
Unsupervised Open Set Recognition using
Adversarial Autoencoders

1st Mehadi Hassen
School of Computing

Florida Institute of Technology.
Melbourne, FL 32901

mhassen2005@my.fit.edu

2nd Philip K. Chan
School of Computing

Florida Institute of Technology.
Melbourne, FL 32901

pkc@cs.fit.edu

Abstract—We propose an unsupervised open set recognition
approach that uses an Adversarial Autoencoder (AAE) for
clustering and combines it with ii-loss to learn a representation
that facilitates open set recognition. We evaluate our approach on
two malware datasets. To show the applicability of the proposed
method outside the malware domain we also evaluate it with
an image dataset. Our proposed approach gives a statistically
significant improvement over other evaluated approaches.

I. INTRODUCTION

Scheirer et al. [1] define an open set recognition scenario as
one where an “incomplete knowledge of the world is present
at training time, and unknown classes can be submitted to
an algorithm during testing". In other words, the classes seen
during testing may not have been seen in training; unlike
closed set recognition where the same set of classes are seen
during training and test. Many research work on open set
recognition [2]–[4] propose solutions for a supervised open set
recognition task where the training data is labeled. However,
there are scenarios where open set recognition is needed in
an unsupervised setting (i.e. where the training data are not
labeled with classes, and the test data could belong to classes
beyond those “latent" classes in the training data).

Consider a scenario where the training set is comprised
of instances from multiple data generating distributions (we
will refer to these as known or training data distributions).
Furthermore, test data can contain instances from unknown
data generating distribution never seen in the training set.
Unsupervised open set recognition is the task of identifying
whether an instance is from unknown data distributions or the
known data distributions in the absence of labeled training
data. Wang et al. [5] highlight one such scenario for the task
of person re-identification from surveillance camera footage in
public space. Another case where unsupervised open set arises
is in malware clustering [6]–[9]. Rieck et al. [8] identified
the necessity of having open set recognition capability and
proposed a malware clustering approach and an associated
outlier score for recognizing instances that did not belong to
the already identified clusters.

Our contributions include: (1) We propose an approach
that learns a representation to facilitate unsupervised open set
recognition. (2) Our approach shows a statistically significant
improvement over other approaches on three datasets. (3) We

show that anomaly detection algorithms, such as Isolation
Forest, do not perform well on unsupervised open set scenarios.

II. RELATED WORKS

Open set recognition is starting to get considerable attention
in recent literature. Dietterich [10] even presents it as one of
the challenges that need to be addressed to build a robust AI
system. Most of the research in this area [1]–[4], [11] so far
has focused on supervised open set recognition. Scheirer et al.
[1] formalize open space risk and propose a one-class open set
recognition (they call a 1-vs-set machine) as an SVM where
the positive region is bounded by two parallel planes. Scheirer
et al. [4] further develop this idea to address a multi-class open
set recognition and provide a probabilistic decision score for
rejecting instances as unknown. Bendale and Boult [3] present
a deep neural network based multi-class open set recognition
approach which provide the probability of the unknown class.
On the unsupervised open set recognition side, Want et al. [5]
present an approach for learning to identify if individuals in
surveillance footage that are of the same individuals in a target
list without the need for a labeled data.

Another related area is anomaly or outlier detection.
Proximity-based anomaly detection approaches such as [12],
[13], for example, use the distance of an instance to its k-
nearest neighbor as its anomaly/outlier score. Others such as
the widely used LOF algorithm [14] use the relative density
of the neighborhood around an instance as a measure of the
instances outlier score. Isolation Forest [15], a random forest
like anomaly detection algorithm, can also be thought of as
a density-based approach. Although isolation forest does not
directly calculate the density of an instance, it measures how
anomalous an instance is by how difficult it is to isolate that
instance from other instances around it through a random
recursive partitioning. The denser the area around an instance
the more difficult it is to separate it hence the less likely for
it to be an anomaly. Clustering-based anomaly detection has
also been proposed [16]. Proximity-based, density-based, and
clustering-based anomaly detection approaches rely on the use
of the appropriate distance function which can be difficult to
find for the original feature space. As a result, typical anomaly
detection methods do not perform well on open set recognition
as we show in our evaluations.

III. BACKGROUND

a) Adversarial Autoencoder (AAE): Makhzani et al. [17]
propose an Adversarial Autoencoder which turns the decoder
network of an autoencoder into a generative model. In their
proposed approach an adversarial autoencoder, shown in Part
A of Figure 1, is trained on two objectives (1) the traditional
reconstruction error criteria and (2) adversarial training criteria.
The reconstruction objective, Eq. 1, aims to train the encoder
network to encode the original input into latent variables and
the decoder network to reconstruct the original input from the
latent variables. The task of the adversarial criteria, Eq. 2 and
3, is to match the latent variable posterior distribution to an
arbitrary prior. The discriminator network D, minimizes the
classification error, in the form of a standard cross-entropy
function, when assigning the correct labels to the real samples
from the Gaussian distribution p(z′) and the fake samples from
the generator G. The generator G on the other hand, tries to
fool the discriminator into labeling the fake samples as real.

reconstruction_loss =
1

2N

N∑
i=1

∥∥∥ ~̂xi − ~xi

∥∥∥2
2

(1)

where N is number of instances and ~̂xi is the reconstruction
of the training sample ~xi.

J (D) = −1

2
Ez′∼p(~z′)[logD(~z′)]−1

2
E~xi∼pdata()[log(1−D(G(~xi))]

(2)
J (G) = −1

2
Exi∼pdata()[logD(G(xi))] (3)

where ~z′ is a sample drawn from an arbitrary distribution p(~z′),
~xi is training sample drawn from the data distribution pdata(),
and finally D and G are the Discriminator and Generator
networks.

In case of the AAE shown in Part A of Figure 1, the encoder
network, and the z-layer together form the generator G. The
discriminator D, on the other hand, is a separate network
which we refer to as “Gaussian Discriminator" in the Figure
1. We use the term “Gaussian Discriminator" to signify that
the real samples are drawn from a Gaussian distribution (i.e.
p(~z′) in Equation 2 is now N (0, I)). On the other hand, the
fake samples are from the output of the z-layer. During each
training iteration the training alternates between two phases.
In the first phase (called the reconstruction phase), the encoder
network, decoder network, and the z-layer weights are updated
to minimize the reconstruction error. Then in the second phase
(the adversarial phase), the discriminator network weights and
the generator network weights are updated by minimizing Eq.
2 and 3, respectively.

b) Clustering Variant of Adversarial Autoencoder (AAE):
Makhzani et al. also demonstrate a clustering variant of
the adversarial autoencoder where the encoder network is
connected to the z-layer and the y-layer. The y-layer, which is
a softmax layer, is a probability distribution over the cluster
labels, shown in Part B of Figure 1. There is an additional
adversarial network (which we will refer to as “Categorical

Encoder Decoder
z

0.23
0.45
.
.
.

Discriminator
(Gaussian)

Inputz’ ~ N(0, I)

Fake
-

Real
+

Discriminator
(Categorical)

Input

Fake
-

Real
+

y
0
1
.
.
.

Samples from
Categorical
Distribution
0
1
.
.
.

1
0
.
.
.

0
0
.
.
.

z_ii
0.68
0.77
.
.
.

ii-loss

A

B

Fig. 1: AAE-II:Adversarial autoencoder architecture for unsu-
pervised open set recognition.

Discriminator") for regularizing the y-layer such that the
cluster prediction match a Categorical distribution (i.e., one-hot
encoding). Each training iteration of the clustering variant of
AAE consists of three phases. The first two phases are the
same as the two phases for AAE. The third is the categorical
adversarial phase. In the context of this phase, the Categorical
Discriminator represents the D network; whereas the encoder
and y-layer constitute the generator G network. In this phase,
the weights of the D and the G networks are updated to
minimize Eq. 2 and 3, respectively. However, in this case the
real samples are drawn from a Categorical distribution (i.e.,
p(~z′) in Eq. 2 refers to a Categorical distribution); where as
the fake samples come from the output of the y-layer.

c) II-Loss: The aim of ii-loss, proposed in [18], is to learn
a neural-network-based representation that facilitates open set
recognition by fulling two properties: (P1) instances from
the same class are close to each other; (P2) instances from
different classes are further apart. The intuition is that as the
known classes are further apart from each other, unknown class
instances will have more space to occupy between them making
the task of recognizing unknown class instances easier. Given
training data consisting of set of instance X and labels Y , and
a neural network g, the learned representation of instance ~xi is
~zi = g(~xi). The neural network is trained to minimize ii-loss
which defined as:

ii-loss =
(1

N

K∑
j=1

|Cj |∑
i=1

‖ ~µj − ~zi‖22︸ ︷︷ ︸
intra_spread

)
−
(

min
1≤m≤K

m+1≤n≤K

‖ ~µm − ~µn‖22

︸ ︷︷ ︸
inter_sparation

)

(4)

where |Cj | is the number of training instances in class Cj , N
is the number of training instances, K is the number of known
classes, and ~µj = 1

|Cj |
∑|Cj |

i=1 ~zi is the mean of class Cj . To
satisfy P1, we minimize the distance the projection ~z has from
the instance’s class center, intra_spread. To satisfy P2, we
maximize the distance between the closest pair of class centers,
inter_sparation.

IV. UNSUPERVISED OPEN SET RECOGNITION

The original ~z in AAE is used to learn a representation
for reconstruction, and it is regularized to follow a normal
distribution by the adversarial network so that it can be used
for the generative model. As a result, we see that in Figure 2a
all instances from the different clusters are projected together
into the same region. Additionally, instances from the unknown
data distributions are projected in the same region, as shown
in figure 2c..

We propose combining ii-loss with AAE to learn a continu-
ous representation to facilitate open set recognition. Since the
adversarial regularization works in contrary to ii-loss and as a
result, degrades open set recognition performance; we propose
to learn a different continuous representation ~z_ii. In ~z_ii,
instances from the same cluster are closer to each other while
instances from different clusters are further apart, as shown
in Figure 2b. We will refer to this new representation ~z_ii,
shown in Figure 1, as a z_ii-layer. The z_ii-layer shares the
same encoder network as the z-layer and the y-layer. However,
it is not given as input to the decoder as shown in Figure 1.

The original ii-loss in [18] was used for supervised open
set recognition, where the training class labels are used
for calculating ii-loss. In this case, however, the open set
recognition task at hand is unsupervised. Hence, the objective
of ii-loss needs to be changed accordingly. We propose to
use ii-loss to project similar instances from the same cluster
closer together while projecting different clusters further apart.
We can use the same ii-loss formulated in Eq. 4. However,
in this case, Cj in Eq. 4 will refer to a cluster label instead
of class labels and ~zi in the equation will refer to vecz_ii.
A cluster label (or cluster-id) of an instance is computed as
cluster_id = argmax

1≤j≤K
y[j] where K is the number of clusters

or the dimension of the y-layer.
The training of the AAE-II is carried out in two stages as

shown in Algorithm 1. In the first stage (lines 10-11), we
train the AAE network with updates from the reconstruction
phase, gaussian adversarial phase and categorical adversarial
phase. During this training, we monitor the percent of change
in cluster membership among the training instances during
each training iteration. We stop the first stage when the change
in cluster membership converges to a value less than 1% or
when a pre-set training iteration is reached. In the second stage
(lines 13-15), we add the z_ii-layer to the network and start
updating the z_ii-layer and the encoder network to minimize ii-
loss. We also continue the reconstruction, gaussian adversarial,
and categorical adversarial phases as in the first stage. After
the training is completed, the cluster means (centers), at the

Algorithm 1: Training AAE-II
Input :X: Training data

1 Function AAE_Update():
2 Sample a mini-batch Xbatch from X
3 Update Encoder, z-layer, y-layer, and Decoder to

minimize reconstruction loss, Eq. 1.
4 Update Gaussian Discriminator to minimize Eq. 2

where G(Xbatch) = Lz(Enc(Xbatch)) and
p(~z′) = N (0, I)

5 Update Categorical Discriminator to minimize Eq. 2
where G(Xbatch) = Ly(Enc(Xbatch)) and
p(~z′) = Cat()

6 Update Encoder and z-layer to minimize Eq. 3 where
G(Xbatch) = Lz(Enc(Xbatch))

7 Update Encoder to y-layer to minimize Eq. 3 where
G(Xbatch) = Ly(Enc(Xbatch))

8 return;

9 // Stage One
10 for number of stage one iterations do
11 AAE_Update()

12 // Stage Two
13 for number of stage two iterations do
14 AAE_Update()
15 Update Encoder and z_ii-layer to minimize ii-loss, Eq.

4
16 Calculate cluster means (~µj) and save as part of the

model.
Lz denotes the z-layer, Ly denotes the y-layer, Enc() denotes the encoder
network , and Cat() denotes a categorical distribution

z_ii-layer, are calculated for each cluster using all the training
instances and stored as part of the model.

a) Outlier Score and Threshold Estimation: To measure
the degree to which a test instance ~x is an outlier, we get the
z_ii-layer output for this instance (~z_ii) and then measure how
far this vector is from each cluster mean. The distance from
the closest cluster center (mean) is then used as an outlier
score.

outlier_score(~x) = min
1≤j≤K

∥∥∥~µj − ~z_ii
∥∥∥2
2

(5)

where ~z_ii is the output of the z_ii layer for input ~x, and ~µj

is the mean of cluster j.

To determine whether a test instance is an outlier, a threshold
value on the outlier score is needed. We estimate this threshold
based on the outlier score of the training data. An assumption
is made on how much of the training data to consider as
outliers using the contamination ratio. For example, if the
contamination ratio is set to be 2%, then the 98 percentile
largest outlier score of the training data is set as the threshold
value. During testing any instance that has an outlier score
higher than the threshold is predicted to be an outlier.

V. EVALUATION

a) Dataset and Simulating Open Set Dataset: We evalu-
ated our proposed approach on three datasets. The first dataset
is the Microsoft Malware Challenge Dataset [19] of labeled
disassembled windows malware samples from 9 families. The
majority class has 2936 samples whereas the minority class
has 34 samples with the median class size of 1012 samples.
The second dataset is the Android Malware Genome Project
dataset [20]. We use 986 samples from 9 families where each
has at least 40 samples. The majority class in this dataset has
309 samples whereas the minority class has 46 samples with
the median class size being 69. The malware features used in
both malware dataset are based on function call graph features
proposed in [21]. In both cases, we use minhash to cluster the
functions into 64 clusters based on the unigram of the function
opcodes. The cluster-ids are then used to label the functions,
and the vertex and edge features are extracted. To evaluate
the applicability of the proposed approach to domains outside
malware classification, we also evaluate it on the MNIST
handwritten digit dataset. All three datasets are available online
on their respective websites.

We simulate open set datasets from the original evaluation
datasets. All three of the original datasets are labeled; however,
we do not use the labels during the training of the evaluated
approaches. The labels are only used to create the open set
datasets and calculating performance metrics. We start by
randomly selecting K classes whose instances are going to be
present in the training set. In other words, the training set is
made up of instances of K data distributions; we will refer to
these as known or training data distributions. In case of the
MS and Android datasets, we choose 75% of instances from
the K classes to be part of the open set training set and add
the remaining to the open set test set. All the instances that
are not part of the K classes are added to the open set test set.
In case of the MNIST dataset, we select all the instances from
the K classes in the original MNIST training dataset to be part
of the open set training set. All the instances from the original
MNIST test set are used in the open set test dataset (i.e., this
contains the K training classes and the other classes that are
not part of the training set). In all cases the classes labels
are not used for training, they are only used for calculating
unsupervised open set recognition performance metrics.

b) Evaluated Approaches: We evaluate the proposed
approach in contrast to Isolation Forest [15]. We also evaluate
how well clustering-based outlier detection performs in an
unsupervised open set scenario. Similar to what is proposed by
Rieck et al. [8], we use a KMeans-based approach where the
distance from cluster centroid is used for detecting unknown
data distribution instances.

In case of the Android and MS datasets, both the KMeans-
based and Isolation Forest are given the malware FCG features
as input features. However, in case of the MNIST dataset, the
KMeans-based approach and Isolation Forest understandably
do not perform well when given the raw image pixels as input
features. So instead we first use an autoencoder to transform

TABLE I: 30-run average AUC of discriminating instances
of unknown data distributions from instances of known data
distributions. For AUC, the positive label represents instances
from unknown data distributions. The underlined average AUC
values are higher with statistical significance (p-value less
than 0.05 with a t-test) compared to the values that are not
underlined on the same row. The average AUC values in bold
are the largest average AUC values in each row.

FPR Isolation KMeans AAE-II
Forest based

MNIST 100% 0.619 0.841 0.898
(±0.085) (±0.078) (±0.029)

10% 0.008 0.031 0.058
(±0.003) (±0.013) (±0.010)

MS 100% 0.547 0.568 0.829
(±0.167) (±0.107) (±0.065)

10% 0.014 0.011 0.027
(±0.017) (±0.009) (±0.017)

Android 100% 0.716 0.789 0.817
(±0.050) (±0.016) (±0.139)

10% 0.011 0.026 0.029
(±0.002) (±0.009) (±0.016)

the pixels into an intermediate representation and then feed
this intermediate representation to the two algorithms.

Our proposed approach was implemented using TensorFlow.
The details of our implementation are available in the Supple-
mental Material1. In case Android and MS dataset the FCG
features are given as input features to our approach. Whereas
in case of MNIST dataset our approach takes the raw images
as input.

A. Detecting Instances from Unknown Data Distributions

For evaluations, three open set datasets are randomly created
from each the three datasets as discussed in the earlier Section.
We then run 10 experiments for each of the three open set
dataset, which means we have a total of 30 experiments for
each original dataset. The objective of these experiments is to
perform unsupervised open set recognition.

Table I shows the 30-run average AUC. Our proposed
approach (AAE-II) has significantly higher average AUC for
MNIST and MS dataset both up to 100% False Positive Rate
(FPR) and up to 10% FPR. In case of the Android dataset, the
KMeans-based approach has higher average AUC up to 100%
FPR over AAE-II although the improvement is not statistically
significant. When considering AUC up to 10% FPR AAE-II
has a higher value. Again the improvement is not statistically
significant.

We now present the result of these experiment from a
different perspective where a threshold value is estimated. The
threshold is then used to predict whether an instance belongs
to known data distribution or it does not. We present the

1https://github.com/shrtCKT/unsupervised_opennet

TABLE II: Average F-score 30-runs.

Isolation Forest KMeans-based AAE-II

MNIST 0.39(±0.01) 0.49(±0.07) 0.77(±0.06)
MS 0.45(±0.15) 0.43(±0.10) 0.65(±0.10)

Android 0.29(±0.05) 0.44(±0.10) 0.71(±0.18)

TABLE III: 30-run average cluster homogeneity.

AAE AAE-II

MNIST 0.834(±0.049) 0.815(±0.076)
MS 0.771(±0.051) 0.779(±0.044)

Android 0.756(±0.040) 0.757(±0.040)

results of this prediction in Table II. In all three datasets, our
proposed approach records statistically significant improvement
in F-Score compared to the other approaches.

VI. DISCUSSION

We investigated the effect ii-loss on clustering performance
of AAE by comparing the clustering performance of AAE with
and without ii-loss. We report these results in terms of the
cluster homogeneity as defined by Rosenberg and Hirschberg
[22]. The homogeneity values have a range of 0.0 to 1.0. A
homogeneity of 1.0 indicates that a cluster is purely made up
of instances from a single class, which is a desirable result.
For the homogeneity computation, elements in cluster i are
assigned the label of the training instance that maximizes the
probability of belonging to that cluster. As shown in Table
III, the clustering performance with and without ii-loss remain
similar. According to the results from a t-test, the differences
were not statistically significant since the p-values from all
three rows in the table are higher than 0.24.

In our approach, the use of a separate z_ii-layer was driven
by the realization that the original z-layer of AAE was not
separating the instances from the different clusters. We see
in Figures 2a and 2c that the projections from both known
and unknown overlap for the most part. Hence, it is difficult
to discriminate them. On the other hand, in Figures 2b and
2d, ii-loss pushes the projections of different clusters further
apart; so when an instance from unknown data distribution is
encountered, the network projects them in the space between
the clusters.

To understand the effect of the number of clusters (the
dimension of the y-layer in Figure 1) and dimension of the z_ii
layer (we will refer to as z_ii-dim) on the open set performance,
we conducted 30 experiments on the three original datasets.
We ran 30 experiments, similar to what we did in Section V-A,
and present the results in terms of an average AUC. From
Figures 3d, 3e, and 3f we observe that the change in the z_ii
dimension has little effect on the open set performance. On the
other hand, Figures 3a, 3b, and 3c show the effect of using a
different number of clusters on the average AUC. We expected
the open set recognition performance (i.e., average AUC) to
increase as the number of clusters increases since the clusters

become more homogeneous(pure) as the number of clusters
increase. The results of MS and Android datasets seem to
agree with our expectation as seen in Figures 3b and 3c. In
case of MNIST dataset, however, average AUC decreases as
the number of clusters increase, which is the opposite of what
we expected to happen.

Our first hypothesis in trying to explain the unexpected result
(i.e., the decrease in open set recognition performance with
an increase in cluster number for MNIST dataset) was that
it might be because the cluster quality(homogeneity) was not
improving with an increase in the number of clusters. However,
we found out that was not the case; cluster homogeneity in the
experiments increases with an increase in the number of clusters.
Our second hypothesis was that ii-loss was not separating the
clusters well (hence explaining in poor open set recognition
performance) when the number of clusters increased. We found
out that inter-cluster separation did decrease as the number of
clusters increased, however, this was the case for the MS and
Android datasets as well, but in those two datasets, the open
set recognition improved with an increase in the number of
clusters. Therefore this does not explain these results. At this
moment we are not able to find the answer to this unexpected
result and leave this off as future work. The conclusion we
can draw from these experiments is that the optimal cluster
number (i.e., the dimension of the y-layer) for a good open
set recognition performance differs from dataset to dataset and
need to be tuned more carefully.

VII. CONCLUSION

In this paper, we presented the problem of unsupervised
open set recognition where the task is to identify instances in
the test set that are not from the training data distributions.
Our approach learns a representation for facilitating open
set recognition in an unsupervised setting. We compare
our proposed approach with closely related outlier detection
methods and show that our approach gives a statistically
significant improvement on three publicly available datasets.
Our results also show that typical anomaly or outlier detection
methods such as Isolation Forest do not perform well when
used unsupervised open set recognition tasks.

REFERENCES

[1] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.

[2] H. Zhang and V. M. Patel, “Sparse representation-based open set
recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 8, pp. 1690–1696, 2017.

[3] A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1563–1572.

[4] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 11, pp. 2317–2324, 2014.

[5] H. Wang, X. Zhu, T. Xiang, and S. Gong, “Towards unsupervised open-
set person re-identification,” in Image Processing (ICIP), 2016 IEEE
International Conference on. IEEE, 2016, pp. 769–773.

[6] J. Kinable and O. Kostakis, “Malware classification based on call graph
clustering,” Journal in computer virology, vol. 7, no. 4, pp. 233–245,
2011.

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z1

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z2

0
2
3
4
6
9

(a) z-layer projections
for instances from known data distribution.

−2 −1 0 1 2
Z0

−3

−2

−1

0

1

Z1

−2 −1 0 1 2
Z0

−3

−2

−1

0

1

Z2

0
2
3
4
6
9

(b) z_ii-layer projections
for instances from known data distribution.

−2 0 2
Z0

−3

−2

−1

0

1

2

3

Z1

−2 0 2
Z0

−3

−2

−1

0

1

2

3
Z2

unknown

(c) z-layer projections
for instances from unknown data distribution.

−2 −1 0 1 2
Z0

−3

−2

−1

0

1

Z1

−2 −1 0 1 2
Z0

−3

−2

−1

0

1

Z2

unknown

(d) z_ii-layer projections
for instances from unknown data distribution.

Fig. 2: Scatter plot of the six dimensional z-layer and z_ii-layer for 1000 random instances from known and unknown data
distributions. The legend indicates the true label of the points.

[7] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “Mutantx-s: Scalable
malware clustering based on static features.” in USENIX Annual Technical
Conference, 2013, pp. 187–198.

[8] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” Journal of Computer Security,
vol. 19, no. 4, pp. 639–668, 2011.

[9] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9, 2009,
pp. 8–11.

[10] T. G. Dietterich, “Steps toward robust artificial intelligence,” AI Magazine,
vol. 38, no. 3, pp. 3–24, 2017.

[11] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set
recognition using probability of inclusion,” pp. 393–409, 2014.

[12] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in ACM Sigmod Record, vol. 29,
no. 2. ACM, 2000, pp. 427–438.

[13] M. Sugiyama and K. Borgwardt, “Rapid distance-based outlier detection
via sampling,” in Advances in Neural Information Processing Systems,
2013, pp. 467–475.

[14] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM sigmod record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[15] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 2008,
pp. 413–422.

[16] D. Yu, G. Sheikholeslami, and A. Zhang, “Findout: finding outliers in
very large datasets,” Knowledge and Information Systems, vol. 4, no. 4,
pp. 387–412, 2002.

[17] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial
autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[18] M. Hassen and P. K. Chan, “Learning a neural-network-based repre-
sentation for open set recognition,” in Proceedings of the 2020 SIAM
International Conference on Data Mining. SIAM, 2020, pp. 154–162.

[19] “Microsoft malware classification challenge (big 2015),”
https://www.kaggle.com/c/malware-classification, 2015, [Online;
accessed 27-April-2015].

[20] “Android malware genome project,” http://www.malgenomeproject.org/.
[21] M. Hassen and P. K. Chan, “Scalable function call graph-based malware

classification.” in 7th Conference on Data and Application Security and
Privacy. ACM, 2017, pp. 239–248.

[22] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the 2007
joint conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL), 2007.

6 10 15 20
Number of Clusters

0.80

0.82

0.84

0.86

0.88

Av
er

ag
e

AU
C

z_dim=6
z_dim=10

z_dim=15
z_dim=20

6 10 15 20
z_ii dimension

0.80

0.82

0.84

0.86

0.88

Av
er

ag
e

AU
C

y_dim=6
y_dim=10

y_dim=15
y_dim=20

(a) MNIST Dataset

10 15 30 45
Number of Clusters

0.72

0.74

0.76

0.78

0.80

0.82

Av
er

ag
e

AU
C

z_dim=10
z_dim=15

z_dim=30
z_dim=45

10 15 30 45
z_ii dimension

0.72

0.74

0.76

0.78

0.80

0.82

Av
er

ag
e

AU
C

y_dim=10
y_dim=15

y_dim=30
y_dim=45

(b) MS Challenge Dataset

6 8 10 12 14 16
Number of Clusters

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Av
er

ag
e

AU
C

z_dim=6
z_dim=8

z_dim=10
z_dim=12

6 8 10 12
z_ii dimension

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Av
er

ag
e

AU
C

y_dim=6
y_dim=8
y_dim=10

y_dim=12
y_dim=14
y_dim=16

(c) Android Genom Dataset

6 10 15 20
Number of Clusters

0.80

0.82

0.84

0.86

0.88

Av
er

ag
e

AU
C

z_dim=6
z_dim=10

z_dim=15
z_dim=20

6 10 15 20
z_ii dimension

0.80

0.82

0.84

0.86

0.88

Av
er

ag
e

AU
C

y_dim=6
y_dim=10

y_dim=15
y_dim=20

(d) MNIST Dataset

10 15 30 45
Number of Clusters

0.72

0.74

0.76

0.78

0.80

0.82

Av
er

ag
e

AU
C

z_dim=10
z_dim=15

z_dim=30
z_dim=45

10 15 30 45
z_ii dimension

0.72

0.74

0.76

0.78

0.80

0.82

Av
er

ag
e

AU
C

y_dim=10
y_dim=15

y_dim=30
y_dim=45

(e) MS Challenge Dataset

6 8 10 12 14 16
Number of Clusters

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Av
er

ag
e

AU
C

z_dim=6
z_dim=8

z_dim=10
z_dim=12

6 8 10 12
z_ii dimension

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Av
er

ag
e

AU
C

y_dim=6
y_dim=8
y_dim=10

y_dim=12
y_dim=14
y_dim=16

(f) Android Genom Dataset

Fig. 3: Effect of cluster size and z dimension on performance.

	Introduction
	Related Works
	Background
	Unsupervised Open Set Recognition
	Evaluation
	Detecting Instances from Unknown Data Distributions

	Discussion
	Conclusion
	References

