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REDIT CARD TRANSACTIONS CON- T
finue to grow imumber, taking an ever larger HIS SCALABLE BLACK-BOX APPROACH FOR BUILDING

share of the US payment system and leading EFFICIENT FRAUD DETECTORS CAN SIGNIFICANTLY REDUCE
to a higher rate of stolen account numbers
and Subsequent losses by banks. |mpr0 ed LOSS DUE TO ILLEGITI]MTE BEH(4VIOR. IN MNY CASES, THE

fraud detection thus has become essential to AUTHORS’ METHODS OUTPERFORM A WELL-KNOWN. STATE-
maintain the viability of the US payment s )

tem. Banks have used early fraud warning OF-THE-ART COMMERCIAL FRAUD-DETECTION SYSTEM.
systems for some years.

Large-scale data-mining techniques can
improve on the state of the art in commercial
practice. Scalable techniques to analyze ma@yy upprouth cardholders’interest to reduce illegitimate us
sive amounts of transaction data that effi- of credit cards by early fraud detection. For
ciently compute fraud detectors in a timely In today’s increasingly electronic societymany years, the credit card industry has stud
manner is an important problem, especiallyand with the rapid advances of electronic carmied computing models for automated detec
for e-commerce. Besides scalability and effimerce on the Internet, the use of credit card®n systems; recently, these models have begn
ciency, the fraud-detection task exhibits techfor purchases has become convenient and heéhe subject of academic research, especially
nical problems that include skewed distriduessary. Credit card transactions have becomeéth respect to e-commerce.
tions of training data and nonuniform costhe de facto standard for Internet and Web- The credit card fraud-detection domair
per error, both of which have not been widelybased e-commerce. The US government espiresents a number of challenging issues for
studied in the knowledge-discovery and datamates that credit cards accounted for approxata mining:
mining community. imately US $13 billion in Internet sales during

In this article, we survey and evaluate a998. This figure is expected to grow rapidly» There are millions of credit card transacr
number of techniques that address these threach year. However, the growing number|of tions processed each day. Mining such
main issues concurrently. Our proposgedredit card transactions provides more oppor- massive amounts of data requires highly
methods of combining multiple learned fraudunity for thieves to steal credit card numbers efficient techniques that scale.
detectors under a “cost model” are generand subsequently commit fraud. When banks The data are highly skewed—many mor
and demonstrably useful; our empiricalose money because of credit card fraud, card- transactions are legitimate than fraudu
results demonstrate that we can significantlholders pay for all of that loss through higher lent. Typical accuracy-based mining tech
reduce loss due to fraud through distributethterest rates, higher fees, and reduced bene- niques can generate highly accurate fraud
data mining of fraud models. fits. Hence, it is in both the banks’ and the detectors by simply predicting that all
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The AdaCost ulgoriihm Where it is clear in context, we use eit|#) or 5(c;) as a shorthand for
B(signfyhy(x)),c). Furthermore, we ugg when signy; h(x)) = +1 and
One of the most important results of our experimental work on this B-When signy; hi(x;)) = —1. For an instance with a higher cost fa¢&@j,
domain was the realization that each of the base-learning algorithms increases its weights “more” if the instance is misclassified, but
employed in our experiments utilized internal heuristics based on traindecreases its weight “less” otherwise. Therefore, we refficg to be
ing accuracy, not cost. This leads us to investigate new algorithms thaflondecreasing with respectdgB. (c;) to be nonincreasing, and both are
employ internal metrics ahisclassification costhen Computing hy- nonnegative. We proved that AdaCost reduces cost on the trainir‘i]g data.
potheses to predict fraud. Logically, we can assign a cost factmf tranamt — overheatb
Here, we describe AdaCdga variant of AdaBoo&t), which reduces frauds and a factarof overhead to nonfrauds. This reflects how the pre-
both fixed and variable misclassification costs more significantly than diction errors will add to the total cost of a hypothesis. Because the
AdaBoost. We follow the generalized analysis of AdaBoost by Robert actualoverheads a closely guarded trade secret and is unknown to us,
Schapire and Yoram SingEigure A shows the algorithm. L8t we chose to setverhead] {60, 70, 80, 90} to run four sets of
((X11C1-Y1)1 . (Xm’qn,ym)) be a sequence of training examples where eacﬁxperiments. We normalized ea:q:'m [0,1] The cost adjustment func-
instance xbelongs to @omainX, eachcost factor cbelongs to thaon-  tion Bis chosen agd_(c) = 0.5+ 0.5 and3, (c) = -0.5¢ + 0.5.

negative real domaiR*, and eactiabel y belongs to a finitéabel space As in previous experiments, we use training data from one month and
y. We 0n|y focus on binary classification problems in W[y:h {_1, data from two months later for testing. Our data set let us form 10 such
+1}. his a weak hypothesis—it has the fanmX — R. The sign oh(X) is pairs of training and test sets. We ran both AdaBoost and AdaCost to the
interpreted as the predicted label, and the magniti@¢ik the “confi- 50th round. We used Ripper as the “weak” learner because it provides an

dence” in this prediction. Léte an index to show the round of boosting €8sy way to change the training set's distribution. Because using the

andDy(i) be the weight given toi(c;,y:) at thetth round. G D,(i) <1, and  training set alone usually overestimates a rule set's accuracy, we used the

>Dy(i) = 1 is the chosen parameter as a weight for weak hypothasis Laplace e_stimate to generate the co_nfidence for each rule.

thetth round. We assunwg > 0. (sign@ih(x)),G) is a cost-adjustment We are interested in comparing Ripper (as a baseline), AdaCost, and

function with two arguments: signt(x)) to show ifh(x) is correct, and AdaBoost in several dimensions. First, for each data set and cost model,

the cost factoc;. we determine which algorithm has achieved the lowest cumulative mis-
The difference between AdaCost and AdaBoost is the additional costlassification cost. We wish to know in how many cases AdaCost is the

adjustment functiog(sign@;hy(x)),c) in the weight-updating rule. clear winner. Second, we also seek to know, quantitatively, the difference
in cumulative misclassification cost of AdaCost from AdaBoost and the

baseline Ripper. It is interesting to measure the significance of these dif-
ferences in terms of both reduction in misclassification loss and percent-

Given: (X1, ¢1, Y1), ....(Xim, €, V)X 0 X600 R+,y; 0 =1 41} age of reduction. Finally, we are interested to know if AdaCost requires
Initialize D1(i) (such as Dy(i) = (such as Dy(/) = ¢/3 7c) more computing power.
Fort=1,...,T: Figure B plots the results from the Chase Bank’s credit card data. Fig-
1. Train weak learner using distribution Dy. ure B1 shows the average reduction of 10 months in percentage cumula-
2. Compute weak hypothesis fiz X R. tive loss (defined asumulativeloss/ maximalloss — leastleskd0%) for
3. Choose ay[R and B(/) O R* AdaBoost and AdaCost for all 50 rounds with an overhead of $60 (results
4. Update for other overheads are in other whriVe can clearly see that there is a
) . consistent reduction. The absolute amount of reduction is around 3%
Dpy(i) = D‘(')eXp(_aMh(x")B(sgn(“mxi))’C')) We also observe that the speed of reduction by AdaCost is quicker
4 than that of AdaBoost. The speed is the highest in the first few rounds.
This means that in practice, we might not need to run AdaCost for many
where B(sign(y;hy(x;)),c;) is a cost-adjustment func- rounds. Figure B2 plots the ratio of cumulative cost by AdaCost and
tion. Z;is a normalization factor chosen so that Dy, AdaBoost. We have plotted the results of all 10 pairs of training and test
will be a distribution. months over all rounds and overheads. Most of the points are abgve the

=xline in Figure B2, implying that AdaCost has lower cumulative loss in

Output the final hypothesis: an overwhelming number of cases.

. ar
H(x) = sign(f(x)) where f(x) = Ez

O
ah(X)g
=1 O
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Figure A. AdaCost.

transactions are legitimate, although this large data set of labeled transactions (eith#re loss of predictive performance that usu
is equivalent to not detecting fraud at allfraudulent or legitimate) into smaller subsetsally occurs when mining from data subsets @
« Each transaction record has a differenapply mining techniques to generate classsampling. Furthermore, when we use th
dollar amount and thus has a variablders in parallel, and combine the resultant badearned classifiers (for example, during trans
potential loss, rather than a fixed misclasmodels by metalearning from the classifiefsaction authorization), the base classifiers ca
sification cost per error type, as is com-behavior to generate a metaclassifi@ur | execute in parallel, with the metaclassifier the
monly assumed in cost-based miningpproach treats the classifiers as black bgxesmbining their results. So, our approach i
techniques. so that we can employ a variety of learnindnighly efficient in generating these models an
algorithms. Besides extensibility, combiningalso relatively efficient in applying them.
Our approach addresses the efficiency andultiple models computed over all available Another parallel approach focuses on par-
scalability issues in several ways. We dividelata produces metaclassifiers that can offsetlelizing a particular algorithm on a particu-
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0.395

- AdaBoost ——
=1 E % e
§ 039 Overhj;?(_:?é been studied widely because many of the data
g R sets used in research do not exhibit this char-
Z 0385 % acteristic. We address skewness by partition-
E ‘.‘ ing the data set into subsets with a desired djs-
E 0384 | tribution, applying mining techniques to th
= | subsets, and combining the mined classifiefs
g 0375 l‘* by metalearning (as we have already dis-
. cussed). Other researchers attempt to remave
& i unnecessary instances from the majorit
g 037 L class—instances that are in the borderline
& * region (noise or redundant exemplars) are can-
0.365 f A didates for removal. In contrast, our approach
¥ ;—ww.ﬂwﬂwN*J_N%Ww keeps all the data for mining and does not
036 ‘ ‘ ‘ ‘ ‘ ‘ ‘ “*'“’T‘*‘*M-T*M change the underlying mining algorithms.
0 5 10 15 20 25 30 35 40 45 50 We address the issue of nonuniform cost
(m Boosting Rounds by developing the appropriate cost model for
the credit card fraud domain and biasing our
0.52 methods toward reducing cost. This cost
05 4 model determines the desired distributio
just mentioned. AdaCost (a cost-sensitiv
des version of AdaBoost) relies on the cost model
. 046 for updating weights in the training distrib-
8 eien ution. (For more on AdaCost, see the "Ada
2 Cost algorithm” sidebar.) Naturally, this cos
é 0.42 model also defines the primary evaluatio
2 o4l criterion for our techniques. Furthermore, w
2 investigate techniques to improve the cost
g 0.38 1 performance of a bank’s fraud detector b
< 036 importing remote classifiers from other
F55 banks and combining this remotely learne
Lk A y=x —— knowledge with locally stored classifiers.
032 4 Percentagel of AdaCost and AdaBoost The law and competitive concerns restrict
banks from sharing information about thei
” 03 032 034 036 038 04 042 044 046 048 05 customers with other banks. However, the
. may share black-box fraud-detection mod-
(2) AdaCost cumulative cost

els. Our distributed data-mining approac
provides a direct and efficient solution t
sharing knowledge without sharing data. Wi
also address possible incompatibility of dat
schemata among different banks.
We designed and developed an agent-
based distributed environment to demon-
3. R. Schapire and Y. Singer, “Improved Boosting Algorithms Using Confidence-Rated Pregic-Strate our distributed and parallel data-min-
tions,” Proc. 11th Conf. Computational Learning ThedkZM Press, New York, 1998. ing techniques. The JAM (Java Agents fo
Metalearning) system not only provides dis

Figure B. Cumulative cost versus rounds (1); AdaBoost versus AdaCost in cumulative cost (2).

2. Y. Freund and R. Schapire, “Experiments with a New Boosting AlgoritRro¢. 13th Conf.
Machine LearningMorgan Kaufmann, San Francisco, 1996, pp. 148-156.

tributed data-mining capabilities, it also let
users monitor and visualize the various lear
lar parallel architecture. However, a new algogenerate a potentially large number of classing agents and derived models in real time.
rithm or architecture requires a substantidiers from the concurrently processed dat&esearchers have studied a variety of algo-
amount of parallel-programming work. Al- subsets, and therefore potentially require momithms and techniques for combining multi-
though our architecture- and algorithm-indeeomputational resources during detection, wple computed models. The JAM system pra
pendent approach is not as efficient as sonievestigate pruning methods that identifyvides generic features to easily implemen
fine-grained parallelization approaches, it Ietsedundant classifiers and remove them frorany of these combining techniques (as wel
users plug different off-the-shelf learning prothe ensemble without significantly degradingas a large collection of base-learning algag
grams into a parallel and distributed envirgnthe predictive performance. This pruning techrithms), and it has been broadly available fo
ment with relative ease and eliminates thaique increases the learned detectors’ conuse. The JAM system is available for downr
need for expensive parallel hardware. putational performance and throughput. | load at http://www.cs.columbia.edu/~sal
Furthermore, because our approach cquld The issue of skewed distributions has nalAM/PROJECT?
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Table 1. Cost model assuming a fixed overhead.

Ourtcome Cost

Tranamt

Overhead if tranamt > overhead or 0 if tranamt < overhead
Overhead if tranamt > overhead or tranamt if tranamt < overhead
0

Credit card data and cost
models

Miss (false negative—FN)
False alarm (false positive—FP)
Hit (true positive—TP)

Normal (true negative—TN)

Chase Bank and First Union Bank, mem-
bers of the Financial Services Technology
Consortium (FSTC), provided us with real
credit card data for this study. The two datand
sets contain credit card transactions labeled
as fraudulent or legitimate. Each bank sup- AverageCost = form four data subsets by merging the mino
plied 500,000 records spanning one year with ity instances with each of the four partitions
20% fraud and 80% nonfraud distribution forwhere Cost(i) is the cost associated withcontaining majority instances. That is, the
Chase Bank and 15% versus 85% for Firgtansactions, andn is the total number of minority instances replicate across four dat
Union Bank. In practice, fraudulent transactransactions. subsets to generate the desired 50:50 dist
tions are much less frequent than the 15% to After consulting with a bank representg-bution for each distributed training set.
20% observed in the data given to us. Thedive, we jointly settled on a simplified cost For concreteness, Kitbe the size of the data
data might have been cases where the bankedel that closely reflects reality. Because iset with a distribution oty (x is the percent-
have difficulty in determining legitimacy cor- takes time and personnel to investigaté age of the minority class) ant be the desired
rectly. In some of our experiments, we delibpotentially fraudulent transaction, each invesdistribution. The number of minority instances
erately create more skewed distributions ttigation incurs aroverhead Other related is N x x, and the desired number of majority

) majority instances into four partitions and
CumulativeCost

n

N

a
ri-

evaluate the effectiveness of our techniq
under more extreme conditions.

Bank personnel developed the schematonsolidated intoverheadSo, if the amoun
of the databases over years of experience|anfla transaction is smaller than the overhe
continuous analysis to capture importaninvestigating the transaction is not worthwh
information for fraud detection. We cannpteven if it is suspicious. For example, if it tak
reveal the details of the schema beyond wh&tL0 to investigate a potential loss of $1, it
we have described elsewh@r€he records| more economical not to investigate it. The
of one schema have a fixed length of 137ore, assuming a fixedverheadyve devised
bytes each and about 30 attributes, includinthe cost model shown in Table 1 for ea
the binary class label (fraudulent/legitimateéransaction, wherganamtis the amount of g
transaction). Some fields are numeric and theredit card transaction. The overhead thre
rest categorical. Because account identificasld, for obvious reasons, is a closely guard
tion is not present in the data, we cannagecret and varies over time. The range of
group transactions into accounts. Therefqrejes used here are probably reasonable le
instead of learning behavior models of indi-as bounds for this data set, but are probag
vidual customer accounts, we build overalkignificantly lower. We evaluated all ou
models that try to differentiate legitimateempirical studies using this cost model.
transactions from fraudulent ones. Our mod-
els are customer-independent and can serve
as a second line of defense, the first beinfkewed distributions
customer-dependent models.

Most machine-learning literature concen- Given a skewed distribution, we would lik
trates on model accuracy (either training errao generate a training set of labeled transact
or generalization error on hold-out test datavith a desired distribution without removin
computed as overall accuracy, true-positive cainy data, which maximizes classifier perfc
false-positive rates, or return-on-cost analysisinance. In this domain, we found that det
This domain provides a considerably differenmining the desired distribution is an expe
metric to evaluate the learned models’ performental art and requires extensive empirical té
mance—models are evaluated and rated bytafind the most effective training distributior
cost model. Due to the different dollar amount In our approach, we first create data s
of each credit card transaction and other

asts—for example, the operational resourcanstances in a subsetN x v/u. The number
needed for the fraud-detection system—aref subsets is the number of majority instance

&ets with the desired distribution (determinetbase classifiers and the metaclassifier the

n

(N x y) divided by the number of desired
adhajority instances in each subset, whidkys
ledivided byNxvu or y/x x ulv. So, we have
eg/x x ulv subsets, each of which Hggminor-
isty instances anbixvu majority instances.

e- The next step is to apply a learning algo
rithm or algorithms to each subset. Becaus
clthe learning processes on the subsets are in

pendent, the subsets can be distributed to d
slfierent processors and each learning proce
edan run in parallel. For massive amounts @
atlata, our approach can substantially improv
velgseed for superlinear time-learning algo
bhthms. The generated classifiers are con
rbined by metalearning from their classifica

tion behavior. We have described sever:

metalearning strategies elsewhére.

To simplify our discussion, we only
describe theclass-combinefor stacking
strategy? This strategy composes a metaleve

etraining set by using the base classifiers’ pre-
onkictions on a validation set as attribute val
gues and the actual classification as the cla;
rlabel. This training set then serves for train
ering a metaclassifier. For integrating subset
rithe class-combiner strategy is more effectivi
edtisan the voting-based techniques. When th
n.learned models are used during online fray
bdetection, transactions feed into the learne

de-

=
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O
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tors, the cost of failing to detect a fraud varieby extensive sampling experiments). Therwombines their predictions. Again, the bas
with each transaction. Hence, the cost modele generate classifiers from these subsettassifiers are independent and can execu
for this domain relies on the sum and averagend combine them by metalearning frgmn parallel on different processors. In addi
of loss caused by fraud. We define their classification behavior. For example, iftion, our approach can prune redundant ba
the given skewed distribution is 20:80 andlassifiers without affecting the cost perfor-
the desired distribution for generating themance, making it relatively efficient in the
best models is 50:50, we randomly divide theredit card authorization process.

te

n
CumulativeCost = z Cost(i)
i
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Table 2. Cost and savings in the credit card fraud domain using class-combiner (cost + 95% confidence inferval).

OverHEAD = $50 OverHeAD = $75 Overneap = $100

Fraup SAVED SAVED SAVED SAVED SAVED SAVED
MEeTHoD (%) Cost (%) ($K) Cost (%) ($K) Cost (%) ($K)
Class combiner 50 17.96 .14 51 761 20.07 £.13 46 676 21.87 £12 4 604
Single CART 50 20.81 +.75 44 647 23.64 +.96 36 534 26.05+1.25 30 437
Class combiner ~ Given = 22.61 39 575 23.99 35 519 25.20 32 471
Average single

classifier Given 2797 +164 24 360 29.08+1.60 21 315 30.02+1.56 19 278

CcoTS N/A 25.44 31 461 26.40 29 423 27.24 26 389

Experiments and results.To evaluate ourl set because this approach increases the tfaiks we discussed earlier, the desired distr
multiclassifier class-combiner approach [tdng-set size and is not appropriate in domainsution is not necessarily 50:50—for instance
skewed class distributions, we performed avith large amounts of data—one of the threéhe desired distribution is 30:70 when the
set of experiments using the credit card fraugrimary issues we address here.) Comparejgven distribution is 10:90. With 10:90 dis-
data from Chas€We used transactions fromto the other three methods, class-combiningibutions, our method reduced the cost sig
the first eight months (10/95-5/96) for train-on subsets with a 50:50 fraud distributiomificantly more than COTS. With 1:99 dis-
ing, the ninth month (6/96) for validating, clearly achieves a significant increase in sawributions, our method did not outperform
and the twelfth month (9/96) for testing.ings—at least $110,000 for the month (6/96)COTS. Both methods did not achieve an
(Because credit card transactions have a natthen the overhead is $50, more than half afavings with 1:999 distributions.
ural two-month business cycle—the time|tdhe losses were prevented. To characterize the condition when ou
bill a customer is one month, followed by|a Surprisingly, we also observe that when théechniques are effective, we calculRe¢he
one-month payment period—the true labebverhead is $50, a classifier (Single CARTYyatio of the overhead amount to the averag
of a transaction cannot be determined in leggined from one month’s data with the desiredost: R = OverheadAverage costOur ap-
than two months’time. Hence, building mod-50:50 distribution (generated by ignoringproach is significantly more effective than
els from data in one month cannot be raticsome data) achieved significantly more sawhe deployed COTS whd®< 6. Both meth-
nally applied for fraud detection in the nextings than combining classifiers trained franods are not effective when tie> 24. So,
month. We therefore test our models on datall eight months’ data with the given distribu-under a reasonable cost model with a fixe
that is at least two months newer.) tion. This reaffirms the importance of employ-overhead cost in challenging transactions &
Based on the empirical results from theng the appropriate training class distributiopotentially fraudulent, when the number of
effects of class distributions, the desired distrin this domain. Class-combiner also canfraudulent transactions is a very small per
bution is 50:50. Because the given distributiotributed to the performance improvementcentage of the total, it is financially undesir-
is 20:80, four subsets are generated from ga€tonsequently, utilizing the desired trainingable to detect fraud. The loss due to this frau
month for a total of 32 subsets. We applied foudistribution and class-combiner provides &s yet another cost of conducting business.
learning algorithms (C4.5, CART, Ripper, andsynergistic approach to data mining with However, filtering out “easy” (or low-risk)
Bayes) to each subset and generated 128 bassuniform class and cost distributions. Peitransactions (the data we received were po

Y

y

AS

o

classifiers. Based on our experience with tra
ing metaclassifiers, Bayes is generally m
effective and efficient, so it is the metalearn
for all the experiments reported here.

Furthermore, to investigate if our approa
is indeed fruitful, we ran experiments on t
class-combiner strategy directly applied
the original data sets from the first eig
months (that is, they have the given 20:
distribution). We also evaluated how ind
vidual classifiers generated from each mo
perform without class-combining.

Table 2 shows the cost and savings from
class-combiner strategy using the 50:50
tribution (128 base classifiers), the averag
individual CART classifiers generated usi
the desired distribution (10 classifiers), cla
combiner using the given distribution (32 b
classifiers—8 months 4 learning algo-
rithms), and the average of individual clas
fiers using the given distribution (the aver.
of 32 classifiers). (We did not perform exp
iments on simply replicating the minori
instances to achieve 50:50 in one single

irhaps more importantly, how do our techniquesibly filtered by a similar process) can reduc
oreerform compared to the bank’s existinga high overhead-to-loss ratio. The filtering
efraud-detection system? We label the curremirocess can use fraud detectors that are by

system “COTS” (commercial off-the-shelf based on individual customer profiles, which
clsystem) in Table 2. COTS achieved signifiare now in use by many credit card compa
hecantly less savings than our techniques infth@es. These individual profiles characterize
tahree overhead amounts we report in this tablthe customers’ purchasing behavior. Fo

8@ccurate because COTS has much moreries at a particular supermarket or has s
i-training data than we have and it might beip a monthly payment for phone bills, thes
ntbptimized to a different cost model (whichtransactions are close to no risk; hence. pu
might even be the simple error rate). Furehases of similar characteristics can be safe
thitbermore, unlike COTS, our techniques
iggeneral for problems with skewed distribuing the overhead through streamlining bus
dfons and do not utilize any domain knowl-ness operations and increased automati
gedge in detecting credit card fraud—the onlyvill also lower the ratio.
sexception is the cost model used for evalua-
séion and search guidance. Nevertheless,
COTS'performance on the test data provideKnowledge sharing through
isome indication of how the existing frau 'bridging
geletection system behaves in the real world.
r- We also evaluated our method with mare Much of the prior work on combining
skewed distributions (by downsamplingmultiple models assumes that all model
atainority instances): 10:90, 1:99, and 1:999originate from different (not necessarily dis-
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tinct) subsets of a single data set as a meahs
to increase accuracy (for example, by impos-
ing probability distributions over the in-
stances of the training set, or by stratifi
sampling, subsampling, and so forth) and not
as a means to integrate distributed informa-
tion. Although the JAM system addresses the
latter problem by employing metalearning
techniques, integrating classification models
derived from distinct and distributed data-
bases might not always be feasible.
In all cases considered so far, all classifi-
cation models are assumed to originate from
databases of identical schemata. Because
classifiers depend directly on the underlyi
data’s format, minor differences in the schez2.
mata between databases derive incompatible

classifiers may target the same concept.
seek to bridge these disparate classifier
some principled fashion.

The banks seek to be able to exchange
their classifiers and thus incorporate useful
information in their system that would oth-
erwise be inaccessible to both. Indeed, for
each credit card transaction, both institutioans
record similar information, however, they
also include specific fields containing impar-

In both cases (attribut&,,, is either not

Ani1 % Bl The two attributes are of include it in its schema, and presumably

entirely different types drawn from dis
tinct domains. The problem can then
reduced to two dual problems where 0
database has one more attribute than
other; that is,

SchemédB,) ={A}, As,..., Ay A1, C
SChemSDBB) = {Blr Bz,..., 31, C}

where we assume that attriblgg ; is
not present ifDBg. (The dual problem
hasDBg composed witlfB,,,; butA,,, is
not available ta\.)

Ani1 = Byip: The two attributes are of attributes that are common among the parti
ipating sites and no issue exists for its inte-

similar type but slightly different
semantics—that is, there might be
map from the domain of one type to t
domain of the other. For examphg,,,

andB,,; are fields with time-depende
information but of different duration
(that is,A,+1 might denote the numbe
of times an event occurred within a wi
dow of half an hour an®,.; might
denote the number of times the sal

event occurred but within 10 minutes).

bédnave predictive value.

tant information that each has acquired sepresent irDBg or semantically different from
arately and that provides predictive value| ithe corresponding.,), the classifiersCy;
determining fraudulent transaction patternsderived fromDB, are not compatible with

To facilitate the exchange of knowledge (repPBg’s data and therefore cannot be directlypurely logical consistency of generated rul

resented as remotely learned models) anded irDBg's site and vice versa. But the py
take advantage of incompatible and othempose of using a distributed data-mining syst

methods that bridge the differences impo
by the different schemata.

eithg their classifier agents is to be able to cq
bine information from different sources.

Bridging methods. There are two method
for handling the missing attributés.
t's

Database compatibility. Theincompatible
schemaroblem impedes JAM from takin
advantage of all available databases. L
consider two data siteésandB with data- | Method I: Learn a local model for the mis
basedDB, andDBg, having similar but not ing attribute and exchang®atabas®Bg

identical schemata. Without loss of generalimports, along with the remote classifi
ity, we assume that agent, aridging agent from databadeB,

that is trained to compute values for the mi
ScheméDB,) = {Ay, Ay, .. ing attributeA,,; in DBg's data. NextDBg
ScheméDBg) = {By, By, ..

.,An, An+l! C}
By Bpi1, C}

DB, andDBg, respectively, an€ the class| able by DB, (for example, in case th
label (for example, the fraud/legitimate lahehttribute is proprietary). The alternative f
in the credit card fraud illustration) of eachdatabas®Bg is to simply add the missin
instance. Without loss of generality, we fur-attribute to its data set and fill it with null vaj
ther assume th& = B;, 1<i <n. As for the | ues. Even though the missing attribute mi
A1 and By, attributes, there are two have high predictive value f@B,, it is of

applies the bridging agent on its own datg
estimate the missing values. In many cas
where,A; andB; denote theth attribute of| however, this might not be possible or des

- other attributes (including the common ones

ne

tidethod II: Learn a local model without the
missing attribute and exchangén this
approach, databagB, can learn two local
models: one with the attribugg,, ; that can be
used locally by the metalearning agents an
one without it that can be subsequentl
exchanged. Learning a second classifier age
without the missing attribute, or with the
attributes that belong to the intersection of th
attributes of the two databases’ data set
implies that the second classifier uses only th

gration at other databases. But, remote clas
hefiers imported by databa&B, (and assured
not to involve predictions over the missing
t attributes) can still be locally integrated with
the original model that employs,,;. In this
r case, the remote classifiers simply ignore th
n-local data set’s missing attributes.
Both approaches address theompati-
mble schema problerand metalearning over
these models should proceed in a straigh
forward manner. Compared to Zbigniew
Ras'’s related worR,our approach is more
general because our techniques support ba
categorical and continuous attributes and a
not limited to a specific syntactic case o

r-models. Instead, these bridging technique
nthe missing values.

s Pruning

An ensemble of classifiers can be unnece|
s-sarily complex, meaning that many classifier

erreducing system throughput. (Throughpu
here denotes the rate at which a metaclassif
swan pipe through and label a stream of da

items.) We study the efficiency of metaclassi
tbers by investigating the effects of pruning
e@iscarding certain base classifiers) on the
irperformance. Determining the optimal set 0
e classifiers for metalearning is a combinator,

g to utilize heuristic methods to search for par
-tially grown metaclassifiers (metaclassifiers
yhwith pruned subtrees) that are more efficien
and scalable and at the same time achie

possibilities: no value toDBg. After all, DBg did not

comparable or better predictive performanc

S|

ercan employ machine- or statistical-learning
wise useless classifiers, we need to devisnd deploying learning agents and metalearaigorithms to compute arbitrary models fo

S
might be redundant, wasting resources and

orial problem. Hence, the objective of pruning is

o
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Table 3. Results on knowledge sharing and pruning.

CHase FirsT Union

Savings Savings
results than fully grown (unpruned) meta- CLASSIFICATION WETHOD Size (8K) Size (8K)
classifiers. To this end, we introduced two  ¢QTS scoring system from Chase N/A 682 N/A N/A
stages for pruning metaclassifiers; the pre- Best base classifier over entire set 1 762 1 803
training and posttraining pruning stages. Both  Best base classifier over one subset 1 736 1 770
levels are essential and complementary to each Metaclassifier 20 818 50 944
. . Metaclassifier 32 870 21 943
other with respect to the improvement of the  jeragiassifier (+ First Union) 110 800 NA  NA
system’s accuracy and efficiency. Metaclassifier (+ First Union) 63 877 N/A N/A
Pretraining pruningrefers to the filtering Metaclassifier (+ Chase — bridging) N/A N/A 110 942
of the classifiers before they are combined. Metaclassifier (+ Chase + bridging) /A N/A 110 963
Metaclassifier (+ Chase + bridging) N/A N/A 56 962

Instead of combining classifiers in a brute-
force manner, we introduce a preliminary
stage for analyzing the available classifiers
and qualifying them for inclusion in a com-across six different data sites (each site storesFor the first incompatibility, we mapped

bined metaclassifier. Only those classifierswo months of data) and prepared the set dfie First Union data values to the Chase

that appear (according to one or more prezandidate base classifiers—that is, the ofigdata’s semantics. For the second incompa
defined metrics) to be most promising parinal set of base classifiers the pruning algadbility, we deployed bridging agents to com-
ticipate in the final metaclassifier. Here, werithm is called to evaluate. We computecute the missing valué3Vhen predicting,

adopt a black-box approach that evaluates thibese classifiers by applying five learninghe First Union classifiers simply disregarde

set of classifiers based only on their input andlgorithms (Bayes, C4.5, ID3, CART, andthe real values provided at the Chase data

output behavior, not their internal structureRipper) to each month of data, creating 68ites, while the Chase classifiers relied o
Converselyposttraining pruninglenotes the base classifiers (10 classifiers per data sitehoth the common attributes and the predic
evaluation and pruning of constituent basélext, we had each data site import the remot&ns of the bridging agents to deliver a pre
classifiers after a complete metaclassifier hasase classifiers (50 in total) that we subsediction at the First Union data sites.

been constructed. We have implemented argliently used in the pruning and metalearn- Table 3 summarizes our results for th
experimented with three pretraining and tywang phases, thus ensuring that each classifi@hase and First Union banks, displaying th

posttraining pruning algorithms, each withwould not be tested unfairly on known datasavings for each fraud predictor examined.

different search heuristics. Specifically, we had each site use half of itghe column denoted aszeindicates the
The first pretraining pruning algorithm local data (one month) to test, prune, andumber of base classifiers used in the ense
ranks and selects its classifiers by evaluatingietalearn the base classifiers and the othble classification system. The first row of
each candidate classifier independently (mehalf to evaluate the pruned and unprured@able 3 shows the best possible performan
ric-based), and the second algorithm decidemetaclassifier's overall performanédn
by examining the classifiers in correlation withessence, this experiment’s setting corredetection system on this data set. The ne
each other (diversity-based). The third rellesponds to a parallel sixfold cross-validatiantwo rows present the performance of the be
on the independent performance of the clas- Finally, we had the two simulated banksbase classifiers over the entire set and ove
sifiers and the manner in which they predicexchange their classifier agents. In additiosingle month’s data, while the last four rows
with respect to each other and with respect tm its 10 local and 50 internal classifiersdetail the performance of the unpruned (siz
the underlying data set (coverage and spéhose imported from their peer data sites)pf 50 and 110) and pruned metaclassifiet

cialty-based). The first posttraining pruningeach site also imported 60 external classifielsize of 32 and 63). The first two of these

algorithms are based on a cost-complexityfrom the other bank). Thus, we populatednetaclassifiers combine only internal (from
pruning technique (a technique the CARTeach simulated Chase data site with 60 (10@hase) base classifiers, while the last twi
decision-tree learning algorithm uses thaf0) Chase classifiers and 60 First Union clazzombine both internal and external (from

seeks to minimize the cost and size of its tresifiers, and we populated each First UniprChase and First Union) base classifiers. We
while reducing the misclassification rate). Thesite with 60 (10 + 50) First Union classifiersdid not use bridging agents in these exper

second is based on the correlation between taad 60 Chase classifiers. Again, the sites useaents, because Chase defined all attribut
classifiers and the metaclassifier. half of their local data (one month) to testused by the First Union classifier agents.
Compared to Dragos Margineantu angrune, and metalearn the base classifiersjandTable 3 records similar data for the Firs
Thomas Dietterich’s approadhgurs con-| the other half to evaluate the pruned |onion data set, with the exception of Firs
siders the more general setting where ensemnapruned metaclassifier's overall perfar-Union’s COTS authorization and detection
bles of classifiers can be obtained by applymance. To ensure fairness, we did not use| tiperformance (it was not made available to us
ing possibly different learning algorithms10 local classifiers in metalearning. and the additional results obtained whe
over (possibly) distinct databases. Further- The two databases, however, had the foemploying special bridging agents from Chas
more, instead of voting (such as AdaBoostlowing schema differences: to compute the values of First Union’s miss
over the predictions of classifiers for the final
classification, we use metalearning to co
bine the individual classifiers’ predictions.

« Chase and First Union defined a (nearlynents show the superior performance of met
identical) feature with different seman-learning over the single-model approaches ar
tics. over the traditional authorization and deteg

Evaluation of knowledge sharing and| ¢ Chase includes two (continuous) featureon systems (at least for the given data sets

pruning. First, we distributed the data sets not present in the First Union data. The metaclassifiers outperformed the singl

of Chase’s own COTS authorization and

ing attributes. Most obviously, these experir
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base classifiers in every category. Moreoyegomputer systems. Here we seek to perform
by bridging the two databases, we managetie same sort of task as in the credit card fraud
to further improve the metalearning system'slomain. We seek to build models to distin-
guish betweebad(intrusions or attacks) an
However, combining classifiers’ agentsgood(normal) connections or processes.
- first applying feature-extraction algorithm
ing) is not very effective, no doubt becauséollowed by the application of machine-learp-
the attribute missing from the First Uni Ning algorithms (such as Ripper) to learn and
data set is significant in modeling the Chasgombine multiple models for different types g.
data set. Hence, the First Union classifiersf intrusions, we have achieved remarkably
are not as effective as the Chase classiflegpod success in detecting intrusidnghis
on the Chase data, and the Chase classifigigrk, as well as the results reported in this
cannot perform at full strength at the Firstrticle, demonstrates convincingly that dis- ¢
tributed data-mining techniques that combine

This table also shows the invaluable con rimultiple models produce effective fraud and
bution of pruning. In all cases, pruning suCintrusion detectors™

performance.

from the two banks directly (without brid

Union sites without the bridging agents.

ceeded in computing metaclassifiers with si
ilar or better fraud-detection capabilities, while

reducing their size and thus improving th irA‘knowhdgmen's

efficiency. We have provided detailed descrip-

tion on the pruning methods and a compara- We thank the past and current participants ofuter science at the Florida Institute of Technol-

tive study between predictive performance anglis Project: Charles Elkan, Wenke Lee, Shell

metaclassifier throughput elsewhére.

1.

NE LIMITATION OF OUR AP-
proach to skewed distributions is the need to
run preliminary experiments to determine the
desired training distribution based on a de-

) . 2.
fined cost model. This process can be auto-
mated, but it is unavoidable because the
desired distribution highly depends on the cost
model and the learning algorithm. Currently,
for simplicity reasons, all the base learners us
the same desired distribution; using an indi-
vidualized training distribution for each base
learner could improve the performance. Fur-4.
thermore, because thieves also learn and fraud
patterns evolve over time, some classifiers jare
more relevant than others at a particular ti
Therefore, an adaptive classifier-selectipon
method is essential. Unlike a monolithic
approach of learning one classifier using
incremental learning, our modular multicl _o
sifier approach facilitates adaptation over i
and removes out-of-date knowledge.

Our experience in credit card fraud detec-
tion has also affected other important appli-
cations. Encouraged by our results, we shi ed6
our attention to the growing problem of intru-
sion detection in network- and host-based

Tselepis, Alex Tuzhilin, and Junxin Zhang. W
also appreciate the data and expertise provide!
Chase and First Union for conducting this stu
This research was partially supported by gra
from DARPA (F30602-96-1-0311) and the NS
(IRI-96-32225 and CDA-96-25374).
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