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Abstract—We investigate imbalanced regression with tabular
data that have an imbalance ratio larger than 1,000 ("highly
imbalanced"). Accurately estimating the target values of rare
instances is important in applications such as forecasting the
intensity of rare harmful Solar Energetic Particle (SEP) events.
For regression, the MSE loss does not consider the correlation
between predicted and actual values. Typical inverse importance
functions allow only convex functions. Uniform sampling might
yield mini-batches that do not have rare instances. We propose
CISIR that incorporates correlation, Monotonically Decreasing
Involution (MDI) importance, and stratified sampling. Based on
five datasets, our experimental results indicate that CISIR can
achieve lower error and higher correlation than some recent
methods. Also, adding our correlation component to other recent
methods can improve their performance. Lastly, MDI importance
can outperform other importance functions. Our code can be
found in https://github.com/Machine-Earning/CISIR.

Index Terms—regression, tabular, highly imbalanced, SEP

I. INTRODUCTION

This paper tackles highly imbalanced regression for tabular
data, a critical and less-explored area compared to image-based
regression. Accurately predicting rare-but-important instances
is vital in applications like forecasting Solar Energetic Particle
(SEP) events to protect astronauts and equipment. We focus on
computationally efficient methods that do not rely on synthetic
data generation or expensive pretraining.

We identify and address three key challenges. First, the
standard Mean Squared Error (MSE) loss is insufficient because
it can ignore correlation. As illustrated in Fig. 1, Model 1
(uncorrelated predictions) and Model 2 (positively correlated
predictions) both have an identical MSE of 2.0, making them
indistinguishable from an error-only perspective. At the same
time, correlation alone is also not enough; Model 3 has perfect
positive correlation but a much higher MSE. This demonstrates
the need to evaluate models on both error and correlation.
To achieve this, we propose a weighted Pearson Correlation
Coefficient (wPCC) as a supplementary loss term. Second,
while re-weighting instances is a common strategy, existing
"importance functions" are often rigid (e.g., fixed inverse
or linear functions). We introduce Monotonically Decreasing
Involution (MDI) importance, a flexible family of functions
that can be convex, linear, or concave to suit different datasets.
Third, random mini-batch sampling in SGD can exclude rare
instances from gradient updates. We employ stratified sampling
to ensure rare instances are represented in every batch.

Fig. 1: An issue with MSE.

Our integrated approach, CISIR (Correlation, Involution
importance, and Stratified sampling for Imbalanced Regression),
combines these three solutions. We show that CISIR can
achieve lower error and higher correlation than other recent
methods, and that its individual components, wPCC and MDI,
can effectively improve other approaches.

II. RELATED WORK

Recent methods for imbalanced regression can be clustered
into four groups: distribution resampling, label-space smooth-
ing, representation-space calibration, and loss re-weighting.
Distribution re-sampling methods directly modify the training
data distribution by generating synthetic samples for rare label
ranges. SMOGN [1] and SMOTEBoost-R [10] adapt popular
synthetic oversampling techniques originally developed for
classification tasks to continuous targets.

Label-space smoothing approaches adjust the label distri-
bution or its granularity to alleviate the imbalance. LDS [19]
smooths the empirical label density via Gaussian kernel
convolution, enabling re-weighting schemes based on a more
robust label distribution. HCA [17] constructs a hierarchy of
discretized labels at varying granularities, using predictions
from coarser levels to refine fine-grained predictions, balancing
quantization errors and prediction accuracy.

Representation-space calibration tackles imbalance by en-
forcing structural regularities directly in latent feature space.
FDS [19] aligns latent representations with smoothed label
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distributions. RankSim [4] explicitly calibrates the representa-
tion space to reflect the pairwise ranking structure in labels.
ConR [7] introduces a contrastive regularizer that penalizes
incorrect proximities in feature space based on label similarity
and density, ensuring minority samples remain distinguishable.
(For general regression, RnC [20] learns continuous, ranking-
aware embeddings by contrasting samples based on their
relative ordering in label space. Ordinal Entropy [21] enforces
local ordinal relationships via an entropy-based regularize.)

Loss re-weighting (importance) methods rebalance the impor-
tance of each instance during training by adapting the regression
objective. Inverse-frequency weighting is ubiquitous [19];
DenseLoss [15] employs label-density weighting calibrated
linearly with a tunable parameter α. Balanced MSE [13] derives
a closed-form objective assuming uniform label distributions,
approximating the resulting integral numerically to address
imbalance directly within the regression loss.

For imbalanced (long-tailed) classification, various ap-
proaches have been proposed, including resampling [23], logit
adjustments [9], decoupled training [6], representation learning
[5], uniform class separation [8], multiple branches [23], and
multiple experts [22].

III. APPROACH

Preliminaries. Let {(xi, yi)}Ni=1 be a training data set D,
where xi ∈ Rd denotes the input of dimensionality d and
yi ∈ R is the label, which is a continuous target. We denote
z = g(x; θg) as the latent representation for x, where g(x; θg)
is the encoder parameterized by a neural network model with
parameters θg. The final prediction ŷ is given by a regressor
f(z; θf ) that operates over z, where f(·; θf ) is parameterized
by θf . Therefore, the prediction can be expressed as ŷ =
f(g(x; θg); θf ).

Highly imbalanced distributions. We divide the targets
into equal-width bins. We define the imbalanced frequency
ratio as ρ = freqmax/freqmin, where freqmax (freqmin) is
the frequency of instances in the largest (smallest non-empty)
bin. A distribution is highly imbalanced if ρ ≥ 1000.

Estimating probability density distributions. We use
Kernel Density Estimation (KDE) [14] with a Gaussian
kernel. The estimated density p̂Y (y) for target value y is:
p̂Y (y) =

1
Nh

∑N
j K((y − yj)/h), where K is the kernel and

h is the bandwidth. KDE is used in DenseLoss [15] and LDS
[19].

We denote d̂i = p̂Y (yi). We normalize all densities
into (0, 1): di = d̂i/(d̂max + ϵ), where d̂max is the largest
density and ϵ is a small constant (10−3) so that di ̸= 1 (and
MDI(di) ̸= 0 in Sec. III-A2). Henceforth di refers to the
normalized density. We define the imbalance density ratio as
ρd = dmax/dmin, where dmax = maxi di (dmin = mini di,)
is the maximum (minimum) normalized density. For KDE,
bandwidth h is chosen such that the imbalance density ratio is
close to the imbalance frequency ratio; that is, ρd ≈ ρ.

To handle high imbalance, based on KDE, we use the MDI
importance function (Sec. III-A) to shift importance away
from frequent instances and toward rare instances. To consider

(a) Recip (b) MDI

Fig. 2: Recip and MDI importance functions. For Recip, we
rescale ri = Recipα(di) so that ri∈(0, 1] to match MDI .

correlation in addition to error, we use weighted Pearson
Correlation Coefficent (wPCC, Sec. III-B) as a loss regularizer.
Stratified Sampling (Sec. III-C) helps produce mini-batches
that consistently contain rare samples. Our method is called
CISIR, which uses wPCC with MDI in the loss function and
stratified sampling for mini-batches (Algorithm 1).

A. Importance Functions

To encourage that both frequent and rare regions of the
feature space are learned well, we attribute importance ri to
instance xi with normalized density di ∈ (0, 1) based on an
importance (Imp) function:

ri = Imp(di). (1)

We use "importance" to distinguish it from a "weight" in
the model. The importance function Imp is a monotonically
decreasing function: the lower the normalized density di, the
higher the resulting importance ri. The importance can be
precomputed once for a dataset and reused during training.

1) Reciprocal Importance: The inverse function [19] is a
typical importance function due to its property of balancing
the data distribution. To reduce the initial sharp decrease in
importance at low density, square-root inverse [19] was also
proposed. However, the desirable rate of initial decrease is
generally not known and dependent on the dataset, imbalance
ratio, and loss function.

To overcome these limitations, we generalize inverse and
square-root inverse to a Reciprocal importance function that
provides more flexibility in the rate of initial decrease in
importance at low density. Given the normalized density di for
instance xi, we define the reciprocal importance (Recip) as:

Recipα(di) =
1

dαi
, α ≥ 0, (2)

where α controls the curvature of the function:
• When α = 0, the function reduces to a constant importance

of 1 for all instances; ie, no adjustment for imbalance.
• When α = 1, it is the typical inverse function 1/di that

achieves the balanced distribution.



• When α > 1, it further emphasizes the rare samples
beyond the balanced distribution (which is beneficial to
some datasets).

Figure 2a shows Reciprocal importance with various α values.
2) Monotonically Decreasing Involution (MDI) Importance:

Although Reciprocal importance provides an effective adjust-
ment of importance among frequent and rare instances, it is
fundamentally limited by its inherent convexity and exponential
form, restricting its ability to represent linear or concave
importance relationships. Consequently, Reciprocal importance
is insufficient when a more diverse range of importance shapes
is needed in various imbalance scenarios.

To address these limitations, we introduce Monotonically
Decreasing Involution (MDI) importance, a parameterized
function with three properties: (1) it is monotonically decreas-
ing, (2) it allows convex, linear, and concave functions to
represent a diverse family of importance functions, and (3) it is
an involution (or a self-inverse function, where f(f(x)) = x)
to preserve the same property exhibited by the inverse function
that yields a balanced distribution. Given a normalized density
di for instance xi, MDI importance is defined as:

MDIα(di) = (1− dαi )
1
α , α > 0, (3)

where α controls the curvature and shape of the function:
• When 0 < α < 1, the function is convex, similar to

Reciprocal importance (Sec. III-A1).
• When α = 1, it is linear, similar to DenseLoss [15].
• When α > 1, it is concave (which is beneficial to some

datasets).
• When α≫ 1, it is approximately 1 at low density.
Fig. 2b illustrates MDI importance with various α values.

B. Weighted Pearson Correlation Coefficient (wPCC) as Loss
Regularization

For regression, as discussed in Sec. I, MSE does not
differentiate models that are equally inaccurate but differ in
correlation between the predicted and actual values. Also,
while perfect MSE yields perfect positive correlation, perfect
positive correlation does not guarantee perfect MSE. Hence,
for imbalanced regression, we propose wMSE (weighted
MSE) as the primary loss function and wPCC (weighted
Pearson Correlation Coefficient) as the secondary loss function
or regularization. Each instance i is weighted by importance
ri (Eq. 1), which has been normalized such that

∑N
i=1 ri = 1.

To allow different importance values (e.g. different α values in
MDI for wMSE and wPCC) for the same instance in the
two loss functions, we denote rei and rci as the importance
for instance i in wMSE and wPCC respectively. Moreover,
rei and rci are obtained from an importance function (Recip
or MDI in Sec. III-A) with α values that we denote as αe and
αc respectively.

We define wMSE as:

wMSE =

N∑
i=1

rei (yi − ŷi)
2, (4)

and wPCC as:

wPCC = 1−

N∑
i=1

rci (yi − ȳ) (ŷi − ¯̂y)√√√√ N∑
i=1

rci (yi − ȳ)2

√√√√ N∑
i=1

rci (ŷi − ¯̂y)2

, (5)

where ȳ and ¯̂y are the averages of y and ŷ respectively. Our
proposed overall loss function is:

L = wMSE + λ · wPCC, (6)

where λ > 0 adjusts the influence of wPCC.
Moreover, wPCC can help reduce wMSE. Following the

MSE decomposition in [11, Eq. 9], we have:

MSE(ŷ, y) =
(
ȳ − ¯̂y

)2
+ var(ŷ) + var(y)

− 2 · cov(ŷ, y), (7)

which, after some transformation, yields:

MSE(ŷ, y) =
(
ȳ − ¯̂y

)2
+
(
sd(ŷ)− sd(y)

)2
+ 2 sd(ŷ) sd(y)

(
1− PCC(ŷ, y)

)
. (8)

where var(·), cov(·, ·), and sd(·) denote the variance, covari-
ance, and standard deviation operators, respectively.

Eq. (8) is a sum of three terms: a term for mismatch
in the mean, (ȳ − ¯̂y)2; a second term for mismatch in
the standard deviation, (sd(ŷ) − sd(y))2; and a third term,
2 sd(ŷ) sd(y) (1−PCC(ŷ, y)), related to the correlation deficit.
While the first two terms encourage matching the moments of
the data distribution, the third term’s minimization highlights a
critical point. MSE can be reduced by increasing the Pearson
Correlation Coefficient, PCC(ŷ, y), towards 1, and/or by
decreasing the standard deviation of the predictions, sd(ŷ)
towards 0.

In general, since the second term is present and sd(y) ̸= 0,
the prediction standard deviation sd(ŷ) does not collapse to
zero. However, in some cases, illustrated by Model 1 (with no
correlation) and Model 2 (with some correlation) in Fig. 1, MSE
cannot distinguish the two models. This is caused by sd(ŷ) of
Model 1 being zero, which renders the third term to be zero and
the lack of correlation to be ignored. Similarly, a small sd(ŷ)
diminishes the penalty due to poor correlation. To address this
limitation, our proposed wPCC regularizer directly penalizes
poor correlation by minimizing 1− PCC(ŷ, y).

C. Stratified Sampling in Mini-Batches (SSB)

Training neural networks with stochastic gradient descent
(SGD) typically involves partitioning the dataset D into mini-
batches of size B, yielding M = N/B mini-batches and
parameter updates per epoch. With highly imbalanced data,
uniformly sampled mini-batches may not represent rare target
regions adequately. Consider the probability of rare samples
as πr ≈ 0, the probability of no rare instances in a uniformly
drawn mini-batch is (1− πr)

B , which is close to 1 when B is
relatively small compared to 1/πr. That is, some mini-batches



Algorithm 1 CISIR Training Procedure

Require: Dataset D, batch size B, hyperparameters αe, αc, λ,
learning-rate η

1: Estimate densities di with KDE (Sec. III)
2: Compute importance rei, rci using MDI (Eq. (3))
3: Form B groups with Stratified Sampling (Sec. III-C)
4: while model not converged do
5: Build mini-batch B by drawing one sample from each

group
6: Forward-propagate to obtain predictions ŷi
7: Compute wMSE (Eq. (4)) and wPCC (Eq. (5))
8: L ← wMSE + λ · wPCC (Eq. (6))
9: Back-propagate ∇θL and update model parameters

with step η
10: end while
11: return Trained model parameters θ

might not have rare instances at all, which lead to gradients
that do not reduce loss for rare instances during some model
updates.

To ensure rare instances are represented across mini-batches,
we propose to perform stratified sampling to form mini-batches
such that each mini-batch has a similar distribution as the
overall training distribution. Consequently, gradients computed
from these stratified mini-batches approximate the gradient
computed over the training set, and every model update reduces
loss for some rare instances.

To perform stratified sampling, we first choose M such
that M is less than or equal to the number of rare instances.
We sort all instances based on their target values. The sorted
instances are then divided into B groups, each containing M
instances (The final group may have fewer than M instances).
The number of groups B matches the size of a mini-batch,
with each group contributing one instance to the mini-batch.
To create each mini-batch, we randomly select one instance
from each of the B groups. For example, if larger target values
are rarer, the M instances with the largest target values are in
one group. Each of the M instances is randomly assigned to
one of M mini-batches.

Algorithm 1 summarizes the overall CISIR method. We
estimate densities via KDE on line 1. We then compute
the importance values using MDI on line 2. With stratified
sampling, we form B groups of data instances on line 3. From
lines 4 to 9, we iteratively train the model by getting a mini-
batch on line 5, taking the model’s predictions on line 6,
computing the loss with lines 7-8, and updating the model
parameters on line 9. After convergence, the trained model is
finally returned on line 11.

IV. EXPERIMENTAL EVALUATION

A. Datasets and Evaluation Metrics

We evaluate our method on five highly imbalanced datasets:
our SEP-EC (proton intensity change) and SEP-C (peak
proton intensity) datasets, and three public benchmarks: SAR-
COS (robot arm torque) [16], Blog Feedback (BF, comment

forecasting) [2], and Online News Popularity (ONP, article
shares) [3]. Detailed statistics for each, including the imbalance
ratio (ρ), are in Table III. Our SEP datasets are avail-
able at https://huggingface.co/datasets/Machine-Earning/CISIR-
datasets/resolve/main/CISIR-data.zip.

Our primary evaluation metrics are two hybrid scores that
balance overall and rare-instance performance: AORE =
(MAE+MAER)/2 and AORC = (PCC+PCCR)/2. Here,
MAE and PCC are the overall Mean Absolute Error and
Pearson Correlation Coefficient, while MAER and PCCR are
calculated on a subset of important rare instances. We prioritize
minimizing AORE over maximizing AORC. For the SEP-EC
dataset, this rare subset specifically includes only instances
with positive (increasing) intensity change. We use standard
error to assess statistical significance.

B. Baseline Methods and Experimental Procedures

Experimental Setup. Our primary baselines are
DenseLoss [15], Balanced MSE [13], and the effective
SQINV+LDS+FDS variant [19], chosen for their
computational efficiency. We also evaluate a CISIR
variant, Recip+wPCC+SSB, to compare importance functions.
We use the official implementations and hyperparameters
for LDS/FDS [18] and Balanced MSE [12] and implement
DenseLoss ourselves. Our source code is available at
https://github.com/Machine-Earning/CISIR. All models are
implemented in TensorFlow using a residual MLP architecture.
Dataset-specific hyperparameters are determined via four-fold
stratified cross-validation on the training data. If official splits
are unavailable, we create a stratified 2/3–1/3 train-test split.
Models are trained to convergence with the Adam optimizer,
early stopping, and a learning rate scheduler. All reported
results are averages over five runs with fixed random seeds
for reproducibility.

C. Results

Our main results in Table I show that CISIR generally
outperforms recent methods. It achieves the best AORE on four
of the five datasets and top-two AORC scores across all of them.
This strong performance extends to important rare instances,
where CISIR and its variants also demonstrate improved error
(MAER) and correlation (PCCR).

Analysis of CISIR’s core components confirms their effective-
ness. First, incorporating our wPCC regularizer into competing
methods consistently improves both their AORE and AORC
across nearly all settings (Table II), demonstrating its general
utility for both error reduction and correlation enhancement.
Second, a direct comparison of importance functions reveals
that our proposed MDI and Recip functions outperform standard
inverse-weighting schemes (Table III). The flexibility of MDI
to use concave functions (αe > 1) was beneficial for the SEP-C
and ONP datasets, while Recip’s ability to further emphasize
rare instances (αe > 1) was key for SARCOS and SEP-EC. We
find no clear relationship between the optimal αe and a dataset’s
imbalance ratio ρ, highlighting the need for tunable importance
functions rather than fixed ones. The weaker performance of

https://huggingface.co/datasets/Machine-Earning/CISIR-datasets/resolve/main/CISIR-data.zip
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TABLE I: CISIR vs. recent methods (bold = best, underline = 2nd best, * = statistically significant)

Dataset Method MAE↓ MAER ↓ AORE↓ PCC↑ PCCR ↑ AORC↑

SEP-EC

SQINV+LDS+FDS 0.177 0.566* 0.371 -0.025 0.067 0.021
BalancedMSE 0.161 0.659 0.410 -0.036 0.141 0.053
DenseLoss 0.071* 0.626 0.348* 0.286 0.699* 0.493
Recip+wPCC+SSB 0.089* 0.606 0.348* 0.219 0.699* 0.459
CISIR 0.184 0.441* 0.313* 0.274* 0.703 0.488*

SEP-C

SQINV+LDS+FDS 1.681 4.314 2.997 0.173 0.481 0.327
BalancedMSE 1.683 3.614 2.649 0.394 0.393 0.393
DenseLoss 0.237* 2.245 1.241 0.690* 0.588 0.639
Recip+wPCC+SSB 1.173 1.376* 1.274 0.627 0.661* 0.644
CISIR 0.335* 1.875* 1.105* 0.702 0.593 0.647

SARCOS

SQINV+LDS+FDS 0.575 0.748 0.661 0.020 -0.049 -0.015
BalancedMSE 0.571 1.694 1.132 0.189 -0.170 0.010
DenseLoss 0.058 0.076 0.067 0.964 0.830 0.897
Recip+wPCC+SSB 0.053 0.071 0.062 0.986 0.910* 0.948*
CISIR 0.055 0.069 0.062 0.982* 0.876* 0.929*

BF

SQINV+LDS+FDS 1.036 1.780 1.408 -0.152 0.065 -0.044
BalancedMSE 0.689 1.769 1.229 -0.011 0.066 0.028
DenseLoss 0.169* 0.747 0.458 0.735 0.301 0.518
Recip+wPCC+SSB 0.187* 0.740 0.463* 0.733 0.319* 0.526
CISIR 0.280 0.709* 0.495 0.737 0.330* 0.533

ONP

SQINV+LDS+FDS 2.628 4.438 3.533 0.034 -0.012 0.011
BalancedMSE 2.798 4.154 3.476 -0.028 0.012 0.047
DenseLoss 0.317 1.311 0.814 0.325* 0.054 0.189
Recip+wPCC+SSB 0.326 1.351 0.838 0.288 0.095 0.192
CISIR 0.379 1.180* 0.780 0.299* 0.093* 0.196

TABLE II: Incorporating wPCC into other methods (bold = best, * = statistically significant)

Method
SEP-EC SEP-C SARCOS BF ONP

AORE↓ AORC↑ AORE↓ AORC↑ AORE↓ AORC↑ AORE↓ AORC↑ AORE↓ AORC↑

SQINV+LDS+FDS 0.371 0.021 2.997 0.327 0.661 −0.015 1.408 −0.044 3.533 0.011
+ wPCC 0.371 0.270* 2.891 0.411* 0.657 0.051* 1.062* 0.130* 3.416* 0.038

BalancedMSE 0.410 0.053 2.649 0.393 1.132 0.010 1.229 0.028 3.476 0.047
+ wPCC 0.392 0.057 2.484 0.491* 0.884* 0.097* 0.990 0.162* 3.223* 0.086*

DenseLoss 0.348 0.493 1.241 0.639 0.067 0.897 0.458 0.518 0.814 0.189
+ wPCC 0.344 0.500 1.084 0.660 0.062 0.920* 0.458 0.529 0.791 0.203

baselines like SQINV+LDS+FDS may be due to the absence
of a correlation-based regularizer like wPCC and the use of a
rigid importance scheme (e.g., SQINV is equivalent to Recip
with a fixed α = 0.5).

D. Analyses

Ablation study. Results from an ablation study on CISIR
with the SEP-EC dataset are in Table IV. We observe that
each of the 3 proposed components (MDI, wPCC, and SSB)
contributes to CISIR. Particularly, wPCC contributes the most.
Moreover, wPCC not only increases correlation (AORC), it
also reduces error (AORE). This indicates that the constraint
from wPCC in the loss helps achieve a lower local minimum
for wMSE during training.

(a) Sensitivity to αe (b) Sensitivity to λ

Fig. 3: Sensitivity analysis of CISIR to αe and λ on SEP-EC.

Parameter Sensitivity. We analyze the sensitivity of CISIR’s
key hyperparameters on the SEP-EC dataset. The parameter
αe, which controls instance importance for wMSE, reveals



TABLE III: Comparison of importance functions (bold = best,
underline = 2nd best, * = statistically significant)

Importance
functions

AORE↓

SEP-C SARCOS ONP SEP-EC BF

Imb. ratio ρ 1,476 3,267 6,746 10,478 33,559

INV 2.456 0.064 0.849 0.362 0.451
SQINV 1.313 0.068 0.765 0.369 0.447
DenseLoss 1.277 0.065 0.842 0.355 0.471
Recip 1.289 0.063 0.764 0.349 0.445
MDI 1.105* 0.062 0.780 0.313* 0.495

αe in Recip 0.70 1.10 0.90 1.20 0.70
αe in MDI 2.40 0.20 1.10 0.01 0.50

TABLE IV: Ablation study of CISIR on the SEP-EC dataset
(bold = best, underline = 2nd best)

Method
AORE↓ AORC↑

CISIR 0.313 0.488
w/o MDI (with INV) 0.362 (+0.049) 0.447 (-0.041)
w/o wPCC 1.160 (+0.847) 0.194 (-0.294)
w/o SSB 0.333 (+0.020) 0.463 (-0.025)

a trade-off: as αe increases, AORE degrades while AORC
improves (Fig. 3a). We thus select αe < 0.1 to prioritize
error reduction by up-weighting rare instances. For αc, which
governs importance for wPCC, we find that uniform importance
(rci = 1) is effective for most datasets. SEP-C is a notable
exception, benefiting from an atypical concave importance
function with αc = 1.7. In contrast to the trade-off with αe, the
wPCC contribution weight, λ, allows for co-optimization. Both
AORE and AORC are jointly optimized when λ ∈ [0.5, 0.6]
(Fig. 3b), confirming that our wPCC regularizer simultaneously
reduces error and increases correlation.

More analyses are included in the longer version of this
paper on arxiv.org

V. CONCLUSION

For highly imbalanced regression with tabular data, we
propose CISIR that incorporates wPCC as a secondary loss
function, MDI importance that allows convex, linear, and
concave functions, and stratified sampling in the mini-batches.
Our experimental results indicate that CISIR can achieve lower
error and higher correlation than some recent methods. Also,
adding our wPCC component to other methods is beneficial in
not only improving correlation, but also reducing error. Lastly,
MDI importance can outperform other importance functions.
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