV), and each activation is a learned feature. The mean activation
vectors (MAV) of a class is the average of the activation vectors of the class.
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Fig. 3: The heatmap of MAVs (columns) of the MNIST classes using cross-
entropy loss without and with different extensions. Each row is a learned fea-
ture. The largest/smallest magnitude magnitude of a feature in each MAV is in
a red/yellow box. MAV of the unknown class is in a green column/box.

For example, the network in Figure 1a contains one convolutional layer, one
fully connected layer, one representation layer (representation layer Z), and one
classification layer (softmax layer). In some scenarios, a neural network only con-
sists of the input layer and hidden layers as in Figure 1b, where we use learned
representations instead of a classification layer for classification tasks. Figure 3a
shows the learned MAV values from the representation layer using standalone
cross-entropy loss.

To improve the accuracy of detecting open set samples from unknown classes,
we can increase the distances (we use Euclidean distance here) between the
learned features of known and unknown samples, summarized by the MAVs
of the known and unknown classes. Squared differences are the components of
Euclidean distance. Thus we can increase the distance by increasing squared
differences. Figure 2 depicts the relationship between squared differences with
the absolute feature values (feature magnitudes) of the six known classes. We
consider a feature with a larger magnitude is more significant than that with a
smaller magnitude. We observe that a more significant feature leads to a higher
squared difference to the unknown class. The reason is that the MAV of the
unknown class has a relatively small magnitude (green column), as we observe
in Figure 3a. The small magnitude is due to the unknown class being absent
from training, and hence its features are not learned. More importantly, the
squared difference increases faster with more significant features, which indicates
a slight improvement in a more significant feature will increase squared difference
more. Thus, we want the features with larger magnitudes to become even more
significant to increase the distance between the unknown and known classes.

However, based on the preliminary experiments, we found that after enlarg-
ing the magnitudes of the most significant features for the known classes, the
unknown class’s MAV became further away from the origin, which reduces the
increase in the distance between the known and unknown classes. As shown in
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Figure 3b, the MAV of the unknown class (green column) has significantly in-
creased compared to the one only using standalone cross-entropy loss in Figure
3a. To further improve accuracy and increase the magnitudes of the most sig-
nificant feature, we also decrease the magnitudes of the least significant features
to mitigate the increase of the MAV of the unknown class. Comparing Figure
3c and Figure 3a, we can see that after reducing the magnitude of the least
significant features, the feature values of unknown classes indeed get smaller.
Consequently, the distance between the MAV of a known class and the MAV
of the unknown class has increased, and the classes are more separated. For ex-
ample, the Euclidean distance between class “9” and the unknown class learned
from standalone cross-entropy loss in Figure 3a is 2.32. After adding “MMF” in
3c enlarges the distance to 2.62, making the two classes more separable.

Therefore, our MMF extension has two properties. Property A maximizes
the most significant feature, i.e., the feature with the largest magnitude, for all
the known classes. Property B minimizes the least significant feature, i.e., the
feature with the smallest magnitude, for all the known classes. As a result, the
learned representations for known classes should be more discriminative, while
the unknown classes should be less affected.

3.1 Learning objectives

Let x ∈ X be an instance and y ∈ Y be its label. The hidden layers in a
neural network can be considered as different levels of representations of input
x. Suppose that there are C known classes in training data, and C+ 1 classes in
test data with the additional class as unknown class. We denote the MAV of class
i as µi, and µij represents the jth feature of the MAV of class i. Assume the AVs
and MAVs have F dimensions, representing F features, we stack the MAVs for
all the classes to form a representation matrix UC×F . To satisfy Property A, we
first select the most significant features for each class to form the “max feature”
vector. The ith element in “max feature” is for class i:

max featurei = max
1≤j≤F

|µij |, (1)

In the example of Figure 3a, the “max feature” would be (1.8, 1.2, 1.3, 1.4,
1.6, 1.4) (the absolute values of the red boxes). Likewise, for Property B, we
measure the vector of the “min feature” as the least significant feature for each
class. The ith element is for class i:

min featurei = min
1≤j≤F

|µij | (2)

The “min feature” in the example of Figure 3a would be (0.13, 0.45, 0.27,
0.34, 0.25, 0.32) (the absolute values of the yellow boxes). Then, to maximize
all the values in the “max feature”, we maximize the lower boundary (i.e., the
smallest value) in “max feature” directly. Thus the most significant features
for all the known classes would be maximized as Property A. Meanwhile, we
minimize the largest value in the “min feature” to implicitly minimize all the
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values in the “min feature”. The least significant features for all the known
classes would be minimized as Property B. As a result, the proposed MMF
extension satisfies both properties:

MMF = max
1≤i≤C

(min featurei)− min
1≤i≤C

(max featurei) (3)

In the example of Figure 3a, we would like to maximize the “1.2” in the
“max feature” and minimize the “0.45” in the “min feature”. There are alter-
native methods to generate the “max feature” and “min feature”, for example,
instead of selecting the highest absolute values for “max feature”, we exper-
imented with the highest values (max feature1i = max1≤j≤F (µij)) and the
lowest values (max feature2i = max1≤j≤F (−µij)) to form two “max feature”
vectors and later to be maximized at the same time. However, our experiments
indicate that using the single “max feauture” vector can achieve better perfor-
mances. There are also other methods to implicitly maximize the most significant
features and minimize the least significant values for all the classes, such as max-
imizing the average value of the “max feature”, or minimizing the average value
of the “min feature”, i.e.

∑C
i=1

1
C (min featurei−max featurei). However, the

results of using average value are weaker than using the extreme values across
all classes, hence we choose to use the extreme values in our extension function
and in our experiments.

3.2 Training with MMF and Open Set Recognition

In addition to Properties A and B, the MMF extension can be incorporated into
different loss functions. We focus on two types of loss functions: a) loss functions
designed for decision layers such as cross-entropy loss; b) loss functions designed
for representation layers such as triplet loss and ii loss. Notably, we combine the
MMF extension with these two types of loss functions differently, as Figure 1.

We use the network architecture in Figure 1a to simultaneously train the
network with classification loss functions and the MMF extension. During each
iteration, first, we extract AVs and generate the representation matrix; second,
we construct the MMF extension function from the “max feature” vector and
“min feature” vector; third, the weights of each layer of the network are first
updated to minimize the MMF extension then updated to minimize classification
loss functions using stochastic gradient descent.

The MMF extension can also be incorporated into representation loss func-
tions such as triplet loss and ii loss. As both representation loss functions and
the MMF extension should be applied to the layer learning representations, their
combination gives us:

L = Lrep + λMMF, (4)

Lrep is a representation loss function, and λ is a hyperparameter that strikes
a balance between the representation loss function and the MMF extension.
Figure 1b shows the network architecture using a representation loss function
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with an MMF extension. The combination serves on the Z-layer of the network.
Moreover, the network weights get updated using stochastic gradient descent
during each iteration.

After the training process, we obtain the representation centroids for each
class. Then during the inference, we use the same strategy as used in ii loss [5].
First, we calculate the outlier score as the distance of learned representation to
the nearest representation centroid. Then we sort the outlier score of the training
data in descending order and pick the 99 percentile outlier score value as the
outlier threshold. If the outlier score of a test sample exceeds the threshold, it
will be recognized as the unknown class. Otherwise, it will be classified as the
known class with the nearest representation centroid.

4 Experimental Evaluation

We evaluate the MMF extension with simulated open-set datasets from the
following four datasets.
MNIST [14] contains 70,000 handwritten digits from 0 to 9, which is 10 classes in
total. To simulate an open-set dataset, we randomly pick six digits as the known
classes participant in the training, while the rest are treated as the unknown
class only existing in the test set.
CIFAR-10 [7] contains 60,000 32x32 color images in 10 classes, with 6,000
images per class. There are 50,000 training images and 10,000 test images. We
first convert the color images to grayscale and randomly pick six classes out of
the ten classes as the known classes, while the remaining classes are treated as
the known class only existing in the test set.
Microsoft Challenge (MC) [8] contains disassembled malware samples from
9 families. We use 10260 samples that can be correctly parsed then extract their
function call graphs (FCG) as in [4] for the experiment. The dimensionality of
the FCG is 63x63. Again, to simulate an open-set dataset, we randomly pick six
classes as the known classes, while the rest are considered unknowns.
Android Genome (AG) [18] consists of malicious android apps from many
families in different sizes. We use nine families (986 samples) with a relatively
larger size for the experiment to be fairly split into the training set, the test
set, and the validation set. we first use [3] to extract the function instructions
and then extract 1453 raw FCG features as in [4]. Like the MNIST and the MC
dataset, we randomly pick six classes as the known classes in the training set and
consider the rest as the unknown class, which are only used in the test phase.

4.1 Network Architectures and Evaluation Criteria

We evaluate the MMF extension associated with two types of loss functions:
classification loss functions and representation loss functions. Specifically, we
use the cross-entropy loss as the example of classification loss functions, and use
ii loss [5] and triplet loss [16] as the examples of representation loss functions.
Moreover, we compare these pairs with OpenMax [1].
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For the MNIST dataset, the padded input layer is of size (32, 32), followed
by two non-linear convolutional layers with 32 and 64 nodes. We also use the
max-pooling layers with kernel size (3, 3) and strides (2, 2) after each convo-
lutional layer. We use two fully connected non-linear layers with 256 and 128
hidden units after the convolutional component. Furthermore, the linear layer Z,
where we extract the representation matrix, is six dimensions in our experiment.
We use the Relu activation function for all the non-linear layers and set the
Dropout’s keep probability as 0.2 for the fully connected layers. We use Adam
optimizer with a learning rate of 0.001. The network architecture of the CIFAR-
10 experiment is similar to the MNIST dataset, except the padded input layer is
of size (36, 36). The experiment for the MS Challenge dataset also implements
two convolutional layers. The padded input layer is of size (67, 67). However, we
only use one fully connected layer instead of two after the convolutional layers.
Also, we make the keep probability of Dropout as 0.9. The Android Genome
dataset does not use the convolutional component. We use a network with one
fully connected layer of 64 units before the linear layer Z. We also used Dropout
with a keep probability of 0.9 for the fully connected layers. We set the learning
rate of Adam optimizer as 0.1. Besides, we use batch normalization in all the
layers to prevent features from getting excessively large. And as mentioned in
section 3.2, we use contamination ratio of 0.01 for the threshold selection.

As we discussed in Equation 4, we use a hyperparameter λ combine the MMF
extension with the representation loss functions (i.e. ii loss and triplet loss in the
experiments) as: L = Lrep + λMMF . While the range of λ is (0, 1], we set λ
as 0.2 and 0.5 for ii loss and triplet loss for the MNIST and CIFAR-10 datasets.
For the MC dataset, we set λ as 0.5 and 0.3 for ii loss and triplet loss. We set λ
as 0.4 for both ii loss and triplet loss in the AG dataset’s experiments.

We simulate three different groups of open sets for each dataset then repeat
each group 10 runs, so each dataset has 30 runs in total. When measuring the
model performance, we use the average AUC scores under 10% and 100% FPR
(False Positive Rate) for recognizing the unknown class, as lower FPR is desirable
in the real world for cases like malware detection. Furthermore, we measure the
F1 scores for known and unknown classes (C+1 classes) separately as one of the
OSR tasks is to classify the known classes. Moreover, we perform t-tests with
95% confidence in both the AUC scores and F1 scores to see if the proposed
MMF extension can significantly improve different loss functions.

4.2 Experimental Results

We compare the model performances of OpenMax as well as three loss function
quadruples: cross-entropy loss, ii loss, and triplet loss. Table 1 shows the AUC
scores of the models in the four datasets; mainly, we focus on comparing the
“Standalone” with the corresponding “+MMF” subcolumns. We observe that
the quadruples, in general, achieve better AUC scores than OpenMax. Moreover,
with the MMF extension, the AUC scores of the loss functions have achieved
statistically significant improvements in 16 out of 24 cases (3 loss functions×4
datasets×2 FPR values).
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Table 1: The average AUC scores of 30 runs at 100% and 10% FPR of Open-
Max and three loss functions quadruples. The underlined values are statistical
significant better than the standalone loss functions via t-test with 95% confi-
dence. The values in bold are the highest values in each quadruple. The values
in brackets are the highest values in each row.

OpenMax ce ii triplet

FPR Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF Standalone +MMF +MaxF +MinF

MNIST
100% 0.9138 0.9255 0.9479 0.9515 0.9393 0.9578 [0.9649] 0.9579 0.9607 0.9496 0.9585 0.9480 0.9404
10% 0.0590 0.0765 0.0744 0.0761 0.0751 0.0821 [0.0842] 0.0826 0.0830 0.0750 0.0796 0.0777 0.0739

CIFAR-10
100% [0.6757] 0.5803 0.5982 0.6103 0.5807 0.6392 0.6419 0.6437 0.6439 0.6106 0.6248 0.6131 0.6127
10% 0.0065 0.0070 0.0089 0.0090 0.0077 [0.0103] 0.0096 0.0100 0.0100 0.0089 0.0102 0.0092 0.0093

MC
100% 0.8739 0.9148 [0.9500] 0.9387 0.9352 0.9385 0.9461 0.9407 0.9397 0.9240 0.9430 0.9317 0.9178
10% 0.0405 0.0530 0.0635 0.0600 0.0588 0.0627 [0.0656] 0.0629 0.0619 0.0565 0.0622 0.0563 0.0546

AG
100% 0.4150 0.7506 0.8205 0.8152 0.7501 0.8427 0.8694 0.8763 [0.8831] 0.8271 0.8379 0.8203 0.8256
10% 0.0010 0.0058 0.0148 0.0163 0.0036 0.0285 0.0305 [0.0368] 0.0366 0.0229 0.0275 0.0260 0.0235

Table 2: The average F1 scores of 30 runs of OpenMax and three loss functions
pairs. The underlined values show statistically significant improvements (t-test
with 95% confidence) comparing with the standalone loss functions. The values
in bold are the highest values in each column.

MNIST CIFAR-10 MC AG

Known Unknown Overall Known Unknown Overall Known Unknown Overall Known Unknown Overall

OpenMax 0.8964 0.7910 0.8814 0.6456 0.5407 0.6306 0.8903 0.7329 0.8679 0.2273 0.7761 0.3057

ce
Standalone 0.7596 0.7561 0.7591 0.5672 0.3697 0.5390 0.8881 0.6643 0.8562 0.5346 0.0033 0.4587
+MMF 0.8504 0.7902 0.8809 0.5994 0.3271 0.5605 0.9090 0.7963 0.8929 0.5555 0.1142 0.4925

ii
Standalone 0.9320 0.8833 0.9250 0.6206 0.3570 0.5829 0.9128 0.7257 0.886 0.6349 0.6677 0.6396
+MMF 0.9373 0.8916 0.9308 0.6205 0.3660 0.5842 0.9210 0.7680 0.8991 0.6407 0.7251 0.6528

triplet
Standalone 0.9103 0.8302 0.8989 0.5798 0.4515 0.5614 0.8998 0.7018 0.8715 0.5929 0.6323 0.5986
+MMF 0.9239 0.8625 0.9152 0.5943 0.4790 0.5778 0.9064 0.7213 0.8800 0.6005 0.6895 0.6132

Table 2 shows the average F1 scores for the four datasets. We first calculate
the F1 scores for each of the C known classes and the unknown class, then
average the C + 1 classes as the Overall F1 scores. We can see that the loss
functions with the MMF extension have better results than their corresponding
standalone versions for both the known and the unknown classes. We observe
that ii loss with the MMF extension is more accurate than the other five methods
in six out of twelve F1 scores. Particularly, it achieves the highest Overall F1
scores for three out of four datasets.

Table 3 shows the comparison of the average training time of the 30 runs
for the MNIST dataset with 5000 iterations via NVIDIA Tesla K80 GPU on
AWS. We find that adding the MMF extension almost doubles the training time
of using standalone cross-entropy. While for ii loss and triplet loss, adding the
extension increases the training time by around 1%. The reason is that the MMF
extension needs to create the representation matrix from scratch for the network
with ce loss, which needs an extra backpropagation step, both of which take more
time. We also observe that ii loss has the fastest training time among three loss
functions with our MMF extension. Overall F1 scores and training time indicate
that “ii+MMF” is the most accurate and efficient combination.
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Fig. 4: The distributions of outlier scores in MNIST.

Table 3: The compari-
son of training time for
the MNIST dataset.

Regular +MMF delta

ce 119.33 230.43 +111.1
ii 122.17 123.30 +1.14
triplet 223.27 225.70 +2.43

4.3 Analysis

Figure 3c shows the heatmap of MAV values of the simulated open MNIST
dataset trained by cross-entropy loss with the MMF extension. We take digits
“0”, “2”, “3”, “4”, “6”, “9” as the known classes and the remaining digits as
the unknown class. Comparing with the MAV values from the network with
standalone cross-entropy loss (Figure 3a), we can find that the MAVs of the
known classes become more discriminative from each other, and each of the
known classes has its representative feature. (e.g. Z1 for class “0”, Z2 for class
“2”). Whereas the MMF extension has less effect on the unknown class, its MAV
values are relatively evenly distributed.

Since we recognize the unknown class based on the outlier score described
in section 3.3, we analyze both the test samples’ outlier scores from the known
classes and the unknown class from the MNIST experiment. Figure 4 shows the
histogram of the distributions of the outlier scores in triplet loss experiments
and triplet loss with the MMF extension. Compared with standalone triplet
loss, adding an MMF extension increases the outlier scores of the unknown class,
which pushes the score distributions further away from those of the known classes
and results in fewer overlaps between the known classes the unknown class. It
is the reduced overlaps that make the known classes and the unknown classes
more separable than before. Figure 5 shows the t-SNE (perplexity: 50) plots of
the Z-layer representations of the MNIST dataset from the same experiments.
With the MMF extension, the known classes and the unknown class are more
separate from each other, and the known classes become more disparate than
before.

We also perform an ablation analysis for the MMF loss extension to under-
stand the importance of the MMF extension’s two properties. As shown in Table
1, our baselines include (1) standalone loss functions; (2) loss functions with an
extension that maximize the most significant feature as Property A (MaxF); (3)
loss functions with an extension that minimizes the least significant feature as
Property B (MinF). In general, the MMF extension with both properties out-
performs the baselines. This result is consistent with our motivation for the two
properties at the beginning of Section 3. Moreover, we find that MaxF and MinF
extensions can also achieve better performance than standalone loss functions.
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(a) triplet
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(b) triplet+MMF

Fig. 5: The t-SNE plots of the MNIST dataset in the experiments of triplet vs.
triplet+MMF. The left subplots of (a) and (b) are the representations of the
unknown class (a mixture of digits “1”, “5”, “7” and “8”), and the right plots
are the representations of the known classes.
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(b) +MinF
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(c) +MaxF
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(d) +MMF

Fig. 6: The heatmap of the unknown class’s MAV in the experiment of cross
entropy loss (ce) on the Microsoft Challenge dataset (MC).

While both properties improve AUC scores, Property A (MaxF) has a more
significant improvement. Hence, Property A plays a more critical role in AUC
improvement than Property B.

To investigate why MinF also helps improve AUC performance, we show
the heatmap of the MAV for the unknown class in the experiment of ce on the
MC dataset in Figure 6. Comparing Figure 6a and Figure 6b, we observe that
MinF reduced the feature magnitudes for the unknown class, thus increased the
distance between the known and unknown classes. Similarly, from Figure 6c and
Figure 6d, we observe that the feature magnitudes of the unknown class in MMF
(MaxF+MinF) are much smaller than the ones in MaxF. The second observation
is consistent with the earlier discussion on adding MinF to help MaxF in MMF
at the beginning of Section 3. In addition, we observed similar behaviors from
other datasets.

5 Conclusion

We introduced a loss function extension for the OSR problem. The extension
maximizes the feature with the largest magnitude meanwhile minimizes the one
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with the smallest magnitude for all the known classes during training so that the
learned representations are more discriminative from each other. We have shown
that while the known classes are more discriminative from each other, the feature
values of unknown classes are less affected by the extension, hence simplifying the
open set recognition. We incorporated the proposed extension into classification
and representation loss functions and evaluated them in images and malware
samples. The results show that the proposed approach has achieved statistically
significant improvements for different loss functions.
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