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Abstract. In this paper, we consider the problem of Novel Class Dis-
covery (NCD) in Open Set Recognition (OSR). Given a labeled and an
unlabeled set for training, NCD aims to discover the novel categories
in the unlabeled set with prior knowledge learned from the labeled set.
Existing approaches tackle the NCD problems under a close-set setting,
where only the existing categories from the labeled set and the novel cat-
egories from the unlabeled set will occur during the inference. This paper
considers a more realistic open-set scenario. In the open-set setting, in
addition to the existing and novel categories, some unknown categories
absent from the training could be present during inference. To address
NCD in the open-set scenario, we propose the General Inter-Intra (GII)
loss, a unified approach for learning representations from both labeled
and unlabeled samples. The proposed approach discovers novel categories
in the training set (NCD) meanwhile recognizes the unknown categories
(OSR). We evaluate GII with image and graph datasets, and the results
indicate that our proposed approach is more effective than other NCD
and OSR approaches.

Keywords: Novel Category Discovery · Open Set Recognition · Repre-
sentation Learning.

1 Introduction

Machine learning models have achieved significant advances in various tasks
in recent years. Most of these models are developed under a closed-world as-
sumption and rely on a huge amount of data with human annotations. The real
world is an open set, and humans can determine whether images belong to the
same category. However, such an open-set setting brings new challenges for ma-
chine learning models. First, it is cost-inhibitive to keep manually annotating
the emerging new categories. Second, it is unlikely to collect samples exhausting
all the classes. In the open-set setting, an ideal machine learning model should
automatically discover new categories in the training set without having access
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to their labels, called novel category discovery (NCD) [Han et al.(2019)]. Mean-
while, the model should recognize the unknown classes absent from the training
set, which is referred as Open Set Recognition (OSR) [Bendale and Boult(2016)].

In this paper, we focus on automatically discovering novel categories in a
realistic open-set scenario. In the open-set setting, we have labeled and unlabeled
samples available for training. Meanwhile, we have unknown samples that are not
available in the training process. Our proposed approach has three objectives:
classifying the existing categories from the labeled samples, clustering the novel
categories from the unlabeled samples, and recognizing the unknown classes
absent from the training set. Specifically, we introduce a one-step solution for
NCD under the open-set scenario and name this solution general inter-intra (GII)
loss. [Hassen and Chan(2020a)] propose inter-intra (ii) loss for OSR with labeled
training samples. Ii loss maximizes the inter-class distances and minimizes the
intra-class distances in the representation space to achieve inter-class separation
and intra-class compactness. We generalize this idea to unlabeled samples in our
work. GII consists of three components: intra-class loss for existing categories,
intra-cluster loss for novel categories, and inter-category loss for all categories.
We calculate their class centroids in representation space for existing categories
and minimize the intra-class distance. For novel categories, we first estimate the
centroids of the novel categories and cluster assignments via k-means, then we
minimize the intra-cluster distance in the representation space. The assumption
is that novel categories are disjointed with existing ones, so intra-category loss
is designed to maximize the distance between any two categories.

Our contribution includes: first, we propose a unified approach for learn-
ing representations from both labeled and unlabeled samples for NCD under
an open-set scenario. Second, to the best of our knowledge, we are the first to
extend NCD to an open-set setting. Third, we experiment with the proposed
approach with image and graph datasets, and the results indicate that our pro-
posed approach is more effective than other approaches for NCD and OSR.

2 Related Work

An Open Set Recognition (OSR) task has two objectives: classify the known
classes and recognize the unknown class absent from training. We can divide
OSR techniques into three categories based on the training set compositions.
The first category includes the techniques that borrow additional data in the
training set. Dhamija et al. [Dhamija et al.(2018)] utilize the differences in fea-
ture magnitudes between known and borrowed unknown samples as part of the
objective function. Shu et al. [Shu et al.(2018)] indicate that several manual
annotations for unknown classes are required in their workflow. The second cat-
egory of OSR approaches includes the research works that generate additional
data in training data. Most data generation methods are based on GANs. Ge
et al. [Ge et al.(2017)] introduce a conditional GAN to generate some unknown
samples followed by OpenMax open set classifier. Neal et al. [Neal et al.(2018)]
add another encoder network to traditional GANs to map from images to a latent
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space. The third category of OSR approaches does not require additional data.
Instead, it requires outlier detection for the unknown class. Hassen and Chan
[Hassen and Chan(2020b)] propose ii loss for open set recognition. It first finds
the representations for the known classes during training and then recognizes an
instance as unknown if it does not belong to any known classes. Jia and Chan
[Jia and Chan(2021)] propose MMF as a loss extension to further separate the
known and unknown representations for OSR.

One group of existing approaches solves the Novel Category Discovery
(NCD) problem by pairing samples and converting the NCD problem to pair-
wise similarity prediction problem. [Gupta et al.(2020)] utilize the Information
Maximization (IM) loss in an ensemble of models to predict the similarity be-
tween two data points. [Chang et al.(2017)] propose DAC architecture, which
uses the learned label features for clustering tasks. The sample pairs used for
training are alternately selected and labeled by the learned features in each it-
eration. Another group of existing approaches solves the NCD problem using
prior knowledge learned from labeled samples. For example, [Han et al.(2019)]
use such prior knowledge to reduce the ambiguity of clustering by reducing its
KL divergence to a sharper target distribution. [Zhao and Han(2021)] propose
to apply dual ranking statistics to transfer the knowledge learned from labeled
samples to unlabelled samples for pseudo-labeling. [Liu and Tuytelaars(2022)]
propose ResTune to estimate a new residual feature from the pre-trained net-
work and add it with a previous basic feature to compute the clustering objective.
[Zhong et al.(2021)] introduce OpenMix to mix the unlabeled examples from an
open set and the labeled examples from known classes. They follow a two-stage
learning stage for the NCD problem. The model initialization stage is trained on
the labeled samples in a supervised way. In the unsupervised clustering stage,
they generate mixed training samples by incorporating labeled samples with un-
labeled samples. The pseudo-labels of mixed samples will be more reliable than
their unlabeled counterparts. In addition to pseudo-pair learning and pseudo-
label learning, the loss of OpenMix is applied to the mixed samples.

3 Approach

3.1 Learning Representations of Existing and Novel Categories

Consider we have a labeled collection of instances Dl = {(xl
i, y

l
i)}N

l

i=1, where
yli ∈ {1, . . . , Cl} is the ground-truth class labels for the labeled samples, and N l

is the number of labeled samples. In addition, we have an unlabelled collection
of instances Du = {xu

i }N
u

i=1, where Nu is the number of unlabelled samples.
Following a common assumption in other works [Han et al.(2019)], we assume
that the novel categories are disjoint with the existing ones, i.e., Dl ∩Du = ∅,
also the number of novel categories Cu is known.

Our goal is to model a representation space that separates the existing cate-
gories in Dl and the novel categories in Du. Through such representation space,
we can identify if a test instance belongs to one of the existing categories, one of
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Fig. 1: Illustration of GII architecture for NCD.

the novel categories, or the unknown class. We propose an end-to-end framework
to learn the representations, which provides a one-step solution for NCD under
the open-set scenario. The training of the framework consists of three compo-
nents: intra-class loss for the existing categories, intra-cluster loss for the novel
categories, and inter-category loss for all categories. The existing categories are
the classes of the labeled samples. The novel categories are the clusters of the
unlabeled samples and all categories include these classes and clusters.

Intra-class loss for existing categories The intra-class component deals
with the intra-spread for the labeled samples. One can expect the network to
capture some informative knowledge for the existing categories through the train-
ing process, which not only helps classify labeled samples but also is beneficial
to transfer the basic feature for clustering unlabeled samples. Given a labeled
sample xl

i, we use a network-based trainable encoder f(·) to extract its repre-
sentation vector zli. Thus, for existing category (or class) j, we find its centroid
in the representation space as:

µl
j =

1

N l
j

N l
j∑︂

i=1

zli, (1)

where N l
j denotes the number of samples in the existing category j. Then, we

measure the intra-class spread as the average distance of labeled instances from
their class means:

intra-classj =
1

N l
j

N l
j∑︂

i=1

∥µl
j − zli∥22. (2)

To improve the intra-class compactness, we minimize the largest intra-class
spread among the existing categories.

Lintra-class = max
1≤j≤Cl

intra-classj (3)
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Intra-cluster loss for novel categories There are several differences com-
paring intra-cluster spread with intra-class spread. First, intra-class spread relies
on labels to find class centroids. In the intra-cluster spread, we only have unla-
beled samples. Thus, we use k-means to estimate the representation of cluster
centroids as the centers of novel categories µ̃u. Second, we are uncertain which
specific centroid is for an unlabeled sample. Thus, we calculate the soft assign-
ment of sample xu

i based on the distance of its representation zui to the estimated
centroids. Since unlabeled samples do not belong to known classes, these samples
do not have a soft assignment to known classes. To calculate the soft assignment
(probability), we use the softmax of the negative distance of zui from all the esti-
mated centroids. Hence, the probability of sample xu

i belongs to novel category
(or cluster) k is given by:

pik = P (yui = k|xu
i ) =

e−∥µ̃u
k−zu

i ∥2
2∑︁Cu

t=1 e
−∥µ̃u

t −zu
i ∥2

2

, (4)

where µ̃u
k is the estimated centroid for novel category k. Similar to the intra-class

spread, we measure the intra-cluster spread as the weighted average distance of
unlabeled instances from their soft assignments. Suppose we have Nu unlabeled
samples, the intra-cluster spread of novel category k is calculated as:

intra-clusterk =

∑︁Nu

i=1 pik∥µ̃
u
k − zui ∥22∑︁Nu

i=1 pik
. (5)

Then, we minimize the largest intra-cluster spread among the novel categories
to achieve intra-cluster compactness. The differences between the intra-cluster
spread in Equation 5 with the intra-class spread in Equation 2 are the estimated
cluster centroid µ̃u

k and the soft assignment pik.

Lintra-cluster = max
1≤k≤Cu

intra-clusterk (6)

The cluster centroids are initialized and updated by k-means. To reduce the
training time, we use a scheduling function for the k-means. Intuitively, we want
to update the centroids more frequently at the beginning of the training. Close
to the end of the training, when the network has learned informative knowl-
edge from the labeled samples, and the clusters of the unlabeled samples have
been formed for the novel categories, we perform k-means less frequently for the
centroids updates.

Finally, to avoid a trivial solution of assigning all unlabeled samples to
the same class, we regularize the model with maximum entropy regularization
(MER). Specifically, we use the probability pik calculated from Equation 4 as
the probability of an unlabeled sample xu

i being assigned to novel category k.
MER maximizes the entropy of the output probability distribution:

R = −H(p) =
1

Nu

Nu∑︂
i=1

Cu∑︂
k=1

pik log pik. (7)
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Inter-category loss for all categories The above two components shorten
the distance between representations of the same categories to ensure intra-class
and intra-cluster compactness. To distribute the representations of different cat-
egories to different subspaces, we further measure the inter-category separation
as the distance between the two closest category centroids. Let µc be the centroid
of category c, where c ∈ {1, ..., Cl}

⋃︁
{1, ..., Cu}. The inter-category separation

for category m is defined as:

inter-categorym = min
1≤i≤(Cl+Cu),k ̸=i

∥µm − µi∥22. (8)

To improve the intra-category separability, we maximize the inter-category
separation in the inter-category loss:

Linter-category = − min
1≤m≤(Cl+Cu)

inter-categorym. (9)

GII loss function The objective function in GII combines three components,
and the overall training loss of our unified framework can then be written as:

L = Lintra-class + λ1Lintra-cluster + λ2Linter-category + λ3R, (10)

where λ1, λ2, and λ3 are regularization parameters set to 1 in all our experiments.
The representation z is learned by three components together. Specifically,

Lintra-cluster is applied to unlabelled data but indirectly uses information from
labeled data via z and Lintra-class. The features learned from the labeled data
help cluster the unlabeled data. Meanwhile, Lintra-cluster further reduces intra-
cluster spread, which also influences representation z. The influence on repre-
sentation z from unlabeled samples can benefit not only the representation of
unlabeled samples but also the representation of labeled samples. More details
are in the analysis in Section 4.4. In addition, since Linter-category increases sepa-
ration among classes (existing categories) and clusters (novel categories), it uses
information from the labeled data to help separate classes from clusters. GII is
a unified approach for learning representations from both labeled and unlabeled
samples.

4 Experimental Evaluation

In this section, our proposed GII is evaluated on image and graph datasets.
MNIST [Ronen et al.(2018)] contains 70,000 handwritten digits from 0 to 9.
Each example in the MNIST dataset is a 28x28 grayscale image.
Fashion-MNIST [Ronen et al.(2018)] is associated with 10 classes of clothing
images. It contains 60,000 training and 10,000 testing examples. In the Fashion-
MNIST dataset, each example is a 28x28 grayscale image.
Microsoft Challenge (MS) [Ronen et al.(2018)] contains disassembled mal-
ware samples from 9 families. We use 10260 samples that can be correctly parsed
and then extracted their FCGs for the experiment as in [Hassen and Chan(2017)].
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Android Genome (AG) consists of 1,113 benign android apps and 1,200 ma-
licious android apps. Our colleague provides the benign samples, and the mali-
cious samples are from [Zhou and Jiang(2015)]. We select nine families with a
relatively larger size for the experiment to be fairly split into the training set
and the test set. The nine families contain 986 samples in total. We first use
[Gascon et al.(2013)] to extract the function instructions and then generate the
FCGs as in [Hassen and Chan(2017)].

4.1 Implementation details

To simulate an open-set scenario, we randomly select six classes from the datasets
as existing categories. Moreover, we randomly select another two classes from
the datasets as novel categories by removing their labels. These eight classes
participate in the training, while the rest are considered unknowns that only
exist in the test set.

As shown in Figure 1, labeled and unlabeled data share the same encoder. For
the MNIST and Fashion-MNIST datasets, the padded input layer of the encoder
is of size (32, 32), followed by two non-linear convolutional layers with 32 and 64
nodes. We also use the max-polling layers with kernel size (3, 3) and strides (2,
2) after each convolutional layer. We use two fully connected non-linear layers
with 256 and 128 hidden units after the convolutional component. Then we have
an eight-dimensional representation layer after the encoder. We use the Relu
activation function for all the non-linear layers and set the Dropout rate as 0.2
for the fully connected layers. We use Adam optimizer with a learning rate of
0.001. We use a contamination ratio of 0.001 for the unknown class threshold
selection. We sort the output probability of training data in ascending order and
pick the 0.1 percentile of the probability as the threshold. For the FCG datasets
(MS and Android), the padded input layer is in the size of (67, 67). The padded
input layer is then flowed by two non-linear convolutional layers with 32 and 64
nodes. We apply the max-polling layers with kernel size (3, 3) and strides (2,
2). We also add batch normalization after each convolutional layer to complete
the convolutional block. After the convolutional block, we only use one fully
connected non-linear layer with 256 hidden units for the graph dataset. Next,
we add an eight-dimensional representation layer after the encoder. We use the
Relu activation function and set the Dropout rate as 0.2. We use Adam as the
optimizer with a learning rate of 0.001. Finally, we use a contamination ratio
of 0.01 for the unknown class threshold selection. Moreover, as mentioned in
section 3.1, we use a scheduling function for the k-means updates in the NCD
process. In the experiments, we apply k-means every ten iterations in the first
5000 iterations, then reduce the frequency to every 100 iterations in the rest of
the training process.

4.2 Comparison methods

We compare the proposed with ii loss without sharpening on the unlabeled sam-
ples (No sharpening), cluster loss, and supervised OSR. For a fair comparison
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with “No sharpening”, we first pre-train the encoder with labeled samples using
ii loss [Hassen and Chan(2020b)]. After obtaining the representations of the un-
labeled samples, we find the novel cluster centroids and assignments via k-means
directly in the representation space without further sharpening. Finally, we ap-
ply the same OSR process. Cluster loss is proposed to sharpen the distribution
of unlabeled samples through the clustering process [Liu and Tuytelaars(2022)].
We compare our proposed intra-cluster loss with cluster loss by substituting the
inter-cluster loss term with cluster loss in our overall loss function in Equation
10. Moreover, as the cluster loss measures the KL-divergence between two dis-
tributions, which is on a different scale with other terms (intra-class and inter-
category), we set λ1 differently for different datasets. That is, all three terms
in our GII are based on distances in the same representation space Z. Hence,
GII provides a unified approach to representation learning for both labeled and
unlabeled samples.

In addition, we experiment on fully supervised OSR and use the results as
the upper bounds of NCD and OSR performances. In the supervised OSR ex-
periments, we apply ii loss on eight labeled categories in the training process.
The remaining categories are considered as the unknown class.

4.3 Evaluation Criteria

As mentioned above, we simulate an open-set scenario for all the datasets. More-
over, we randomly select two classes in the training set as novel categories and
remove their class labels. We simulate three open-set groups for each dataset
and then repeat each group 10 runs, so each dataset has results for 30 runs. We
calculate the average results of the 30 runs for performance evaluation.

We calculate the accuracy (ACC) scores under different types of categories:
existing categories (ACCE), novel categories (ACCN) and the unknown cate-
gory (ACCU). Specifically, we evaluate the classification accuracy of existing
categories and the recognition accuracy of the unknown category. Moreover, we
evaluate the model performance on novel categories with clustering accuracy.
Clustering accuracy is widely used in NCD problems. To find the optimal match
between the class labels and the cluster labels, the ACC of novel categories is
defined as ACCN = maxperm∈P

1
N

∑︁N
i=1 δ(perm(ŷi) = yi), where N is the total

number of unlabeled samples; δ is the Kronecker delta response; ŷi denotes the
predicted cluster label; perm(·) is the permutation operation and P is the set
of all permutations of the class assignments in the test set. The score ranges
between 0 and 1, and a higher value means better performance. The Hungarian
algorithm is used to optimize the permutations for faster computation.

To further evaluate our approach on OSR, we measure the AUC scores under
100% and 10% False Positive Rate (FPR). While the AUC score under 100%
FPR is commonly used in model performance measurements, the AUC score
under 10% FPR is more meaningful for malware detection applications.
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Table 1: The average ACC scores of 30 runs. The upper bounds results are
trained with fully supervised learning, and the values in boldface are the highest
in each column.
Image Dataset MNIST Fashion-MNIST

ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.733±0.078 0.800±0.091 0.697±0.078 0.767±0.015 0.615±0.060 0.598±0.068 0.668±0.089 0.539±0.098 0.786±0.008 0.468±0.079

Cluster loss 0.752±0.161 0.625±0.125 0.687±0.166 0.751±0.031 0.624±0.127 0.820±0.062 0.608±0.104 0.757±0.052 0.698±0.049 0.628±0.042

GII (ours) 0.936±0.08 0.854±0.088 0.909±0.089 0.817±0.070 0.810±0.069 0.875±0.047 0.808±0.084 0.847±0.051 0.797±0.003 0.687±0.034

Upper bound (supervised) 0.983±0.001 0.977±0.004 0.981±0.001 0.937±0.012 0.935±0.012 0.896±0.018 0.967±0.005 0.914±0.014 0.822±0.011 0.770±0.016

Malware Dataset MS AG
ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.732±0.131 0.625±0.180 0.717±0.132 0.763±0.112 0.653±0.166 0.680±0.167 0.708±0.140 0.602±0.176 0.798±0.027 0.564±0.193

Cluster loss 0.880±0.117 0.602±0.183 0.818±0.106 0.758±0.096 0.742±0.094 0.779±0.146 0.601±0.177 0.734±0.120 0.773±0.063 0.684±0.118

GII (ours) 0.942±0.026 0.630±0.143 0.895±0.054 0.834±0.071 0.811±0.078 0.944±0.013 0.714±0.080 0.906±0.020 0.831±0.048 0.820±0.034

Upper bound (supervised) 0.960±0.016 0.916±0.035 0.950±0.020 0.903±0.035 0.899±0.035 0.922±0.012 0.712±0.080 0.898±0.021 0.908±0.013 0.904±0.012

Table 2: The average ROC AUC scores of 30 runs at 100% and 10% FPR. The
upper bounds results are trained with fully supervised learning, and the values
in boldface are the highest in each column.

MNIST Fashion-MNIST MS AG
FPR 100% 10% 100% 10% 100% 10% 100% 10%

No sharpening 0.439±0.127 0.004±0.003 0.418±0.073 0.003±0.001 0.528±0.122 0.007±0.004 0.293±0.214 0.000±0.000

Cluster loss 0.413±0.231 0.007±0.009 0.620±0.084 0.008±0.003 0.651±0.271 0.018±0.015 0.507±0.283 0.007±0.015

GII (ours) 0.829±0.104 0.047±0.016 0.674±0.040 0.012±0.004 0.858±0.086 0.028±0.015 0.885±0.090 0.016±0.020

Upper bound (supervised) 0.966±0.010 0.078±0.003 0.676±0.062 0.015±0.002 0.945±0.045 0.062±0.017 0.963±0.013 0.052±0.015

4.4 Experimental Results and Analysis

We test our proposed method on image and malware datasets for 30 runs. Ta-
ble 1 shows the average accuracy scores of different methods. Notably, we mea-
sure the average clustering/classification accuracy on the existing/novel set and
the combined set (ACCE+N). Moreover, considering an open-set scenario, we
measure the average accuracy of the unknown set, and the set contains all the
existing, novel, and unknown categories (ACCE+N+U). Comparing the ACC un-
der existing categories (ACCE) and novel categories (ACCN), we observe that
our proposed GII outperforms both ii loss without sharpening and cluster loss
in NCD. Also, comparing the ACC under the unknown category (ACCU), we
observe that GII achieves the best performance in OSR. The upper bound per-
formances are generated from supervised ii loss, where we utilize the labels of
novel categories in the training set. We can see that GII has comparable perfor-
mances with the supervised training in some datasets. In particular, GII obtains
higher accuracy than supervised learning in the combined novel and existing
categories (ACCE+N) in the AG dataset.

In addition to the ACC scores, we measure the AUC ROC scores under dif-
ferent FPR values: 100% and 10% in Table 2. The AUC ROC measures OSR
at various threshold settings. Similar to the ACC scores, our proposed GII out-
performs ii loss without sharpening and cluster loss in the AUC ROC scores.
Furthermore, comparing GII with supervised learning, we observe that GII can
achieve comparable OSR performance in the Fashion-MNIST dataset.
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(a) No sharpening

(b) Cluster loss (c) GII (ours)

Fig. 2: The t-SNE plots of the representations of MNIST test samples.

Our experiment results indicate that GII outperforms ii loss without sharp-
ening and cluster loss in terms of performances in NCD and OSR. Specifically,
ii loss without sharpening can be considered as an ablation study to investigate
our approach without intra-cluster loss. We plot the t-SNE plots of the repre-
sentations of samples from different categories in the MNIST test set, as shown
in Figure 2. The left subplots are the representations of the samples from ex-
isting categories (“0”, “2”. “3”, “4”, “6” and “9”) and novel categories (“cluster 1”
and “cluster 2”). The right subplots show the representations of samples from
unknown categories, which only exist in the test set. Comparing Figure 2a with
Figures 2b and 2c, we can see that samples from the two clusters result in more
compact intra-cluster spread with cluster loss and GII. The reason is that cluster
and GII sharpen the distributions of the unlabeled samples while “No sharpen-
ing” does not change the distributions of the unlabeled samples. Furthermore, it
can be seen that GII forms better clusters compared with cluster loss. GII gen-
erates a more discriminative boundary for the samples in cluster 2 (grey) and
the samples in class “9” (brown). The reason is that GII forms a tighter cluster
for cluster 2. Thus a more accurate cluster centroid is estimated and used in the
inter-category loss. Also, comparing the representations in the right subplots,
we find that the representations of unknown samples learned by ii loss without
sharpening and GII are more concentrated around the origin. In contrast, those
learned by GII are more widespread.

Besides visually evaluating representations via t-SNE plots, we also evaluate
intra-inter ratio (IIR) [Jia and Chan(2022)] with test samples to measure the
representation quality learned by different approaches. IIR measures the rep-
resentation quality by calculating the ratio between intra-category spread and
inter-category separation, and a lower value means better representations. Fig-
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(a) MNIST (b) MS

Fig. 3: Intra-inter ratio (IIR) of the representations in different categories

ure 3 shows the IIR values of different datasets. From Figure 3, within the novel
categories across four datasets, cluster loss or GII has (large) improvements in
IIR over no sharpening, which indicates the benefit of representation learning
with unlabeled samples via cluster loss or GII. However, GII yields a larger ben-
efit than cluster loss. More interestingly, within the existing categories across
datasets, we observe improvements in IIR with GII over no sharpening. That is,
the unlabeled samples via GII help improve the representations of samples from
labeled classes. Hence, not only the representations of unlabeled samples benefit
from representation learning from unlabeled samples via GII, the representations
of labeled samples also benefit.

5 Conclusion

We have presented a generic one-step representation learning approach to tackle
the challenging problem of novel category discovery under an open-set scenario.
Our proposed approach consists of three components. First, we achieve intra-
class spread for labeled samples by minimizing the intra-class distance. Second,
we estimate the novel category centroids and propose intra-cluster loss for the
unlabeled samples to discover novel categories. Third, we separate different cat-
egories by maximizing the intra-category distance such that all the categories
inhabit the same representation space. Last, we evaluated our approach on im-
age and graph datasets, and the results indicate that the proposed approach
obtained superior results in NCD and OSR compared with other approaches.
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