Determining the Number of Clusters/Segments in

Hierarchical Clustering/Segmentation Algorithms

Stan Salvador and Philip Chan
Dept. of Computer Sciences
Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc}@cs.fit.edu

ABSTRACT

Many clustering and segmentation algorithms boffesdrom the limitation that the number of cluslsegments are
specified by a human user. It is often impracttoaéxpect a human with sufficient domain knowletlybe available
to select the number of clusters/segments to retlrithis paper, we investigate techniques tordgtee the number of
clusters or segments to return from hierarchicaktelring and segmentation algorithms. We proposefticient
algorithm, the L method, that finds the “knee” ir#aof clusters vs. clustering evaluation metricagh. Using the
knee is well-known, but is not a particularly waltderstood method to determine the number of clist¥e explore
the feasibility of this method, and attempt to deiae in which situations it will and will not workWe also compare
the L method to existing methods based on the acguwsf the number of clusters that are determimetedficiency.
Our results show favorable performance for thetera compared to the existing methods that westuated.

Keywords: clustering, cluster validation, segmentation, rignecal clustering, time series.

1. INTRODUCTION

While clustering and segmentation algorithms argupervised learning processes, users are usuglyred to set
some parameters for these algorithms. These p#emmevary from one algorithm to another, but most
clustering/segmentation algorithms require a patamehat either directly or indirectly specifiesethnumber of
clusters/segments. This parameter is typicallyeek, the number of clusters/segments to return, oresother parameter
that indirectly controls the number of clustergeturn, such as an error threshold. Setting tpasameters requires either
detailed pre-existing knowledge of the data, oretitonsuming trial and error. The latter case stijuires that the user has
sufficient domain knowledge to know what a goodstguing “looks” like. However, if the data setvisry large or is multi-
dimensional, human verification could become diffic To find a reasonable number of clusters, mexigting methods

must be run repeatedly with different parametard,are impractical for real-world data sets thataten quite large.

We desire an algorithm that can efficiently detemna reasonable number of clusters/segments toyrgam any
hierarchical clustering/segmentation algorithm. drder to identify the correct number of clustees return from a
hierarchical clustering/segmentation algorithm,imteoduce the L method. The definition of a “clerstis not well-defined,
and measuring cluster quality is subjective. Tliuste are many clustering algorithms with uniqualation functions and
correspondingly unique notions of what a good eludboks” like. The L method makes use of the eawaluation function

that is used by a hierarchical algorithm duringstduing or segmentation to construct an evaluagraph where thg-axis is

the number of clusters and theaxis is the value of the evaluation functiorxaiusters. The knee, or the point of maximum
curvature of this graph, is used as the numbetusters to return. The knee is determined by figdhe area between the
two lines that most closely fit the curve. The kthod only requires the clustering/segmentatioorédlgm to be run once,
and the overhead of determining the number of etgsis trivial compared to the runtime of the ausiy/segmentation

algorithm.

Our main contributions are: (1) we demonstratesthod to efficiently determine a reasonable nunatbetusters to
return from any hierarchical clustering or segmgataalgorithm; (2) we introduce a novel methodfitd the knee of a
curve; (3) we explore the feasibility of using tlheee” of a curve to determine the number of clisste return by evaluating
its performance on several different algorithms dath sets; (4) we compare our method with twotiegigechniques: the

Gap statistic and Permutation tests based on theaxy of the number of clusters returned andiefficy.

The next section gives an overview of related woBection 3 provides a detailed explanation of lounethod,
which is able to efficiently and accurately detarenia good number of clusters to return from hidnaed
clustering/segmentation algorithms. Section 4wudises experimental evaluations of the L methodtandexisting methods

using several clustering and segmentation algosttand Section 5 summarizes our study.

2. RELATED WORK

Clustering Algorithms. Clustering is an unsupervised machine learnirnggss that creates clusters such that data points
inside a cluster are close to each other, andfatsapart from data points in other clusters. €heme four main categories of
clustering algorithms: partitioning, density-basgdd-based, and hierarchical. Partitioning allfpons, such a&-means and
PAM [14], iteratively refine a set df clusters and do not scale well for larger data.sddensity-based algorithms, e.g.,
DBSCAN [3] and DENCLUE [9], are able to efficientproduce clusters of arbitrary shape, and are altde to handle
outliers. If the density of a region is above adfied threshold, those points are assigned tluster; otherwise they are
considered to be noise. Grid-based algorithmdh siscWaveCluster [17], reduce the clustering sp@toea grid of cells,
enabling efficient clustering of very large dataseHierarchical algorithms can be either agglomeraor divisive. The
agglomerative (bottom-up) approach repeatedly nsetge clusters, while the divisive (top-down) apgeb repeatedly splits

a cluster into two. CURE [6] and Chameleon [10 axamples of two hierarchical clustering algorghmHierarchical

algorithms differ chiefly in the criteria that thege to determine similarity between clusters.

Segmentation Algorithms. Segmentation algorithms take time series datanpst and produce a Piecewise Linear
Approximation (PLA) as output. A PLA is a set ainsecutive line segments that approximate the raxigime series.
Segmentation algorithms are related to clusteriggrihms in that each segment can be though @ elsister. However,
segmentation algorithms typically create a finaimgmpartitioning than clustering algorithms. Thare three approaches to
time series segmentation [11]. First, in the slidwwindow approach, a segment is grown until theresf the line is above a
specified threshold, then a new segment is star8atond, in the top-down approach, a segmentgeptiag the entire time
series is repeatedly split until the desired nundfesegments or an error threshold is reachedrdTthie bottom-up approach
typically starts off withn/2 segments, and the two most similar adjacent satgrare merged until the desired number of
segments or the error threshold is reached. GEd&{ds a bottom-up segmentation algorithm thatgesrsegments based on

slope and creates an initial fine-grain approxioraby first performing a top-down pass.

Determining the Number of Clusters/SegmentsFive common approaches to estimating the dimerdi@nmodel (such as
the number of clusters or segments) are: crosdataln, penalized likelihood estimation, permwatiests, resampling, and

finding the knee of an error curve.

Cross-validation techniques create models thamatteo fit the data as accurately as possible. t¥@arlo cross-
validation [18][17] has been successfully used tevent over-fitting (too many clusters/segment&)enalized likelihood
estimation also attempts to find a model thattfits data as accurately as possible, but also naasthe complexity of the
model. Specific methods to penalize models basati@r complexity are: MML [1], MDL [8], BIC [5]AIC, and SIC [19].
Permutation tests [22] attempt to prevent the @eaif a PLA that over-fits the data by comparihg telative change in
approximation error to the relative change of adam’ time series. If the errors are changing ainglar rate, then more
segments would fit noise and not the underlyingcstire of the time series. Resampling [15] ands@asus Clustering [13]
attempt to find the correct number of clusters hystering many samples of the data set, and datarghnthe number of

clusters where clusterings of the various sampieshte most “stable.”

Locating the “knee” of an error curve, in orderd®termine an appropriate humber of clusters or satgnis well
known, but it is not a particularly well-studied tined. There are methods that statistically evaleaich point in the error
curve, and use the point that either minimizes aximizes some function as the number of clustegsieats to return. Such
methods include the Gap statistic [21] and prealictstrength [20]. These methods generally (with #xception of

hierarchical algorithms) require the entire clusigior segmentation algorithm to be run for eactepiial value ok.

The majority of these methods to determine the tastber of clusters/segments may not work very inglractice.
Model-based methods, such as cross-validation andlized likelihood estimation, are computationatpensive and often
require the clustering/segmentation algorithm torbe several times. Permutation tests and resamm@re extremely
inefficient, since they require the entire clustgralgorithm to be re-run hundreds or even thousafidimes. The majority
of existing methods to find the knee of an errawveuequire the clustering algorithm to be re-randvery potential value of
k. Even worse, many of the evaluation functions #te used to evaluate a set of clusters run Mf)aime. This means that
it may take longer just to evaluate a set of chsstiean it does to generate them. Most methodditiththe knee of a curve

also only work well when the clusters are well sajed.

A few existing clustering algorithms have builtrimechanisms for determining the number of clustdilse TURN*
[4][2] algorithm locates the knee of a curve byatian the point where thé'2derivative increases above a user specified
threshold. A variant [2] of the BIRCH [23] algdrih uses a mixture of the Bayesian Information @dte (BIC) and the

ratio-change between inter-cluster distance anadineber of clusters.

Finding the Knee of a Curve. The knee of a curve is loosely defined as thatpafi maximum curvature. The knee in a “#
of clusters vs. evaluation metric” graph can bedusedetermine the number of clusters to returmridis methods to find
the knee of a curve are:

The largest magnitude difference between two points

The largest ratio difference between two points [2]

The first data point with a second derivative abseme threshold value [3][4].
The data point with the largest second derivati}e [

The point on the curve that is furthest from a fitied to the entire curve.

2 o

Our L-method, which finds the boundary betweenphie of straight lines that most closely fit thee

This list is ordered from the methods that makeeision about the knee locally, to the methods ltete the knee
globally by considering more points of the curvihe first two methods use only single pairs of edja points to determine
where the knee is located. The third and fourtthods use more than one pair of points, but stily consider local trends
in the graph. The last two methods consider dth geints at the same time. Local methods may waglk for smooth,
monotonically increasing/decreasing curves. Howethey are very sensitive to outliers and locahtts, which may not be

globally significant. The fifth method takes evergint into account, but only works well for contous functions, and not

curves where the knee is a sharp jump. Our L ndetiomsiders all points to keep local trends oriexglfrom preventing the

true knee to be located, and is able to find ktlegisexist as sharp jumps in the curve.

3. APPROACH

Our L method attempts to determine an appropriateber of clusters/segments to return, by findirggkhee in an
evaluation graph. The next section describes atialu graphs, followed by sections that describe ithmethod and

refinements to it.

3.1 Evaluation Graphs
The information required to determine an appropriatimber of clusters/segments to return is cordainean

evaluation graph that is created by the clustesggyhentation algorithm. The evaluation graph te@dimensional plot
where thex-axis is the number of clusters, and thaxis is a measure of the quality or error of astting consisting ok
clusters. Since hierarchical algorithms eitheit gslmerge a pair of clusters at each step, afitekings containindl' to ‘the

number of clustersin the fine-grain clustering’ clusters can be produced by running the clusteaigorithm only once.

They-axis values in the evaluation graph can be anjuatian metric, such as: distance, similarity, ergy quality.
These metrics can be computed globally or greediiobal measurements compute the evaluation netised on the entire
clustered data set, such the sum of all pairwistadces between points in each cluster. The grewdlyod computes the
evaluation metric by evaluating only the two clustéhat are involved in the current merge or splithe hierarchical

algorithm, rather than the entire data set.

‘External’ evaluation methods attempt to deterntime number of clusters by evaluating the outpuarofarbitrary
clustering algorithm. Each evaluation method hewn notion of cluster quality. Most externalthwEs use pairwise-
distance functions that are heavily biased towapleerical clusters. Such methods are unsuitableldgtering algorithms
that have a different notion of cluster distanceilsirity. For example, Chameleon [10] uses a sirtyf function that can
produce complex non-spherical clusters. Therefitie metric used in the evaluation graph shoulthbesame as the metric

used in the clustering algorithm.

b
[=}

.
‘o

w
[=}

g
J .
- *
s

* %000
0000 4 10 4000400, 0000 erenssasten
SRR/ \dAadsass.

T 4 T 4 T ,s

Merge Distance
N
o

-
o

°
o

T

0 10 20 30 40 50 60 70
Number of Clusters

Figure 1. A sample evaluation graph.
An example of an evaluation graph produced by thek@ segmentation algorithm [16] is shown in FiglreThe

y-axis values are the distances between the twoectuthat are most similar atclusters. This is a greedy approach, since
only the two clusters being merged are used torgén¢he values on theaxis. The curve in Figure 1 has three distinctive

areas: a flat region to the right, a sharply-sigpiegion to the left, and a curved transition anethe middle.

In Figure 1, starting from the right, where the gieg process begins at the initial fine grain austy, there are
many very similar clusters to be merged and thedtreontinues to the left in a rather straight lfioe some time. In this
region, many clusters are similar to each othershuwdild be merged. Another distinctive area ofgtamh is on the far left
side where the merge distances grow very rapidiyving right to left). This rapid increase in dista indicates that very
dissimilar clusters are being merged together, thatithe quality of the clusters is becoming poecause clusters are no
longer internally homogeneous. A reasonable nurobetusters is therefore in the curved area, er‘kmee” of the graph.
This knee region is between the low distance metiggsform a nearly straight line on the right safethe graph, and the
quickly increasing region on the left side. Clusstgs in this knee region contain a balance oftelssthat are both highly
homogeneous, and also dissimilar to each otherter®@ing the number of clusters where this knegiore exists will

therefore give a reasonable number of clustersttom.

Locating the exact location of the knee, and alith it the number of clusters, would seem problémi&the knee
is a smooth curve. In such an instance, the koakl de anywhere on this smooth curve, and thusitingber of clusters to
be returned seems imprecise. Such an evaluataphgrould be produced by a data set with cluskexisare overlapping or
not very well separated. A time series usuallyresents continuous functions and are also not seglarated. In such
instances, there is no single ‘correct’ answer @hdf the values along the knee region are likelype reasonable estimates
of the number of clusters. Thus, an ambiguous kndieates that there probably is no single ‘cafranswer, but rather a

range of acceptable answers.

3.2 Finding the Knee via the L Method

In order to determine the location of the transitarea or knee of the evaluation graph, we takersdge of a
property that exists in these evaluatgmaphs. The regions to both the right and thedkthe knee (see Figure 2) are often
approximately linear. If a line is fitted to thighit side and another line is fitted to the leftesithen the area between the two
lines will be in the same region as the knee. Vdiae of thex-axis at the knee can then be used as the numlolustérs to

return. Figure 2 depicts an example.

by
o

Determining the # of Clusters to Return

Merge Distance
N w
o o

-
o
P R R

o°
[S)

10 20 30 40 50 60 70
Number of Clusters

o

Figure 2. Finding the number of clusters using thé method.
To create these two lines that intersect at thee ke will find the pair of lines that most closdiy the curve.

Figure 3 shows all possible pairs of best-fit lifiesa graph that contains seven data points (eilylsters were repeatedly
merged into a single cluster). Each line must @iondt least two points, and must start at eitimer & the data. Both lines
together cover all of the data points, so if ome lis small, the other is large to cover the réshe remaining data points.
The lines cover sequential sets of points, sodte humber of line pairs isumOfinitial Clusters-4. Of the four possible line

pairs in Figure 3, the third pair fits their respree data points with the minimum amount of error.

Figure 3. All four possible pairs of best-fit linesfor a small evaluation graph.

Consider a ‘# of clusters vs. evaluation metriejpdr with values on theaxis up tax=b. Thex-axis varies from 2 to
b, hence there atel data points in the graph. UetandR. be the left and right sequences of data pointstipaed atx=c;
that is,L. has points wittkk=2..c, andR; has points withx=c+1...b, wherec=3...b-2. Equation 1 defines the total root mean

squared erroRMSE;, when the partition df. andR. is atx=c:

RMSE, = E_l><RMSE(LC) + E_C

xRMSE(R,) (1]

whereRMSE(L,) is the root mean squared error of the bestrfé for the sequence of pointslipn(and similarly forR,). The
weights are proportional to the lengthslgf(c-1) andR. (b-c). We seek the value af ¢, such thaRMSE, is minimized,

that is:

cM=argmin, RMSE, 2]
The location of the knee &tc” is used as the number of clusters to return.

In our evaluation, the L method determined the remds clusters in only 0.00004% to 0.9% of the exien time
required by the clustering algorithm. The timedaikes for the L method to execute directly corresisoto the number of
points in the evaluation graph. Since the numlbgroints in the evaluation graph is controlled bg humber of clusters at
the finest grain clustering, the L method runs miadter for clustering algorithms that do not haweoverly-fine initial
clustering. The L method is very general and dastao parameters or constants. The number otgpalong thes-axis of
the evaluation graph is not a parameter. It issalt of the clustering algorithm used to genettadse points. The maximum
x value in the evaluation graph is either the nundferiusters at the initial fine grain clusteringa bottom-up algorithm, or

the number of clusters in the final clustering itmp-down algorithm.

3.3 Refinements to the L Method

Many bottom-up algorithms create an initial fineigr clustering by initially treating every data pbas a cluster.
This can cause an evaluation graph to be as largfeeaoriginal data set. In such an evaluatioplyr¢he values representing
merges at extremely fine-grain clusterings (largki@s ofx) are irrelevant. Such a large number of irreléviia points in

the evaluation graph can prevent an “L” shapedeurv

121 Evaluation Graph: 1o+ Evaluation Graph:

1 Full e 1st 100 points
0.8 0.8

A
06 0.6
0.4 0.4
o PR,
0.2 0.2 AT A e s o o 530
‘ s
0 T u —— 0+ T T T 1
0 3000 6000 9000 0 25 50 75 100

Figure 4. Full and partial evaluation graphs creatd by CURE. Only the first 100 points are shown otthe right side.
Figure 4 shows a 9,000 point evaluation graph enlé¢ft, and the first 100 data points of the samaplg on the

right. The graph on the right is a more naturdl$shaped curve, and the L method is able to cdgréentify that there are 9

clusters in the data set. However, in the fulllez@ion graph, there are so many data points taitjinet side of the “correct”

knee, that the very few points on the left of tkia¢e become statistically irrelevant. The L metpediorms best when the
sizes of the two lines on each side of the knegeasonably balanced. When there are far too rpaimgs on the right side
of the actual knee, the knee that is located bylLthmethod will most likely be larger than the adtkaee. In the full
evaluation graph, containing 9,000 data points,kitee is incorrectly detected at359, rather tham=9. However, when
many of the irrelevant points are removed frometaaluation graph, such as all points greater #5d90 (see the right side
of Figure 4), the correct knee is locatedka®. The following algorithm iteratively refinesetknee by adjusting the focus

region and reapplying the L method (note that thstering algorithm is NOT reapplied).

Iterative Refinement of the Kne
Input: EvalGraph (a full evaluation graph)
Output: thex-axis value location of the knee (also the
suggested number of clusters to return)

1| int cutoff =

2| | ast Knee =

3| current Knee = Eval Graph. si ze()

4|

5| REPEAT

6] {

7| | ast Knee = current Knee

8| current Knee = LMet hod(eval Graph, cut of f)
9| cutoff = current Knee*2
10| } UNTIL currentKnee 2 | ast Knee
11]

12| RETURN current Knee

This algorithm initially runs the L method on thetiee evaluation graph. The value of the knee brexothe middle
of the next focus region and the L method becomerenaccurate because the lines on each side dfubeknee are
becoming more balanced. Since the refinement sityes the knee does not move to the left aftertenation, the focus
region decreases in size after every iteratione ¥he knee is located when the L method returassime value as the
previous iteration (line #10, or if the current pasturns a knee that has a roughly balanced nuailmints on each side of
the knee (also line #10). The 9,000 point evatumatjraph in Figure 4 takes four iterations to ocfiyedetermine that there
are 9 clusters in the data set (9,8859>15>9->9). The cutoff value is not permitted to drop bele20 in the
“LMethod(),” because a reasonable number of poémes needed for the two fitted-lines to fit actuantds, rather than
detecting spurious trends indicated by a small ramadd points in the evaluation graph. The minimouatoff size of 20
performed well on all tests that have been runate énd it will most likely never need to be chahgd@he minimum cutoff

size can therefore most likely be treated as atanhsather than a parameter (keeping the L mefhm@meterless’).

Iteratively refining the knee does not significgriticrease the execution time of the L methodrattee refinement
converges on the knee in very few iterations (dgdats than three), and the first iteration is with an evaluation graph
that is much larger than those in later iteratiofibe L method is an ®) algorithm with respect to the size of the evaarat
graph. Evaluation graphs with fewer than 1,00(0h{socan be evaluated in less than a few secondsves, a 9,000 point
evaluation graph takes several minutes. In praciids usually permissible to ignore points inemaluation graph past some

large number when it is unlikely or undesirabldé&we such a large number of clusters.

Another potential problem is that sometimes thduaten graph will reach a maximum (moving fromhigo left)
and then start to decrease. This can be seegimeF2, where the distance between the closestesggmeaches a maximum
at x=4. This can prevent an “L” shaped curve from #xisin the evaluation graph. The data pointshe left of the
maximum value (the ‘worst’ merge) can be ignoréthis occurs in some algorithms that have distannetfons that become

undefined when the remaining clusters are extrentisgimilar to each other.

4. EMPIRICAL EVALUATION

The goal of this evaluation is to demonstrate thiéty of the L method to identify a reasonable rhenof clusters
to return in hierarchical clustering and hierarehmegmentation algorithms. Each algorithm willrbe on a number of data
sets and the number of clusters that the L metledtifies is compared to the ‘correct’ answer. sBrg methods to
determine the number of segments or clusters imta skt will also be evaluated on the same dadaaed their performance

will be compared to that of our L method.

4.1 ldentifying the Number of Clusters
4.1.1 Proceduresand Criteria

The seven diverse data sets used to evaluate methiod for clustering algorithms vary in size, nembf clusters,
separation of clusters, density, and amount oferstl There are some data sets that contain phireal clusters, and some
which contain very non-spherical clusters, inclgdalusters within clusters. The seven spatial data that were used are
(see Figure 5):

1. A data set with four well separated spherical eltss{4,000 pts).

2. Nine square clusters connected at the cornersq®).

3. Ten spherical clusters. Five overlapping clussénsilar to data set #7 (not shown), as well as fdelitional well
separated clusters and a uniform distribution d¢liens (5,200 pts).

4. Ten well separated clusters of varying size anaitke(b,000 pts).

5. A9 cluster data set used in the Chameleon papéwyith the outliers removed. Non-spherical clusteith clusters
completely contained within other clusters (~9, p@g).
6. An 8 cluster data set containing non-sphericaltehsswith clusters partially enveloping other ctust(~7,600 pts).

7. Five spherical clusters of equal size and denditye clusters are slightly overlapping (5,000 ptd,in Figure 5).

Figure 5. Data sets 1-6 for evaluating the L methoth clustering algorithms (data set #7 not shown).

The clustering algorithms used to test the L metivede Chameleon and CURE. Chameleon was implechente
locally and was run with the parameterk=10 (K nearest neighbors, né&tclusters),minSze=3%, anda=2. CURE was
implemented as specified in the CURE paper [6]h\hie shrinking factor set to 1/3 and the numbeepfesentative points

for each cluster set to 10.

CURE, Chameleon, arg-means was used to evaluate the Gap Statistictwelperformance against that of the L
method. The Gap Statistic was calculated using@hp/unf variant [21]. The Gap statistic must ba for each user-
specified potential value for the number of clusteThe potential number of clusters evaluatedheyGap statistic were
k={2...20}. Both the L method and the Gap statisticrevéested on CURE and Chameleon for a direct casgrar
However, the Gap statistic was also evaluated eikimeans algorithm, becaukemeans was used by Tibshirani, Walther,
and Hastie to evaluate the Gap statistic [21].is limportant to note that for every different ckratg algorithm, the L
method’s evaluation graph contains values creayetthdo particular clustering algorithm’s evaluatimmction, while the Gap
statistic uses pairwise distances to evaluateasisegardless of the clustering algorithm thadpoed them. Thus, the L
method’s performance is more likely to be consistarer different clustering algorithms, while thegstatistic will only

work well for clustering algorithms that measurestér quality similar to its own fixed method.

The experimental procedure for evaluating the perémce of the L method for hierarchical clusteragorithms
consists of running the CURE and Chameleon clugjemigorithms, which have been modified to deteentire number of
clusters to return through use of the L methodsewen diverse data sets (shown in Figure 5). Tmeber of clusters
determined will be compared to the correct numbielisters. The data sets are synthetic, so thecdonumber of clusters
is known. These results will also be comparechriumber of clusters suggested by the existing Statjstic for CURE,
Chameleon, and also tkemeans clustering algorithm.

4.1.2 Resultsand Analysis

The correct number of clusters was determined by.tmethod 6 out of 7 times for Chameleon and 4ob6&t times
for the CURE algorithm. The results are contaiime@able 1. The actual number of clusters suggefsieCURE on data set
#3 was 9. However, in the presence of outliersREWreates a number of very small clusters thataooronly outliers.
After removing these small clusters, only 6 truestdrs remained. Data sets #5 and #6 contain eanghlsters and could
only be properly clustered by Chameleon; “N/A” laged in the cells of Table 1 where the numberudters suggested was
not evaluated because the clustering algorithmumable to produce the correct set of clusters.

Table 1. Results of using the L method and the Gagatistic with various clustering algorithms.

Data set # 1 2 3 4 5 6 7 Exact

Data Set Match
Correct # of clusters | 4 9 10 10 9 8 5 atches
Num of clusters Chameleon 4 9 11 10 9 8 5 6 of 7
predicted by L Method CURE 4 9 [6(9] 10| NA|[NA|[5 40f5
Chameleon 4 2 2 2 2 2 2 1of7

Num of clusters

predicted by Gap CURE 4 2 2 2 N/A | N/A 2 lof5
Statistic K-means 4 2 2 2 | NA| NA| 2 1of5

The Gap statistic was only able to determine threecb number of clusters for one of the seven dats, regardless
of the clustering algorithm used. The Gap statiséirforms similarly to many existing methods [24d only works well for
well-separated, circular clusters (only data sesatisfies these constraints). The Gap statistideéd to suggest far too few

clusters because the cluster separation was natt gmeugh for it to consider the clusters to bérdis

The correct number of clusters was not determinedither algorithm for data set #3, which contaireny outliers
and a mixture of both well separated and overlappinsters. In the evaluation graph for CURE, ¢hisra large smooth
knee that spans approximately 200 data points. t khesges in this region are between outliers, beitet are also merges of

the five overlapping clusters mixed in. Theredssharp knee until after all of the five overlapgpiusters have already been

merged together. The six clusters returned byltheethod were the five well separated clusters, #red group of
overlapping clusters in the center (see data sét #gure 5). Even though the L method recommednds fewer clusters
than the ‘correct’ answer, the six recommendedtetashave a more uniform separation than the ‘ctremswer. In this
case, the best number of clusters is open to irgtion. The answer given for Chameleon on det&3 was off by one
because the knee of the curve was not sharp erfoudgie L method to identify the exact number afstérs. This is most
likely due to a weakness in our Chameleon impleateni, which does not contain a graph bisectiomréigm that is as

powerful as the one described in the Chameleongapgr.

The L method determines the number of clusteretorm by examining the evaluation graphs producee@drh
clustering algorithm. Examples of evaluation gaphe shown in Figure 6, where thaxis is the number of clusters, and the
y-axis is the value of the clustering algorithm’salesation function ak clusters. Notice that thgaxis values in CURE
evaluation graphs increase from right to left, @hihe Chameleon evaluation graphs decrease framh tagleft. This is

because CURE’s evaluation metric measures distmté&hameleon’s evaluation metric measures siyilari

Chameleon - data.set #7 Chameleon - data set #5 CURE - data set #1 . CURE - data set #2
. U -
. - h ctee * * . * pe R T
. ot .’...’..000 . ~‘|
. ¢ o 4
. B XS
J -, s o S s S o
0 5 10 15 20 25 |0 5 10 15 20 25 30 |0 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90

Figure 6. Actual number of clusters and the correchumber predicted by the L method éxes: x= # of clusters,
y=evaluation metric —lines: solid lines=correct # of clusters,dashed lines=# of clusters determined by L method).

In Figure 6, the solid line indicates the correatnber of clusters, while the dashed line indicdtesnumber of
clusters suggested by the L method. The linesrighe next to each other in each case which indikahat the correct
number of clusters was determined. The best numibelusters is usually just before a large jumphie evaluation graph.
To the left of the jump dissimilar clusters haveenerged together creating inhomogeneous clustedsto the right of the
jump there are too many clusters that are similagach other. Since a ‘good’ cluster is both madly homogeneous and

dissimilar to other clusters, the location of thenp should be a good measure of the best numhmusiérs.

The L method runs more quickly for clustering algons that do not have an overly-fine initial ckrétg because
these algorithms create smaller evaluation gra@isameleon initially produces fine grain clusteslyat contain fewer than
100 clusters and the L method needs less thandg@dnds to determine the number of clusters. CpiiRBuces the finest
initial clustering possible, which creates evaloatgraphs with up to 8,999 points in our evaluatidWith CURE, the L

method’s run-time is between 40 seconds and 4 esnuThis execution time can be drastically redunednly evaluating

the firstmaxk points in the evaluation graph, whenaxk is some large number guaranteed to be more tigaactinal number
of clusters. In our evaluation, the L method deired the number of clusters to return in less th&@% of the total
execution time for CURE and less than 0.003% oftditel execution time for Chameleon. Runtime fog Gap statistic is
significantly slower. The Gap statistic must ba far each potential number of clusters, and sih@alculates pairwise
distances within a cluster, its run-time (to evédupust a single potential number of clusters) apphes O¢%). In our

evaluation, the Gap statistic took up to 28 mintibesvaluate the clusterings in the rakgé?...20}, and took several times

longer to evaluate each clustering than the clingtexigorithm needed to produce it.

4.2 ldentifying the Number of Segments
4.2.1 Proceduresand Criteria

The experimental procedure for evaluating the Lhmeétin segmentation algorithms consists of runring
different segmentation algorithms on seven differégata sets and determining if a ‘reasonable’ nurdfesegments is
suggested by the L method. This number of segnsemjgested will then be compared to the ‘correathber of segments,

and also the number suggested by the existing patiom tests method [22].

1 3 4. . S

B N A AN ERCEERRE R
+ T

4 i PR S O

fl t + I ity * i S
13 { Y 4 " jmm' 'E’jﬁﬂﬂ!ﬁ‘!ﬂ' 5*!

o BRI 5
7]
*

A

TS

R

o 2RI ? ‘ﬁi};
ik H

Figure 7. Data sets 1, 3, 4, 5, 6, and 7 for evatirgg the L method in segmentation algorithms.
The time series data sets used to evaluate thethoohéor hierarchical segmentation algorithms acembination of

both real and synthetic data. The seven timesddéa sets used for this evaluation (shown inrEig are:

1. A synthetic data set consisting of 20 straight Begments (2,000 pts).
2. The same as #1, but with a moderate amount of ramiise added (2,000 pts, not in Figure 7).
3. The same as #1, but with a substantial amountrafoia noise added (2,000 pts).

4. An ECG of a pregnant woman from the Time SeriesaDdining Archive [12]. It contains a recurring fsah (a
heart beat) that is repeated 13 times (2,500 pts).

5. Measurements from a sensor in an industrial dfgem(the Time Series Data Mining Archive [12]). &time series
appears similar to random walk data (876 pts).

6. A data set depicting sunspot activity over timerfirthe Time Series Data Mining Archive [12]). Thisie series
contains 22 roughly evenly spaced sunspot cycleseter the intensity of each cycle can vary sigaifily (2,900
pts).

7. Atime series of a space shuttle valve energizimyde-energizing (1,000 pts).

A ‘correct’ number of segments for a data set agh®entation algorithm is obtained by running trgoathm with
various values of (controls the number of segments returned), ateteiéning what particular value(s) or range of esf
k produces a ‘reasonable’ PLA. The PLAs that anesitered ‘reasonable’ are those at a valug, afhere no adjacent
segments are very similar to each other and alinsats are internally homogeneous (segments havé emar). The
synthetic data sets have a single correct valuk.foiThe real sets have no single correct answerrdther a range of
reasonable values. The reasonable and best nuofbergments for the real data sets may vary foh atgorithm. A single
‘best’ number of segments cannot be used for athefsegmentation algorithms because one numbeptbduces the best

set of segments for one algorithm may produce a petoof segments for another on the same data set.

The segmentation algorithms used in this evaluatiere Gecko [16] and bottom-up segmentation (BUBUS
(bottom-up segmentation) is a hierarchical algarithat initially creates many small segments apeatedly joins adjacent
segments together. More specifically, BUS evakia@eery pair of adjacent segments and merges thehaa causes the
smallest increase in error when they are mergeetheg. BUS was tested with the L method usingdifferent values on the
y-axis of the evaluation graph. The two variants aamed BUS-greedy and BUS-global. BUS-greeghesis in the
evaluation graph is the increase in error of the most similar segments when they are merged, &rg-@obal’sy-axis is
the error of the entire linear approximation whbaré arex segments (absolute error). The existing ‘pernuatests’

method was also evaluated using BUS.

Both Gecko and BUS made use of an initial top-dpass to create the initial fine-grain segmentse mimimum
size of each initial segment generated in the mpndpass was 10. For the permutation test algorihwas set to 0.05, and
1,000 permutations were created. The paranpetentrols the percentage of permutated time s#nesmust be increasing
in quality faster than the original time seriestop creating more segments.

4.2.2 Resultsand Analysis
A summary of the results of the L method’s and peation tests’ ability to determine the number efments to

return from segmentation algorithms is containedable 2. For both Gecko and BUS, the ‘reasonafalege of correct

answers is listed. These ranges may vary betweemwo algorithms because BUS and Gecko do notensegments in
exactly the same sequence. However, BUS-greedys-global, and permutation tests all produce idahtRLAs for k

segments, and therefore have identical ‘reasonalbigiers. The first three data sets are synthatichave a single correct
answer, but the other data sets have a range adormable’ answers. Data set #5 is similar to rand@lk data, and any

number of segments seemed reasonable becausevdsen® underlying structure in the time series.

Reasonable
Data Set 1 2 3 4 5 6 7 Range
Matches
g Reasonable # of segments 20 20 20 42-123 ? 44-57 9-20
§ Gecko
wiL Method Num of segments Given 20 20 N/A 92 32 45 17 50f5
Reasonable # of segments 20 20 20 42-123 ? 45-53 | 14-21
5 BUS d
a8 -greedy .
> 8 | wi L method Num of segments Given 20 20 20 46 14 48 9 50f6
£ €
g £| BUSgobal |\ resGiven | 20 20 19 | 106 | 39 39 13 30f6
2 2| W/ L method =9
Y BUSW
permutation | Num of segments Given 25 34 25 2 15 6 65 0of6
Tests

Table 2. Results of using the L method with threeibrarchical segmentation algorithms.

The L method worked very well for both BUS-greeady &5ecko. It correctly identified a number of segts for
BUS-greedy that was within the reasonable range aut of the 6 applicable data sets. Gecko, whisb uses a greedy
evaluation metric (but uses slope rather than sagmeor), had the L method suggest a number ofeeats within the
reasonable range for all 5 applicable data setack@was unable to correctly segment data setriicéited by “N/A” in
Table 2) because it contained too much noise. llllbbw one test case (10 of 11), the L method wale & correctly
determine that the three synthetic data sets cwedagxactly twenty segments. BUS-global did nofgoem quite as well.
The L method was only able to return a reasonalnheber of segments for BUS-global in half of itst temses, but all of its

incorrect answers were close to being correct.

Permutation tests did not perform well and neveemined a reasonable number of segments. Therrahat
permutation tests did poorly varied depending @ndhta set. Data set #1 is synthetic and contain®ise, which allows a
PLA to approximate it with virtually zero error. ever, measuring a relative increase in error whenerror is near zero
causes unexpected results because relative insraeseither very large or undefined when the asrat or near zero. For

data set #4 and #6, the relative change in appadiom error is rather constant regardless of thabmar of segments. On

data set #4, the PLA between 2 and 3 segmentsdaalyrzero relative change in error, which causssnptation tests to
incorrectly assume that the data has been ovedfdnd stop producing segments prematurely. Ampbeaof far too many
segments being returned occurs on data set #7euvinerelative error of the time series never fadllow the relative error of

the permutations until far too many segments avdyred.

Some of the evaluation graphs used by the L methioGecko, BUS-greedy, and BUS-global are showRigure
8. The third evaluation graph in Figure 8 contahres L method’s evaluation graph for Gecko on d&ta#1, the noise-free
synthetic data set. Theaxis is the number of segments, andyaxis is Gecko’s evaluation metric (distance betweo
closest adjacent segmentskategments. The evaluation graph is created riglefftas segments are meged together. In this
case, the correct number of segments is easilyrdigted by the L method because there is a venelgrmp atx=20. In
evaluation graph on the right side of Figure 8 ddwt #7 BUS-global), the range of reasonable asdies between the two
long lines. The range is larger than for data#debecause the segments have less ‘separatiortharel is no sharp knee.
Instead there is a range of good answers. HowdkerlL method suggests a number of segmetns teamjisses the

reasonable range.

BUS, (greedy) - data set #4 .., Gecko - data set #6 Gecko - data set #1 . BUS (global) - data set #7

.

m 0

X . % fhacy
..............

0 20 40 60 80 100 120 140 160 0 10 20 30 40 50 60 0 10 20 30 40 50 0 10 20 30 40 50

Figure 8. The reasonable range for the number of genents and the number returned by the L method.gxes: x=# of
segmentsy=evaluation metric —short dashed line=# of segments determined by the L methodiong solid lines=smarks
the boundaries of the reasonable range for the # segments.

In the evaluation graph at the left of Figuredata set #4 BUS-greedy), the L method returnedimber of
segments that was towards the low end of the reéad®mange. Remember, that for segmentation #itgosi all data ponits
to the left of the data point with the maximum \alare ignored (discussed in the last section gf 3The best number of
segments is 42. At 42 segments each heart bettim®@approximately 3 segments. If there are fahen 42 segments, they
are no longer homogeneous. However, PLAs withifsoggimtly more segments (up to 123) are still remdile because each
new segment still significantly reduces the errdtowever, if there are more than approximately $88ments, adjacent

segments start to become too similar to each other.

The second evaluation graph shown in Figure 8 (data#6 Gecko) also has ‘better’ PLAs when the remdf

segments is near the low end of the reasonable rdeger segmetns). This is common because thesbesf segments is

often the minimal set of segments that adequagglyessents the data. Even though there is apparensiignificant knee in

this evaluation graph, a good number of segmemsithbe found by the L method. This is becatleknee found by the L
method does not necessarily have to be the pointaodum curvature. It may also be the locatiowleen the two regions
that have relatively steady trends. Thus, the thogis able to determine the location where tli®eesignificant change in
the evaluation graph and it becomes erraticdd). In this case it indicates that too many sagm have been merged

together and the distance function is no longevelsdefined.

The poorer performance of BUS-global (compared ¢ok®é and BUS-greedy) is due to a lack of prominendhe
knee of the curve compared to greedy methods ¢seerright graph in Figure 8). Greedy evaluatiogtmias increase more
sharply at the knee, while global metrics havedargore ambiguous knees in their evaluation graplpotential problem is
if more than one knee exists in the evaluation lgraghis is typically not a problem if one kneesignificantly more
prominent than the others. If there are two egualbminent knees, the L method is likely to retarnumber of segments
that falls somewhere between those two knees. i laisceptable if all of the values between the knees are reasonable. If

not, a poor number of segments will most likelyrétirned by the L method.

The L method took approximately 0.01 seconds terdd@he the number of segments in every test caseshe
segmentation algorithms took anywhere from 9 te&fbnds to execute. The L method never required than 0.1% of the
total execution time to determine the number ofrsags. In stark contrast, permutation tests requilp to 5 hours because

each permutation of the original time series halet@egmented.

5. CONCLUDING REMARKS

We have detailed our L method, which has been shimwwork reasonably well in determining the numioér
clusters or segments for hierarchical clusterirggfsmtation algorithms. Hierarchical algorithmstthave greedy evaluation
metrics perform especially well. In our evaluatiti;e L method was able to determine a reasonalbifder of segments in
10 out of 11 instances for greedy hierarchicalrsmgation algorithms, and a correct number of ehssin 10 of 12 instances
for hierarchical clustering algorithms. Algorithmsth global evaluation metrics did not work as Mgith the L method
because the knees in the evaluation graphs arasnptominent and easy to detect. The Gap sta#isticpermuation tests
were also evaluated and the L method achieved rhatiler results in our evaluation. The L methodl® much more
efficient than both the Gap statistic and permatatests, typically requiring only a fraction ofsacond to determine the

number of clusters rather than minutes or even rhanys in the case of permutation tests.

Iterative refinement of the knee is a very importaart of the L method. Without it, the L methodwd only be
effective in determining the number of clustersfsegts within a certain range. The iterative refieat algorithm explained
in this paper enables the L method to always ruteuoptimal conditions: balanced lines on each sidthe knee no matter

how large the evaluation graph is or where the knézcated.

Like most existing methods, the L method is unableletermine if the entire data set is an evenidigton and
consists of only a single cluster (the null hypstle However, the L method also has the limitatiwat it cannot determine

if only two clusters should be returned.

Future work will involve testing the L method wistlditional clustering and segmentation algorithmsadditional
data sets to help further understand the algorgrstrengths and weaknesses. We will also expladifitations to the L
method that will enable it to determine when onte @r two clusters should be returned. Work widbdocus on comparing

the L method to additional methods that attempuieiermine the number of clusters in a data set.

6. REFERENCES

[1] Baxter, R. A. & J. J. Oliver. The Kindest Cut: NMfium Message Length Segmentation.Algorithmic Learning Theory, 70 Intl.
Workshop, 83-90. Sydney, Australia, 1996.

[2] Chiu, T., D. Fang, J. Chen, Y. Wang & C. JerisRaébust and Scalable Clustering Algorithm for MixBgbe Attributes in Large
Database Environment. Rroc. Of the 7" ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 263-268, 2001.

[3] Ester M., Kriegel H., Sander J., and Xu X. (1996Dénsity-Based Algorithm for Discovering Clustendiarge Spatial Databases
with Noise. InProc. 3 Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press.

[4] Foss, A. & A. Zaiane. A Parameterless Method féiciéntly Discovering Clusters of Arbitrary ShapelLarge Datasets. IFEEE
Intl. Conf. on Data Mining, 2002.

[5] Fraley, C. & E. Raftery. How many clusters? Whitinstering method? Answers via model-based Clustatysis. InComputer
Journal, vol. 41, pp. 578-588, 1998.

[6] Guha, S., R. Rastogi & K. Shim. CURE: An Efficie@iustering Algorithm for Large Databases. Piroc. Of ACM SIGMOD Intl.
Conf. on Management of Data, pp. 73-82, 1998.

[7] Harris, S., D. R. Hess & J. Venegas. An Objecfinalysis of the Pressure-Volume Curve in the Adeéspiratory Distress
Syndrome. ImAmerican Journal of Respiratory and Critical Care Medicine, vol. 161, number 2, pp. 432-439, 2000.

[8] Hansen, M. & B. Yu. Model Selection and the Priteiof Minimum Description Length. IBASA, vol. 96, pp.746-774, 2001.
[9] Hinneburg A., Keim D. (1998) An Efficient Approath Clustering in Large Multimedia Databases withid¢o Proc AAAL.

[10]Karypis, G., E. Han & V. Kumar. Chameleon: A hietiical clustering algorithm using dynamic modelin§EE Computer, 32(8)
pp. 68-75, 1999.

[11]Keogh, E., S. Chu, D. Hart & M. Pazanni. An Onlidlgorithm for Segmenting Time Series. Pnoc. |EEE Intl. Conf. on Data
Mining, pp. 289-296, 2001.

[12]Keogh, E. & T. Folias (2003). The UCR Time Seiata Mining Archive [http://www.cs.ucr.edu/~eamoh8DMA/ index.html].
Riverside, CA. University of California — Computgcience and Engineering Department.

[13]Monti, S., T. Pablo, J. Mesirov & T. Golub. Conses Clustering: A Resampling-Based Method for CRissovery and
Visualization of Gene Expression Microarray Dalla.Machine Learning, 52, pp. 91-118, 2003.

[14]Ng R., Han J. (1994) Efficient and effective cluistg method for spatial data mining. In Proc. Canf Very Large Data Bases, pp
144-155.

[15]Roth, V., T. Lange, M. Braun & J. Buhmann. A Repéing Approach to Cluster Validation. Intl. Conf. on Computational
Statistics, pp. 123-129, 2002.

[16] Salvador, S., P. Chan & J. Brodie. Learning StaresRules for Time Series Anomaly Detection Pioc. of the 17" Intl. Flairs
Conference, 2004.

[17]Seikholeslami G., Chatterjee S., and Zhang A. Waws€r: A Multi-Resolution Clustering Approach fdfery Large Spatial
Databases. Proceedings of th& 24. DB Conference, 1998

[18]Smyth, P. Clustering Using Monte-Carlo Cross-Vatiion. InProc. 2nd KDD, pp.126-133, 1996.

[19] Sugiyama, M. & H. Ogawa. Subspace InformationeZidin for Model Selection. INeural Computation, vol. 13, no.8, pp. 1863-
1889, 2001.

[20] Tibshirani, R., G. Walther, D. Botstein & P. Browgluster Validation by Prediction Strength, TedahiReport, 2001-21, Dept. of
Biostatistics, Stanford Univ, 2001

[21] Tibshirani, R., G. Walther & T. Hastie. Estimatitige number of clusters in a dataset via the Gatjstt. InJRSSB, 2003.

[22]Vasko, K. & T. Toivonen. Estimating the numbersefjments in time series data using permutatios. tésProc. |EEE Intl. Conf.
on Data Mining, pp. 466-473, 2002.

[23]zhang, T., R. Ramakrishnan & M. Livny. BIRCH: Affigient Data Clustering Method for Very Large Daéses, In ACM
SIGMOD Intl. Conf. on Management of Data and Symposiium on Principles of Database Systems, pp. 103-114, 1996.

