
D A T A M I N I N G

Distributed Data Mining in
Credit Card Fraud Detection
Philip K. Chan, Florida Institute of Technology
Wei Fan, Andreas L. Prodromidis, and Salvatore J. Stolfo, Columbia University

CREDIT CARD TRANSACTIONS CON-
tinue to grow in number, taking an ever-larger
share of the US payment system and leading
to a higher rate of stolen account numbers
and subsequent losses by banks. Improved
fraud detection thus has become essential to
maintain the viability of the US payment sys-
tem. Banks have used early fraud warning
systems for some years.

Large-scale data-mining techniques can
improve on the state of the art in commercial
practice. Scalable techniques to analyze mas-
sive amounts of transaction data that effi-
ciently compute fraud detectors in a timely
manner is an important problem, especially
for e-commerce. Besides scalability and effi-
ciency, the fraud-detection task exhibits tech-
nical problems that include skewed distribu-
tions of training data and nonuniform cost
per error, both of which have not been widely
studied in the knowledge-discovery and data-
mining community.

In this article, we survey and evaluate a
number of techniques that address these three
main issues concurrently. Our proposed
methods of combining multiple learned fraud
detectors under a “cost model” are general
and demonstrably useful; our empirical
results demonstrate that we can significantly
reduce loss due to fraud through distributed
data mining of fraud models.

Our approach

In today’s increasingly electronic society
and with the rapid advances of electronic com-
merce on the Internet, the use of credit cards
for purchases has become convenient and nec-
essary. Credit card transactions have become
the de facto standard for Internet and Web-
based e-commerce. The US government esti-
mates that credit cards accounted for approx-
imately US $13 billion in Internet sales during
1998. This figure is expected to grow rapidly
each year. However, the growing number of
credit card transactions provides more oppor-
tunity for thieves to steal credit card numbers
and subsequently commit fraud. When banks
lose money because of credit card fraud, card-
holders pay for all of that loss through higher
interest rates, higher fees, and reduced bene-
fits. Hence, it is in both the banks’ and the

cardholders’ interest to reduce illegitimate use
of credit cards by early fraud detection. For
many years, the credit card industry has stud-
ied computing models for automated detec-
tion systems; recently, these models have been
the subject of academic research, especially
with respect to e-commerce.

The credit card fraud-detection domain
presents a number of challenging issues for
data mining:

• There are millions of credit card transac-
tions processed each day. Mining such
massive amounts of data requires highly
efficient techniques that scale.

• The data are highly skewed—many more
transactions are legitimate than fraudu-
lent. Typical accuracy-based mining tech-
niques can generate highly accurate fraud
detectors by simply predicting that all

THIS SCALABLE BLACK-BOX APPROACH FOR BUILDING

EFFICIENT FRAUD DETECTORS CAN SIGNIFICANTLY REDUCE

LOSS DUE TO ILLEGITIMATE BEHAVIOR. IN MANY CASES, THE

AUTHORS’ METHODS OUTPERFORM A WELL-KNOWN, STATE-
OF-THE-ART COMMERCIAL FRAUD-DETECTION SYSTEM.

NOVEMBER/DECEMBER 1999 1094-7167/99/$10.00 © 1999 IEEE 67

transactions are legitimate, although this
is equivalent to not detecting fraud at all.

• Each transaction record has a different
dollar amount and thus has a variable
potential loss, rather than a fixed misclas-
sification cost per error type, as is com-
monly assumed in cost-based mining
techniques.

Our approach addresses the efficiency and
scalability issues in several ways. We divide

a large data set of labeled transactions (either
fraudulent or legitimate) into smaller subsets,
apply mining techniques to generate classi-
fiers in parallel, and combine the resultant base
models by metalearning from the classifiers’
behavior to generate a metaclassifier.1 Our
approach treats the classifiers as black boxes
so that we can employ a variety of learning
algorithms. Besides extensibility, combining
multiple models computed over all available
data produces metaclassifiers that can offset

the loss of predictive performance that usu-
ally occurs when mining from data subsets or
sampling. Furthermore, when we use the
learned classifiers (for example, during trans-
action authorization), the base classifiers can
execute in parallel, with the metaclassifier then
combining their results. So, our approach is
highly efficient in generating these models and
also relatively efficient in applying them.

Another parallel approach focuses on par-
allelizing a particular algorithm on a particu-

68 IEEE INTELLIGENT SYSTEMS

The AdaCost algorithm
One of the most important results of our experimental work on this

domain was the realization that each of the base-learning algorithms
employed in our experiments utilized internal heuristics based on train-
ing accuracy, not cost. This leads us to investigate new algorithms that
employ internal metrics of misclassification costwhen computing hy-
potheses to predict fraud.

Here, we describe AdaCost1 (a variant of AdaBoost2,3), which reduces
both fixed and variable misclassification costs more significantly than
AdaBoost. We follow the generalized analysis of AdaBoost by Robert
Schapire and Yoram Singer.3 Figure A shows the algorithm. Let S=
((x1,c1,y1), …, (xm,cm,ym)) be a sequence of training examples where each
instance xi belongs to a domain X, each cost factor ci belongs to thenon-
negative real domainR+, and each label yi belongs to a finite label space
Y. We only focus on binary classification problems in which Y = {–1,
+1}. h is a weak hypothesis—it has the form h:X – R. The sign of h(x) is
interpreted as the predicted label, and the magnitude |h(x)| is the “confi-
dence” in this prediction. Let t be an index to show the round of boosting
and Dt(i) be the weight given to (xi,ci,yi) at the tth round. 0 ≤ Dt(i) ≤1, and
ΣDt(i) = 1 is the chosen parameter as a weight for weak hypothesis ht at
the tth round. We assume αt > 0. β(sign(yiht(xi)),ci) is a cost-adjustment
function with two arguments: sign(yi ht(xi)) to show if ht(xi) is correct, and
the cost factor ci.

The difference between AdaCost and AdaBoost is the additional cost-
adjustment function β(sign(yiht(xi)),ci) in the weight-updating rule.

Where it is clear in context, we use either β(i) or β(ci) as a shorthand for
β(sign(yiht(xi)),ci). Furthermore, we use β+ when sign (yi ht(xi)) = +1 and
β– when sign(yi ht(xi)) = –1. For an instance with a higher cost factor,β(i)
increases its weights “more” if the instance is misclassified, but
decreases its weight “less” otherwise. Therefore, we require β–(ci) to be
nondecreasing with respect to ci,β+ (ci) to be nonincreasing, and both are
nonnegative. We proved that AdaCost reduces cost on the training data.1

Logically, we can assign a cost factor c of tranamt – overheadto
frauds and a factor c of overhead to nonfrauds. This reflects how the pre-
diction errors will add to the total cost of a hypothesis. Because the
actual overheadis a closely guarded trade secret and is unknown to us,
we chose to set overhead∈ {60, 70, 80, 90} to run four sets of
experiments. We normalized each ci to [0,1]. The cost adjustment func-
tion β is chosen as:β– (c) = 0.5⋅c + 0.5 and β+(c) = –0.5⋅c + 0.5.

As in previous experiments, we use training data from one month and
data from two months later for testing. Our data set let us form 10 such
pairs of training and test sets. We ran both AdaBoost and AdaCost to the
50th round. We used Ripper as the “weak” learner because it provides an
easy way to change the training set’s distribution. Because using the
training set alone usually overestimates a rule set’s accuracy, we used the
Laplace estimate to generate the confidence for each rule.

We are interested in comparing Ripper (as a baseline), AdaCost, and
AdaBoost in several dimensions. First, for each data set and cost model,
we determine which algorithm has achieved the lowest cumulative mis-
classification cost. We wish to know in how many cases AdaCost is the
clear winner. Second, we also seek to know, quantitatively, the difference
in cumulative misclassification cost of AdaCost from AdaBoost and the
baseline Ripper. It is interesting to measure the significance of these dif-
ferences in terms of both reduction in misclassification loss and percent-
age of reduction. Finally, we are interested to know if AdaCost requires
more computing power.

Figure B plots the results from the Chase Bank’s credit card data. Fig-
ure B1 shows the average reduction of 10 months in percentage cumula-
tive loss (defined as cumulativeloss/ maximalloss – leastloss* 100%) for
AdaBoost and AdaCost for all 50 rounds with an overhead of $60 (results
for other overheads are in other work1). We can clearly see that there is a
consistent reduction. The absolute amount of reduction is around 3%

We also observe that the speed of reduction by AdaCost is quicker
than that of AdaBoost. The speed is the highest in the first few rounds.
This means that in practice, we might not need to run AdaCost for many
rounds. Figure B2 plots the ratio of cumulative cost by AdaCost and
AdaBoost. We have plotted the results of all 10 pairs of training and test
months over all rounds and overheads. Most of the points are above the y
= x line in Figure B2, implying that AdaCost has lower cumulative loss in
an overwhelming number of cases.

References
1. W. Fan et al., “Adacost: Misclassification Cost-Sensitive

Boosting,” Proc. 16th Int’l Conf. Machine Learning, Morgan Kauf-
mann, San Francisco, 1999, pp. 97–105. Figure A. AdaCost.

Given: (x1, c1, y1), …,(xm, cm, ym):xi ∈ X,ci ∈ R+,yi ∈ {–1,+1}
Initialize D1(i) (such as D1(i) = (such as D1(i) = ci/∑m

j cj)
For t = 1, …,T:

1. Train weak learner using distribution Dt.
2. Compute weak hypothesis ht: X→R.
3. Choose αt ∈ R and β(i) ∈ R+

4. Update

where β(sign(yiht(xi)),ci) is a cost-adjustment func-
tion. Zt is a normalization factor chosen so that Dt+1
will be a distribution.

Output the final hypothesis:

H(x) = sign(f(x)) where f(x) = αt t
t

T
h x()

=
∑











1

D i
D i y h x y h x c

Z
t

t t i t i

t

i t i i
+ =

−()
1()

() exp () (()),)α β sign(

NOVEMBER/DECEMBER 1999 69

lar parallel architecture. However, a new algo-
rithm or architecture requires a substantial
amount of parallel-programming work. Al-
though our architecture- and algorithm-inde-
pendent approach is not as efficient as some
fine-grained parallelization approaches, it lets
users plug different off-the-shelf learning pro-
grams into a parallel and distributed environ-
ment with relative ease and eliminates the
need for expensive parallel hardware.

Furthermore, because our approach could

generate a potentially large number of classi-
fiers from the concurrently processed data
subsets, and therefore potentially require more
computational resources during detection, we
investigate pruning methods that identify
redundant classifiers and remove them from
the ensemble without significantly degrading
the predictive performance. This pruning tech-
nique increases the learned detectors’ com-
putational performance and throughput.

The issue of skewed distributions has not

been studied widely because many of the data
sets used in research do not exhibit this char-
acteristic. We address skewness by partition-
ing the data set into subsets with a desired dis-
tribution, applying mining techniques to the
subsets, and combining the mined classifiers
by metalearning (as we have already dis-
cussed). Other researchers attempt to remove
unnecessary instances from the majority
class—instances that are in the borderline
region (noise or redundant exemplars) are can-
didates for removal. In contrast, our approach
keeps all the data for mining and does not
change the underlying mining algorithms.

We address the issue of nonuniform cost
by developing the appropriate cost model for
the credit card fraud domain and biasing our
methods toward reducing cost. This cost
model determines the desired distribution
just mentioned. AdaCost (a cost-sensitive
version of AdaBoost) relies on the cost model
for updating weights in the training distrib-
ution. (For more on AdaCost, see the “Ada-
Cost algorithm” sidebar.) Naturally, this cost
model also defines the primary evaluation
criterion for our techniques. Furthermore, we
investigate techniques to improve the cost
performance of a bank’s fraud detector by
importing remote classifiers from other
banks and combining this remotely learned
knowledge with locally stored classifiers.
The law and competitive concerns restrict
banks from sharing information about their
customers with other banks. However, they
may share black-box fraud-detection mod-
els. Our distributed data-mining approach
provides a direct and efficient solution to
sharing knowledge without sharing data. We
also address possible incompatibility of data
schemata among different banks.

We designed and developed an agent-
based distributed environment to demon-
strate our distributed and parallel data-min-
ing techniques. The JAM (Java Agents for
Metalearning) system not only provides dis-
tributed data-mining capabilities, it also lets
users monitor and visualize the various learn-
ing agents and derived models in real time.
Researchers have studied a variety of algo-
rithms and techniques for combining multi-
ple computed models. The JAM system pro-
vides generic features to easily implement
any of these combining techniques (as well
as a large collection of base-learning algo-
rithms), and it has been broadly available for
use. The JAM system is available for down-
load at http://www.cs.columbia.edu/~sal/
JAM/PROJECT.2

2. Y. Freund and R. Schapire, “Experiments with a New Boosting Algorithm,”Proc. 13th Conf.
Machine Learning, Morgan Kaufmann, San Francisco, 1996, pp. 148–156.

3. R. Schapire and Y. Singer, “Improved Boosting Algorithms Using Confidence-Rated Predic-
tions,” Proc. 11th Conf. Computational Learning Theory, ACM Press, New York, 1998.

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 c

um
ul

at
iv

e
m

is
cl

as
si

fic
at

io
n

co
st

Boosting Rounds

Overhead = 60

AdaBoost
AdaCost

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Ad
aB

oo
st

 c
um

ul
at

iv
e

co
st

AdaCost cumulative cost

(1)

(2)

y=x
Percentagel of AdaCost and AdaBoost

Figure B. Cumulative cost versus rounds (1); AdaBoost versus AdaCost in cumulative cost (2).

Credit card data and cost
models

Chase Bank and First Union Bank, mem-
bers of the Financial Services Technology
Consortium (FSTC), provided us with real
credit card data for this study. The two data
sets contain credit card transactions labeled
as fraudulent or legitimate. Each bank sup-
plied 500,000 records spanning one year with
20% fraud and 80% nonfraud distribution for
Chase Bank and 15% versus 85% for First
Union Bank. In practice, fraudulent transac-
tions are much less frequent than the 15% to
20% observed in the data given to us. These
data might have been cases where the banks
have difficulty in determining legitimacy cor-
rectly. In some of our experiments, we delib-
erately create more skewed distributions to
evaluate the effectiveness of our techniques
under more extreme conditions.

Bank personnel developed the schemata
of the databases over years of experience and
continuous analysis to capture important
information for fraud detection. We cannot
reveal the details of the schema beyond what
we have described elsewhere.2 The records
of one schema have a fixed length of 137
bytes each and about 30 attributes, including
the binary class label (fraudulent/legitimate
transaction). Some fields are numeric and the
rest categorical. Because account identifica-
tion is not present in the data, we cannot
group transactions into accounts. Therefore,
instead of learning behavior models of indi-
vidual customer accounts, we build overall
models that try to differentiate legitimate
transactions from fraudulent ones. Our mod-
els are customer-independent and can serve
as a second line of defense, the first being
customer-dependent models.

Most machine-learning literature concen-
trates on model accuracy (either training error
or generalization error on hold-out test data
computed as overall accuracy, true-positive or
false-positive rates, or return-on-cost analysis).
This domain provides a considerably different
metric to evaluate the learned models’perfor-
mance—models are evaluated and rated by a
cost model. Due to the different dollar amount
of each credit card transaction and other fac-
tors, the cost of failing to detect a fraud varies
with each transaction. Hence, the cost model
for this domain relies on the sum and average
of loss caused by fraud. We define

and

where Cost(i) is the cost associated with
transactions i, and n is the total number of
transactions.

After consulting with a bank representa-
tive, we jointly settled on a simplified cost
model that closely reflects reality. Because it
takes time and personnel to investigate a
potentially fraudulent transaction, each inves-
tigation incurs an overhead. Other related
costs—for example, the operational resources
needed for the fraud-detection system—are
consolidated into overhead.So, if the amount
of a transaction is smaller than the overhead,
investigating the transaction is not worthwhile
even if it is suspicious. For example, if it takes
$10 to investigate a potential loss of $1, it is
more economical not to investigate it. There-
fore, assuming a fixed overhead,we devised
the cost model shown in Table 1 for each
transaction, where tranamtis the amount of a
credit card transaction. The overhead thresh-
old, for obvious reasons, is a closely guarded
secret and varies over time. The range of val-
ues used here are probably reasonable levels
as bounds for this data set, but are probably
significantly lower. We evaluated all our
empirical studies using this cost model.

Skewed distributions

Given a skewed distribution, we would like
to generate a training set of labeled transactions
with a desired distribution without removing
any data, which maximizes classifier perfor-
mance. In this domain, we found that deter-
mining the desired distribution is an experi-
mental art and requires extensive empirical tests
to find the most effective training distribution.

In our approach, we first create data sub-
sets with the desired distribution (determined
by extensive sampling experiments). Then
we generate classifiers from these subsets
and combine them by metalearning from
their classification behavior. For example, if
the given skewed distribution is 20:80 and
the desired distribution for generating the
best models is 50:50, we randomly divide the

majority instances into four partitions and
form four data subsets by merging the minor-
ity instances with each of the four partitions
containing majority instances. That is, the
minority instances replicate across four data
subsets to generate the desired 50:50 distri-
bution for each distributed training set.

For concreteness, let Nbe the size of the data
set with a distribution of x:y (x is the percent-
age of the minority class) and u:vbe the desired
distribution. The number of minority instances
is N × x, and the desired number of majority
instances in a subset is Nx× v/u. The number
of subsets is the number of majority instances
(N × y) divided by the number of desired
majority instances in each subset, which is Ny
divided by Nxv/u or y/x × u/v. So, we have
y/x×u/vsubsets, each of which has Nxminor-
ity instances and Nxv/umajority instances.

The next step is to apply a learning algo-
rithm or algorithms to each subset. Because
the learning processes on the subsets are inde-
pendent, the subsets can be distributed to dif-
ferent processors and each learning process
can run in parallel. For massive amounts of
data, our approach can substantially improve
speed for superlinear time-learning algo-
rithms. The generated classifiers are com-
bined by metalearning from their classifica-
tion behavior. We have described several
metalearning strategies elsewhere.1

To simplify our discussion, we only
describe the class-combiner(or stacking)
strategy.3 This strategy composes a metalevel
training set by using the base classifiers’pre-
dictions on a validation set as attribute val-
ues and the actual classification as the class
label. This training set then serves for train-
ing a metaclassifier. For integrating subsets,
the class-combiner strategy is more effective
than the voting-based techniques. When the
learned models are used during online fraud
detection, transactions feed into the learned
base classifiers and the metaclassifier then
combines their predictions. Again, the base
classifiers are independent and can execute
in parallel on different processors. In addi-
tion, our approach can prune redundant base
classifiers without affecting the cost perfor-
mance, making it relatively efficient in the
credit card authorization process.

AverageCost
CumulativeCost

n
=

CumulativeCost Cost i
i

n
= ∑ ()

70 IEEE INTELLIGENT SYSTEMS

Table 1. Cost model assuming a fixed overhead.

OUTCOME COST

Miss (false negative—FN) Tranamt
False alarm (false positive—FP) Overhead if tranamt > overhead or 0 if tranamt ≤ overhead
Hit (true positive—TP) Overhead if tranamt > overhead or tranamt if tranamt ≤ overhead
Normal (true negative—TN) 0

Experiments and results. To evaluate our
multiclassifier class-combiner approach to
skewed class distributions, we performed a
set of experiments using the credit card fraud
data from Chase.4We used transactions from
the first eight months (10/95–5/96) for train-
ing, the ninth month (6/96) for validating,
and the twelfth month (9/96) for testing.
(Because credit card transactions have a nat-
ural two-month business cycle—the time to
bill a customer is one month, followed by a
one-month payment period—the true label
of a transaction cannot be determined in less
than two months’ time. Hence, building mod-
els from data in one month cannot be ratio-
nally applied for fraud detection in the next
month. We therefore test our models on data
that is at least two months newer.)

Based on the empirical results from the
effects of class distributions, the desired distri-
bution is 50:50. Because the given distribution
is 20:80, four subsets are generated from each
month for a total of 32 subsets. We applied four
learning algorithms (C4.5, CART, Ripper, and
Bayes) to each subset and generated 128 base
classifiers. Based on our experience with train-
ing metaclassifiers, Bayes is generally more
effective and efficient, so it is the metalearner
for all the experiments reported here.

Furthermore, to investigate if our approach
is indeed fruitful, we ran experiments on the
class-combiner strategy directly applied to
the original data sets from the first eight
months (that is, they have the given 20:80
distribution). We also evaluated how indi-
vidual classifiers generated from each month
perform without class-combining.

Table 2 shows the cost and savings from the
class-combiner strategy using the 50:50 dis-
tribution (128 base classifiers), the average of
individual CART classifiers generated using
the desired distribution (10 classifiers), class-
combiner using the given distribution (32 base
classifiers—8 months × 4 learning algo-
rithms), and the average of individual classi-
fiers using the given distribution (the average
of 32 classifiers). (We did not perform exper-
iments on simply replicating the minority
instances to achieve 50:50 in one single data

set because this approach increases the train-
ing-set size and is not appropriate in domains
with large amounts of data—one of the three
primary issues we address here.) Compared
to the other three methods, class-combining
on subsets with a 50:50 fraud distribution
clearly achieves a significant increase in sav-
ings—at least $110,000 for the month (6/96).
When the overhead is $50, more than half of
the losses were prevented.

Surprisingly, we also observe that when the
overhead is $50, a classifier (Single CART)
trained from one month’s data with the desired
50:50 distribution (generated by ignoring
some data) achieved significantly more sav-
ings than combining classifiers trained from
all eight months’data with the given distribu-
tion. This reaffirms the importance of employ-
ing the appropriate training class distribution
in this domain. Class-combiner also con-
tributed to the performance improvement.
Consequently, utilizing the desired training
distribution and class-combiner provides a
synergistic approach to data mining with
nonuniform class and cost distributions. Per-
haps more importantly, how do our techniques
perform compared to the bank’s existing
fraud-detection system? We label the current
system “COTS” (commercial off-the-shelf
system) in Table 2. COTS achieved signifi-
cantly less savings than our techniques in the
three overhead amounts we report in this table.

This comparison might not be entirely
accurate because COTS has much more
training data than we have and it might be
optimized to a different cost model (which
might even be the simple error rate). Fur-
thermore, unlike COTS, our techniques are
general for problems with skewed distribu-
tions and do not utilize any domain knowl-
edge in detecting credit card fraud—the only
exception is the cost model used for evalua-
tion and search guidance. Nevertheless,
COTS’performance on the test data provides
some indication of how the existing fraud-
detection system behaves in the real world.

We also evaluated our method with more
skewed distributions (by downsampling
minority instances): 10:90, 1:99, and 1:999.

As we discussed earlier, the desired distri-
bution is not necessarily 50:50—for instance,
the desired distribution is 30:70 when the
given distribution is 10:90. With 10:90 dis-
tributions, our method reduced the cost sig-
nificantly more than COTS. With 1:99 dis-
tributions, our method did not outperform
COTS. Both methods did not achieve any
savings with 1:999 distributions.

To characterize the condition when our
techniques are effective, we calculate R, the
ratio of the overhead amount to the average
cost:R = Overhead/Average cost. Our ap-
proach is significantly more effective than
the deployed COTS when R< 6. Both meth-
ods are not effective when the R > 24. So,
under a reasonable cost model with a fixed
overhead cost in challenging transactions as
potentially fraudulent, when the number of
fraudulent transactions is a very small per-
centage of the total, it is financially undesir-
able to detect fraud. The loss due to this fraud
is yet another cost of conducting business.

However, filtering out “easy” (or low-risk)
transactions (the data we received were pos-
sibly filtered by a similar process) can reduce
a high overhead-to-loss ratio. The filtering
process can use fraud detectors that are built
based on individual customer profiles, which
are now in use by many credit card compa-
nies. These individual profiles characterize
the customers’ purchasing behavior. For
example, if a customer regularly buys gro-
ceries at a particular supermarket or has set
up a monthly payment for phone bills, these
transactions are close to no risk; hence. pur-
chases of similar characteristics can be safely
authorized without further checking. Reduc-
ing the overhead through streamlining busi-
ness operations and increased automation
will also lower the ratio.

Knowledge sharing through
bridging

Much of the prior work on combining
multiple models assumes that all models
originate from different (not necessarily dis-

NOVEMBER/DECEMBER 1999 71

Table 2. Cost and savings in the credit card fraud domain using class-combiner (cost ± 95% confidence interval).

OVERHEAD = $50 OVERHEAD = $75 OVERHEAD = $100
FRAUD SAVED SAVED SAVED SAVED SAVED SAVED

METHOD (%) COST (%) ($K) COST (%) ($K) COST (%) ($K)

Class combiner 50 17.96 ±.14 51 761 20.07 ±.13 46 676 21.87 ±.12 41 604
Single CART 50 20.81 ±.75 44 647 23.64 ±.96 36 534 26.05 ± 1.25 30 437
Class combiner Given 22.61 39 575 23.99 35 519 25.20 32 471
Average single

classifier Given 27.97 ± 1.64 24 360 29.08 ± 1.60 21 315 30.02 ± 1.56 19 278
COTS N/A 25.44 31 461 26.40 29 423 27.24 26 389

tinct) subsets of a single data set as a means
to increase accuracy (for example, by impos-
ing probability distributions over the in-
stances of the training set, or by stratified
sampling, subsampling, and so forth) and not
as a means to integrate distributed informa-
tion. Although the JAM system addresses the
latter problem by employing metalearning
techniques, integrating classification models
derived from distinct and distributed data-
bases might not always be feasible.

In all cases considered so far, all classifi-
cation models are assumed to originate from
databases of identical schemata. Because
classifiers depend directly on the underlying
data’s format, minor differences in the sche-
mata between databases derive incompatible
classifiers—that is, a classifier cannot be
applied on data of different formats. Yet these
classifiers may target the same concept. We
seek to bridge these disparate classifiers in
some principled fashion.

The banks seek to be able to exchange
their classifiers and thus incorporate useful
information in their system that would oth-
erwise be inaccessible to both. Indeed, for
each credit card transaction, both institutions
record similar information, however, they
also include specific fields containing impor-
tant information that each has acquired sep-
arately and that provides predictive value in
determining fraudulent transaction patterns.
To facilitate the exchange of knowledge (rep-
resented as remotely learned models) and
take advantage of incompatible and other-
wise useless classifiers, we need to devise
methods that bridge the differences imposed
by the different schemata.

Database compatibility. The incompatible
schema problem impedes JAM from taking
advantage of all available databases. Let’s
consider two data sites A and B with data-
bases DBA and DBB, having similar but not
identical schemata. Without loss of general-
ity, we assume that

Schema(DBA) = {A1, A2, ...,An, An+1, C}
Schema(DBB) = {B1, B2, ...,Bn, Bn+1, C}

where,Ai and Bi denote the ith attribute of
DBA and DBB, respectively, and C the class
label (for example, the fraud/legitimate label
in the credit card fraud illustration) of each
instance. Without loss of generality, we fur-
ther assume that Ai = Bi, 1 ≤ i ≤ n. As for the
An+1 and Bn+1 attributes, there are two
possibilities:

1. An+1 ≠ Bn+1: The two attributes are of
entirely different types drawn from dis-
tinct domains. The problem can then be
reduced to two dual problems where one
database has one more attribute than the
other; that is,

Schema(DBA) = {A1, A2 ,..., An, An+1, C}
Schema(DBB) = {B1, B2 ,..., Bn, C}

where we assume that attribute Bn+1 is
not present in DBB. (The dual problem
has DBB composed with Bn+1,but An+1 is
not available to A.)

2. An+1 ≈ Bn+1: The two attributes are of
similar type but slightly different
semantics—that is, there might be a
map from the domain of one type to the
domain of the other. For example,An+1

and Bn+1 are fields with time-dependent
information but of different duration
(that is,An+1 might denote the number
of times an event occurred within a win-
dow of half an hour and Bn+1 might
denote the number of times the same
event occurred but within 10 minutes).

In both cases (attribute An+1 is either not
present in DBB or semantically different from
the correspondingBn+1), the classifiers CAj

derived from DBA are not compatible with
DBB’s data and therefore cannot be directly
used in DBB’s site and vice versa. But the pur-
pose of using a distributed data-mining system
and deploying learning agents and metalearn-
ing their classifier agents is to be able to com-
bine information from different sources.

Bridging methods. There are two methods
for handling the missing attributes.5

Method I: Learn a local model for the miss-
ing attribute and exchange. Database DBB

imports, along with the remote classifier
agent, a bridging agent from database DBA

that is trained to compute values for the miss-
ing attribute An+1 in DBB’s data. Next,DBB

applies the bridging agent on its own data to
estimate the missing values. In many cases,
however, this might not be possible or desir-
able by DBA (for example, in case the
attribute is proprietary). The alternative for
database DBB is to simply add the missing
attribute to its data set and fill it with null val-
ues. Even though the missing attribute might
have high predictive value for DBA, it is of
no value to DBB. After all, DBB did not

include it in its schema, and presumably
other attributes (including the common ones)
have predictive value.

Method II: Learn a local model without the
missing attribute and exchange. In this
approach, database DBA can learn two local
models: one with the attribute An+1 that can be
used locally by the metalearning agents and
one without it that can be subsequently
exchanged. Learning a second classifier agent
without the missing attribute, or with the
attributes that belong to the intersection of the
attributes of the two databases’ data sets,
implies that the second classifier uses only the
attributes that are common among the partic-
ipating sites and no issue exists for its inte-
gration at other databases. But, remote classi-
fiers imported by database DBA (and assured
not to involve predictions over the missing
attributes) can still be locally integrated with
the original model that employs An+1. In this
case, the remote classifiers simply ignore the
local data set’s missing attributes.

Both approaches address the incompati-
ble schema problem,and metalearning over
these models should proceed in a straight-
forward manner. Compared to Zbigniew
Ras’s related work,6 our approach is more
general because our techniques support both
categorical and continuous attributes and are
not limited to a specific syntactic case or
purely logical consistency of generated rule
models. Instead, these bridging techniques
can employ machine- or statistical-learning
algorithms to compute arbitrary models for
the missing values.

Pruning

An ensemble of classifiers can be unneces-
sarily complex, meaning that many classifiers
might be redundant, wasting resources and
reducing system throughput. (Throughput
here denotes the rate at which a metaclassifier
can pipe through and label a stream of data
items.) We study the efficiency of metaclassi-
fiers by investigating the effects of pruning
(discarding certain base classifiers) on their
performance. Determining the optimal set of
classifiers for metalearning is a combinator-
ial problem. Hence, the objective of pruning is
to utilize heuristic methods to search for par-
tially grown metaclassifiers (metaclassifiers
with pruned subtrees) that are more efficient
and scalable and at the same time achieve
comparable or better predictive performance

72 IEEE INTELLIGENT SYSTEMS

results than fully grown (unpruned) meta-
classifiers. To this end, we introduced two
stages for pruning metaclassifiers; the pre-
training and posttraining pruning stages. Both
levels are essential and complementary to each
other with respect to the improvement of the
system’s accuracy and efficiency.

Pretraining pruningrefers to the filtering
of the classifiers before they are combined.
Instead of combining classifiers in a brute-
force manner, we introduce a preliminary
stage for analyzing the available classifiers
and qualifying them for inclusion in a com-
bined metaclassifier. Only those classifiers
that appear (according to one or more pre-
defined metrics) to be most promising par-
ticipate in the final metaclassifier. Here, we
adopt a black-box approach that evaluates the
set of classifiers based only on their input and
output behavior, not their internal structure.
Conversely,posttraining pruningdenotes the
evaluation and pruning of constituent base
classifiers after a complete metaclassifier has
been constructed. We have implemented and
experimented with three pretraining and two
posttraining pruning algorithms, each with
different search heuristics.

The first pretraining pruning algorithm
ranks and selects its classifiers by evaluating
each candidate classifier independently (met-
ric-based), and the second algorithm decides
by examining the classifiers in correlation with
each other (diversity-based). The third relies
on the independent performance of the clas-
sifiers and the manner in which they predict
with respect to each other and with respect to
the underlying data set (coverage and spe-
cialty-based). The first posttraining pruning
algorithms are based on a cost-complexity
pruning technique (a technique the CART
decision-tree learning algorithm uses that
seeks to minimize the cost and size of its tree
while reducing the misclassification rate). The
second is based on the correlation between the
classifiers and the metaclassifier.7

Compared to Dragos Margineantu and
Thomas Dietterich’s approach,8 ours con-
siders the more general setting where ensem-
bles of classifiers can be obtained by apply-
ing possibly different learning algorithms
over (possibly) distinct databases. Further-
more, instead of voting (such as AdaBoost)
over the predictions of classifiers for the final
classification, we use metalearning to com-
bine the individual classifiers’ predictions.

Evaluation of knowledge sharing and
pruning. First, we distributed the data sets

across six different data sites (each site stores
two months of data) and prepared the set of
candidate base classifiers—that is, the orig-
inal set of base classifiers the pruning algo-
rithm is called to evaluate. We computed
these classifiers by applying five learning
algorithms (Bayes, C4.5, ID3, CART, and
Ripper) to each month of data, creating 60
base classifiers (10 classifiers per data site).
Next, we had each data site import the remote
base classifiers (50 in total) that we subse-
quently used in the pruning and metalearn-
ing phases, thus ensuring that each classifier
would not be tested unfairly on known data.
Specifically, we had each site use half of its
local data (one month) to test, prune, and
metalearn the base classifiers and the other
half to evaluate the pruned and unpruned
metaclassifier’s overall performance.7 In
essence, this experiment’s setting corre-
sponds to a parallel sixfold cross-validation.

Finally, we had the two simulated banks
exchange their classifier agents. In addition
to its 10 local and 50 internal classifiers
(those imported from their peer data sites),
each site also imported 60 external classifiers
(from the other bank). Thus, we populated
each simulated Chase data site with 60 (10 +
50) Chase classifiers and 60 First Union clas-
sifiers, and we populated each First Union
site with 60 (10 + 50) First Union classifiers
and 60 Chase classifiers. Again, the sites used
half of their local data (one month) to test,
prune, and metalearn the base classifiers and
the other half to evaluate the pruned or
unpruned metaclassifier’s overall perfor-
mance. To ensure fairness, we did not use the
10 local classifiers in metalearning.

The two databases, however, had the fol-
lowing schema differences:

• Chase and First Union defined a (nearly
identical) feature with different seman-
tics.

• Chase includes two (continuous) features
not present in the First Union data.

For the first incompatibility, we mapped
the First Union data values to the Chase
data’s semantics. For the second incompati-
bility, we deployed bridging agents to com-
pute the missing values.5 When predicting,
the First Union classifiers simply disregarded
the real values provided at the Chase data
sites, while the Chase classifiers relied on
both the common attributes and the predic-
tions of the bridging agents to deliver a pre-
diction at the First Union data sites.

Table 3 summarizes our results for the
Chase and First Union banks, displaying the
savings for each fraud predictor examined.
The column denoted as size indicates the
number of base classifiers used in the ensem-
ble classification system. The first row of
Table 3 shows the best possible performance
of Chase’s own COTS authorization and
detection system on this data set. The next
two rows present the performance of the best
base classifiers over the entire set and over a
single month’s data, while the last four rows
detail the performance of the unpruned (size
of 50 and 110) and pruned metaclassifiers
(size of 32 and 63). The first two of these
metaclassifiers combine only internal (from
Chase) base classifiers, while the last two
combine both internal and external (from
Chase and First Union) base classifiers. We
did not use bridging agents in these experi-
ments, because Chase defined all attributes
used by the First Union classifier agents.

Table 3 records similar data for the First
Union data set, with the exception of First
Union’s COTS authorization and detection
performance (it was not made available to us),
and the additional results obtained when
employing special bridging agents from Chase
to compute the values of First Union’s miss-
ing attributes. Most obviously, these experi-
ments show the superior performance of meta-
learning over the single-model approaches and
over the traditional authorization and detec-
tion systems (at least for the given data sets).
The metaclassifiers outperformed the single

NOVEMBER/DECEMBER 1999 73

Table 3. Results on knowledge sharing and pruning.

CHASE FIRST UNION

SAVINGS SAVINGS

CLASSIFICATION METHOD SIZE ($K) SIZE ($K)

COTS scoring system from Chase N/A 682 N/A N/A
Best base classifier over entire set 1 762 1 803
Best base classifier over one subset 1 736 1 770
Metaclassifier 50 818 50 944
Metaclassifier 32 870 21 943
Metaclassifier (+ First Union) 110 800 N/A N/A
Metaclassifier (+ First Union) 63 877 N/A N/A
Metaclassifier (+ Chase – bridging) N/A N/A 110 942
Metaclassifier (+ Chase + bridging) N/A N/A 110 963
Metaclassifier (+ Chase + bridging) N/A N/A 56 962

base classifiers in every category. Moreover,
by bridging the two databases, we managed
to further improve the metalearning system’s
performance.

However, combining classifiers’ agents
from the two banks directly (without bridg-
ing) is not very effective, no doubt because
the attribute missing from the First Union
data set is significant in modeling the Chase
data set. Hence, the First Union classifiers
are not as effective as the Chase classifiers
on the Chase data, and the Chase classifiers
cannot perform at full strength at the First
Union sites without the bridging agents.

This table also shows the invaluable contri-
bution of pruning. In all cases, pruning suc-
ceeded in computing metaclassifiers with sim-
ilar or better fraud-detection capabilities, while
reducing their size and thus improving their
efficiency. We have provided detailed descrip-
tion on the pruning methods and a compara-
tive study between predictive performance and
metaclassifier throughput elsewhere.7

ONE LIMITATION OF OUR AP-
proach to skewed distributions is the need to
run preliminary experiments to determine the
desired training distribution based on a de-
fined cost model. This process can be auto-
mated, but it is unavoidable because the
desired distribution highly depends on the cost
model and the learning algorithm. Currently,
for simplicity reasons, all the base learners use
the same desired distribution; using an indi-
vidualized training distribution for each base
learner could improve the performance. Fur-
thermore, because thieves also learn and fraud
patterns evolve over time, some classifiers are
more relevant than others at a particular time.
Therefore, an adaptive classifier-selection
method is essential. Unlike a monolithic
approach of learning one classifier using
incremental learning, our modular multiclas-
sifier approach facilitates adaptation over time
and removes out-of-date knowledge.

Our experience in credit card fraud detec-
tion has also affected other important appli-
cations. Encouraged by our results, we shifted
our attention to the growing problem of intru-
sion detection in network- and host-based

computer systems. Here we seek to perform
the same sort of task as in the credit card fraud
domain. We seek to build models to distin-
guish between bad(intrusions or attacks) and
good(normal) connections or processes. By
first applying feature-extraction algorithms,
followed by the application of machine-learn-
ing algorithms (such as Ripper) to learn and
combine multiple models for different types
of intrusions, we have achieved remarkably
good success in detecting intrusions.9 This
work, as well as the results reported in this
article, demonstrates convincingly that dis-
tributed data-mining techniques that combine
multiple models produce effective fraud and
intrusion detectors.

Acknowledgments
We thank the past and current participants of

this project: Charles Elkan, Wenke Lee, Shelley
Tselepis, Alex Tuzhilin, and Junxin Zhang. We
also appreciate the data and expertise provided by
Chase and First Union for conducting this study.
This research was partially supported by grants
from DARPA (F30602-96-1-0311) and the NSF
(IRI-96-32225 and CDA-96-25374).

References
1. P. Chan and S. Stolfo, “Metalearning for Mul-

tistrategy and Parallel Learning,”Proc. Sec-
ond Int’l Workshop Multistrategy Learning,
Center for Artificial Intelligence, George
Mason Univ., Fairfax,Va., 1993, pp. 150–165.

2. S. Stolfo et al., “JAM: Java Agents for Meta-
learning over Distributed Databases,”Proc.
Third Int’l Conf. Knowledge Discovery and
Data Mining, AAAI Press, Menlo Park,
Calif., 1997, pp. 74–81.

3. D. Wolpert, “Stacked Generalization,”Neural
Networks, Vol. 5, 1992, pp. 241–259.

4. P. Chan and S. Stolfo, “Toward Scalable
Learning with Nonuniform Class and Cost
Distributions: A Case Study in Credit Card
Fraud Detection,”Proc. Fourth Int’l Conf.
Knowledge Discovery and Data Mining,
AAAI Press, Menlo Park, Calif., 1998, pp.
164–168.

5. A. Prodromidis and S. Stolfo, “Mining Data-
bases with Different Schemas: Integrating
Incompatible Classifiers,”Proc. Fourth Intl
Conf. Knowledge Discovery and Data Min-
ing, AAAI Press, Menlo Park, Calif., 1998,
pp. 314–318.

6. Z. Ras, “Answering Nonstandard Queries in
Distributed Knowledge-Based Systems,”
Rough Sets in Knowledge Discovery, Studies

in Fuzziness and Soft Computing, L. Pol-
kowski and A. Skowron, eds., Physica Verlag,
New York, 1998, pp. 98–108.

7. A. Prodromidis and S. Stolfo, “Pruning Meta-
classifiers in a Distributed Data Mining Sys-
tem,” Proc. First Nat’l Conf. New Informa-
tion Technologies, Editions of New Tech.
Athens, 1998, pp. 151–160.

8. D. Margineantu and T. Dietterich, “Pruning
Adaptive Boosting,”Proc. 14th Int’l Conf.
Machine Learning, Morgan Kaufmann, San
Francisco, 1997, pp. 211–218.

9. W. Lee, S. Stolfo, and K. Mok, “Mining in a
Data-Flow Environment: Experience in Net-
work Intrusion Detection,”Proc. Fifth Int’l
Conf. Knowledge Discovery and Data Min-
ing, AAAI Press, Menlo Park, Calif., 1999,
pp. 114–124.

Philip K. Chan is an assistant professor of com-
puter science at the Florida Institute of Technol-
ogy. His research interests include scalable adap-
tive methods, machine learning, data mining,
distributed and parallel computing, and intelligent
systems. He received his PhD, MS, and BS in com-
puter science from Columbia University, Vander-
bilt University, and Southwest Texas State Uni-
versity, respectively. Contact him at Computer
Science, Florida Tech, Melbourne, FL 32901;
pkc@cs.fit. edu; www.cs.fit.edu/~pkc.

Wei Fan is a PhD candidate in computer science at
Columbia University. His research interests are in
machine learning, data mining, distributed systems,
information retrieval, and collaborative filtering. He
received his MSc and B.Eng from Tsinghua Uni-
versity and MPhil from Columbia University. Con-
tact him at the Computer Science Dept., Columbia
Univ., New York, NY 10027; wfan@cs.columbia.
edu;www.cs.columbia.edu/~wfan.

Andreas Prodromidis is a director in research and
development at iPrivacy. His research interests
include data mining, machine learning, electronic
commerce, and distributed systems. He received a
PhD in computer science from Columbia Univer-
sity and a Diploma in electrical engineering from
the National Technical University of Athens. He is
a member of the IEEE and AAAI. Contact him at
iPrivacy, 599 Lexington Ave., #2300, New York,
NY 10022; andreas@iprivacy.com; www.cs.
columbia. edu/~andreas.

Salvatore J. Stolfois a professor of computer sci-
ence at Columbia University and codirector of the
USC/ISI and Columbia Center for Applied
Research in Digital Government Information Sys-
tems. His most recent research has focused on dis-
tributed data-mining systems with applications to
fraud and intrusion detection in network informa-
tion systems. He received his PhD from NYU’s
Courant Institute. Contact him at the Computer
Science Dept., Columbia Univ., New York, NY
10027; sal@cs.columbia.edu; www.cs.columbia.
edu/sal; www.cs.columbia.edu/~sal.

74 IEEE INTELLIGENT SYSTEMS

