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Abstract—Open set recognition (OSR) problem has been a
challenge in many machine learning (ML) applications, such
as security. As new/unknown malware families occur regularly,
it is difficult to exhaust samples that cover all the classes for
the training process in ML systems. An advanced malware
classification system should classify the known classes correctly
while sensitive to the unknown class. In this paper, we introduce
a self-supervised pre-training approach for the OSR problem in
malware classification. We propose two transformations for the
function call graph (FCG) based malware representations to fa-
cilitate the pretext task. Also, we present a statistical thresholding
approach to find the optimal threshold for the unknown class.
Moreover, the experiment results indicate that our proposed pre-
training process can improve different performances of different
downstream loss functions for the OSR problem.

Index Terms—Malware classification, open set recognition, self-
supervised learning, representation learning

I. INTRODUCTION

As machine learning has achieved great success in various
domains, there is still a wide range of challenges in the real
world. For example, from the security scenario, new malware
classes emerge daily. A robust machine learning system for
malware detection should be able to classify the known
malware classes and recognize the newly unknown malware
classes, which is referred as Open Set Recognition (OSR)
problem [1]. The OSR problem aims to classify the multiple
known classes for a multinomial classification problem while
identifying the unknown classes.

In this paper, we follow a two-stage learning approach to
address the OSR problem in malware classification. Given
the malware assembly files, we first extract the function call
graphs (FCGs) as the input representations of the malware
samples. Next, to learn better representations for the malware
samples, we use a self-supervised pre-training approach for
the extracted FCGs. As the self-supervised learning approach
needs a pretext task, we propose two transformations for the
FCG inputs. Then both original and transformed FCGs are pro-
cessed by a detransformation autoencoder (DTAE) [2]. DTAE
involves an encoder and a decoder. The encoder learns the
representations for the inputs while the decoder reconstructs
the transformed inputs back to their original forms. After pre-
training and fine-tuning the representations, we apply a statis-
tical thresholding approach to find the optimal threshold for

the OSR tasks. Our contributions include, first, we summarize
the characteristics of the malware FCGs. Second, we propose
two transformation methods for the malware FCGs to facilitate
the self-supervised pre-training process for the OSR tasks.
Third, we introduce a statistical thresholding approach for the
OSR task, which performs similarly to the manually selected
threshold. Finally, our experiments on two different malware
datasets indicate that our proposed self-supervised pre-training
approach improves the model performance on the OSR tasks.

We organize this paper as follows. In section 2, we review
some related research works. In section 3, we first present
our proposed approach to the self-supervised pre-training for
the malware FCGs, then introduce a statistical thresholding
approach for the OSR tasks. Finally, section 4 evaluates the
proposed approach through experiment setup and results from
the analysis.

II. RELATED WORK

Function Call Graphs The graph features can preserve the
structural information between different entities, and have
been widely used in many research fields, such as social
network recommendation [3], molecules structure study [4]
and malware classification [5]. Specifically, the researches in
[6] and [5] extract function call graphs (FCGs) from disas-
sembled binary files. An FCG is a directed graph where the
vertices represent the function clusters (procedures), and the
edges represent the caller-callee relation between the functions
(vertices). As the FCGs have a good performance in saving
the interaction information between functions, in this work,
we also use malware FCGs as input features for the open set
recognition (OSR) problem.
Open Set Recognition The objective of the OSR problem
is to classify the multiple known classes for a multinomial
classification problem while identifying the unknown classes.
As new and unknown malware class occurs regularly, it is
impossible to collect samples that exhaust all the malware
classes. An advanced malware classification system should
adapt to the open set scenario, classifying the known classes
while recognizing the unknown class. Recent work have
brought neural network-based approach for the OSR problem
such as the works in [1], [7] and [8]. OpenMax [1] adapts
Extreme Value Theory (EVT) meta-recognition calibration in



the penultimate layer of the networks. Further, it redistributes
values of the activation vector to estimate the probability of
an input being from an unknown class. Hassen and Chan
propose ii loss for open set recognition [7]. It first finds the
representations for the known classes during training and then
recognizes an instance as unknown if it does not belong to any
known classes. MMF [8] is an extension to different types of
loss functions (classification loss and representation loss) to
facilitate the OSR task. It further separates the known and
unknown representations by increasing the signature feature
magnitudes of the known classes. Here, we propose a self-
supervised learning approach for the malware OSR problem.
Adding such a self-supervised pre-training process makes clas-
sification loss and representation loss functions more sensitive
to the unknown class.
Self-supervised Learning Self-supervised learning uses a
pretext task that is different from the primary task to learn
the representations. The pretext task includes autoencoding,
classifying transformations such as rotations [9], intra-sample
vs inter-sample transformations in contrastive loss [10], redun-
dancy reduction in learned features from transformations [11].
In addition to image recognition applications, more recent
research has extended self-supervised learning to graph rep-
resentation learning. Specifically, Graph contrastive learning
(GraphCL) in [12] designs four types of transformations for
a graph contrastive learning framework: node dropping, edge
perturbation, attribute masking, and subgraph sampling. The
experimental results indicate that the beneficial graph transfor-
mation technique is dataset-specific. Moreover, Pairwise Half-
graph Discrimination (PHD) in [13] proposes self-supervised
multi-scale contrastive learning for graph representation learn-
ing. The approach first generates two augmented views based
on local and global perspectives from the input graph. Then,
the objective function maximizes the agreement between node
representations across different views and networks. However,
as we will discuss later in Section III-B, FCGs are sparser
than most graph datasets, such as social networks. The exist-
ing graph transformation techniques like node dropping and
subgraph sampling are less applicable to FCGs. Our work
here introduces two different transformations for the malware
FCGs inputs. And then, we adopt the same learning strategy
as in DTAE [2], i.e., reconstructing the transformed inputs
back to original forms to improve the quality of learned
representations.

III. APPROACH

The objective of open set recognition (OSR) is to classify
the known classes and the unknown classes even when the
collected training samples cannot exhaust all the classes. An
advanced malware classification system that utilizes OSR
techniques can classify the known malware families while
identifying the unknown malware family. Hassen and Chan
[5] convert malware assembly files to FCGs as OSR input.
Here, we also use the FCGs as input samples. To learn better
representations for the OSR problem in malware classification,
we introduce a self-supervised pre-training process to learn

Table I: Graph statistics for datasets in function call graphs
(FCGs), biochemical molecules (BMs) and social networks
(SN). The statistics includes: average number of vertices,
average number of degrees and % of vertices that are neighbors
(Degree/Vertex), average number of connected components
(C.C.), average size of each connected components and relative
connected components size (C.C. Size/Vertex).

Dataset Category Vertex Degree (/Vertex) C.C. C.C. Size (/Vertex)
MS FCGs 27.55 1.66(6%) 14.99 3.74(16%)
AG FCGs 31.73 3.31(10%) 16.97 2.28(7%)
MUTAG BMs 17.93 1.10 (6%) 3.49 5.86(33%)
PROTEINS BMs 39.06 1.86(5%) 4.75 9.78(25%)
COLLAB SNs 74.49 32.99(44%) 4.65 30.36(41%)
DBLP v1 SNs 10.48 1.87(18%) 1.93 6.12(58%)

low-level features of the malware samples. Based on the FCGs
characteristics, we propose two transformation methods for
malware FCGs to facilitate the pretext task. Moreover, we
introduce a statistical method to identify unknown instances.

A. Malware Function Call Graphs (FCGs)

Previous research works have proposed various ways to
extract features for malware classifications: Schultz et al. [14]
extract features from printable strings in malware binaries. Hu
et al. [15] extract features from instruction n-grams. Hassen
and Chan [5] convert malware assembly files to FCGs as input
features. The FCGs can better preserve structural information
between functions. Thus, in this paper, we adopt the same
FCGs as in [5]. The system first extracts FCG representations
from dissembled binaries. In the FCGs, the vertices are func-
tions, and edges are the interactions (calls) between functions.
Then based on the instruction opcode sequence, it clusters
the functions using Locality Sensitive Hashing (LSH), and the
vertices (functions) are then arbitrarily labeled with cluster-ids.

The extracted FCGs are directed graph representations of
the dissembled malware binaries, with function clusters as the
graph vertices and the caller-callee relations between functions
as graph edges. As the cluster ids are arbitrarily assigned, we
will get different isomorphic graphs for the same malware
binaries when we change the order of the cluster ids.

B. FCG characteristics

In this subsection, we compare the characteristics of the
FCGs of malware datasets with two other categories of graphs:
biomedical molecules (BMs) and social networks (SNs) in
Table I. Specifically, we compare the FCGs extracted from
two malware datasets: Microsoft Challenge (MC) and Android
Genome (AG) (see section IV for more details) with MUTAG
[16], PROTEINS [17], COLLAB [18] and DBLP v1 [19]. In
the table, “Vertex” and “Degree” are the average numbers of
vertices and degrees in each dataset. We also measure the
average percentage of vertices that are neighbors by dividing
the number of degrees by the number of vertices. Moreover,
we calculate the average number of connected components
(C.C.) and the average size of connected components (C.C.
Size) for each dataset. Also, we divide the size of the C.C.
by the number of vertices to measure the relative C.C. Size.
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Figure 1: Transformations of FCG adjacency matrix

Comparing the graph statistics of the FCGs with the other
categories, we conclude two characteristics of the FCGs.

First, FCGs are sparser (i.e., have fewer direct neighbors)
than the graphs from the other two categories, especially social
networks. In the COLLAB dataset, the average degree of a
graph is 32.99, which means 44% of the vertices are direct
neighbors. Meanwhile, 6% of vertices are direct neighbors in
the MS dataset and 10% for the AG dataset.

Second, FCGs have more and relatively small connected
components than the other two categories of graphs. From
Table I, both malware FCGs contain around 15 connective
components, while the datasets from the other two categories
contain less than five connected components. Furthermore, the
average sizes of each connected component in the two malware
FCGs are less than 4, which means less than four vertices
are connected while isolated from the rest of the vertices.
Especially for the AG dataset, the connected components are
of size 2.28 on average, which is only 7% of the total vertices.
The relative connected components size is above 25% of
the total vertices for the four datasets from the other two
categories. Notably, the relative size of connected components
in DBLP v1 dataset reaches 58%.

C. FCG transformations

Self-supervised learning generally involves input transfor-
mations to achieve pretext tasks to learn better representations
of input samples. The research in [12] finds that the optimal
input transformation method is task-relevant, and it concludes
that node dropping and subgraph sampling are generally
beneficial across biochemical molecules and social networks
datasets. The node dropping transformation creates a new
graph view by discarding a specific set of vertices and edges
from the original input graph. As the FCGs have fewer direct
neighbors and are sparser than other graph datasets, discarding
vertices and their edges will remove more neighborhood
information. Thus the node dropping transformation is less

applicable to the malware FCGs. The subgraph sampling trans-
formation creates a new graph view by sampling a subgraph
from the original input graph via a random walk. From the
second characteristic of the FCGs, the FCGs contain more
connected components (around 15 for the FCGs dataset from
Table I). Since a random walk subgraph sampling will keep
one connected component and discard the rest (14 out of 15),
the subgraph sampling will discard more than 90% informa-
tion. Thus subgraph sampling is not desirable in learning the
representations of the FCGs.

As FCGs can be represented by adjacency matrices, and
the ordering of vertices in the matrices is arbitrary. Here, we
propose two types of transformations: FCG-shift and FCG-
random for the malware FCGs. The two transformations gener-
ate a new isomorphic view by altering the ordering of vertices.
Given the original order of clusters-ids assignment as Figure
1a, the FCG-shift transformation randomly select a pivots n,
and then shift the cluster-ids assignments n positions to the
left. For example, in Figure 1b, the order of vertices (cluster-
ids) is shifted one position to the left. The original vertex
order “F1”, “F2”, “F3”, “F4”, “F5” becomes “F2”, “F3”,
“F4”, “F5”, “F1”. The FCG-random transformation randomly
permute the order of vertices and generated new adjacency
matrices based on the permuted vertex order. In Figure 1c,
after the random permutation, the original vertex order “F1”,
“F2”, “F3”, “F4”, “F5” becomes “F2”, “F5”, “F4”, “F1”, “F3”.
Both FCG-shift and FCG-random maintain the orignal FCGs’
properties without information loss by generating isomorphic
graphs to the original graphs.

D. Representation Learning

In this work, we follow the two-stage learning strategy to
learn the representations of input malware FCGs. We adopt
the self-supervised learning strategy to initial the network
with low-level representations in the first stage. In the second
stage, we fine-tune the network with different loss functions
to extract the discriminative representations.

1) Pre-training stage: With the proposed FCG transforma-
tions, we adopt detransformation autoencoder (DTAE) pro-
posed in [2] as our pretext task here to pre-train the the
network. As depict in Figure 2a, given an input disassembled
binaries of the malware samples from the known classes,
we first extract its FCG xi. Then the FCG transformation
module T (.) transforms the original FCG to its correlated
views xit. Next, the encoder f(.) learns the representations
z of the transformed FCG xit, and the decoder reconstruct the
representation z back to its original FCG format x̂it. Assuming
we have M transformations for N FCG inputs. The learning
process of neural network-based encoder-decoder structure is
guided by DTAE loss:

LDTAE =
1

2

M−1∑
t=0

N∑
i=1

(xi − x̂it)
2 (1)

In this paper, we transform FCGs four times for each
experiment, i.e., M = 4, t ∈ {0, 1, 2, 3}.
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Figure 2: The training process of using detransformation autoencoder.

2) Fine-tuning stage: After pre-training the neural network
with transformed inputs, we fine-tune the encoder and presen-
tation layer (z) with the original inputs for the downstream
tasks. Here, we consider two types of loss functions for
fine-tuning: classification loss and representation loss. The
objective of classification loss is to explicitly lower the training
data’s classification error in the decision layers, such as
cross-entropy loss. When using classification loss as the fine-
tuning loss function, we connect the presentation layer with a
classifier, which associates with a classification loss function
as shown in Figure 2b. The objective of representation loss
functions is to learn better representations of training data.
The representation loss functions are normally applied to
the representation layers, such as triplet loss. When using
representation loss as the fine-tuning loss function, we directly
constrain the representation layer with a representation loss
function, as shown in Figure 2c.

E. Open Set Recognition

After fine-tuning the encoder with the original FCG inputs,
we extract the learned representations z for the malware input.
We utilize the distances between the representations for the
open set recognition (OSR) task: classifying the known classes
and identifying the unknown class.

For a known class k that participant in the training process,
we first find its representation centroid as prototype µk. Given
the representation zi for sample i from class k (i.e. yi = k),
we can calculate the prototype as:

µk =
1

Nk

Nk∑
i=1

zi, (2)

where Nk is the number of samples in class k. After
obtaining the prototypes, we introduce a statistical method to
perform the OSR task. Specifically, we calculate the mean mk

and standard deviation sk of the distances di from the training
samples to the prototype k.

mk =
1

Nk

Nk∑
i=1

di (3)

sk =

√∑Nk

i=1(zi −mk)2

Nk
(4)

Then we normalize the distances between representations
and prototypes based on the prototypes’ means and standard
deviations, and calculate the outlier score based on the least
of standard deviations to the prototype :

outlier score(x) = min
1≤k≤C

∥D(µk, z)−mk∥
sk

, (5)

where C is the number of known classes, and z is the
learned representation of input x. D(., .) is a distance function,
and we use euclidean distances in this paper. Based on
the Empirical Rule, a test instance can be recognized as
“unknown” if its outlier score is more significant than three
standard deviations.

y =

unknown, if outlier score(x) > 3

argmin
1≤k≤C

∥D(µk,z)−mk∥
sk

, otherwise

(6)

IV. EXPERIMENTS

We evaluate the proposed self-supervised pre-training
method with two types of downstream loss functions: triplet
loss [20] (representation loss) and cross-entropy loss (classifi-
cation loss). Moreover, we test the proposed approach on two
malware datasets:



Microsoft Challenge (MC) [21] contains disassembled mal-
ware samples from 9 families:“Ramnit”, “Lollipop”, “Kelihos
ver3”, “Vundo”, “Simda”, “Tracur”, “Kelihos ver1”, “Obfus-
cator.ACY ” and “Gatak”. We use 10260 samples that can be
correctly parsed then extracted their FCGs as in [5] for the
experiment. To simulate an open-world dataset, we randomly
pick six classes of digits as the known classes participant in
the training, while the rest are considered as unknowns that
only exist in the test set.
Android Genome (AG) consists of 1,113 benign android apps
and 1,200 malicious android apps. The benign samples are
provided by our colleague, and the malicious samples are from
[22]. We select nine families with a relatively larger size for
the experiment to be fairly split into the training and test sets.
The nine families contain 986 samples in total. We first use
[23] to extract the function instructions and then generated the
FCGs as in [5]. Also, to simulate an open-world scenario as
the MC dataset, we randomly pick six digits as the known
classes in the training set while considering the rest as the
unknown class, which are only used in the test phase.

A. Experimental Setup

As described in Section III, our proposed approach first
extracts the FCGs from the malware samples, then uses self-
supervised DTAE [2] for pre-training before applying down-
stream fine-tuning tasks. We experiment with classification
loss (cross-entropy loss: ce) and representation loss (triplet
loss: triplet) as loss functions in the fine-tuning network for
the OSR tasks. To demonstrate that our proposed approach is
effective for OSR problems, we compare our approach with
OpenMax [1]. Moreover, to prove that the self-supervised pre-
training step benefits the OSR tasks, we compare the results
of using and not using self-supervised pre-training for the two
types of loss functions mentioned above.

As illustrated in Figure 2a, the pre-trained network contains
an encoder and a decoder. Furthermore, the learned encoder is
fine-tuned with downstream OSR tasks. For the encoder, the
padded input layer is of size (67,67) for both MC and AG
datasets. Two non-linear convolutional layers follow the input
layer with 32 and 64 nodes. We apply the max-pooling layers
with kernel size (3, 3) and strides (2, 2) as well as batch nor-
malization after each convolutional layer. After a convolutional
block, we add one fully connected non-linear layer with 256
hidden units before the representation layer, containing six
dimensions. Moreover, We use the Relu activation function
and set the Dropout’s keep probability as 0.2. We use Adam
optimizer with a 0.001 learning rate. The decoder in the pre-
trained network is simply the reverse of the encoder in our
experiments. The encoder and representation layer maintain
the same architecture and hyperparameters in the fine-tuning
network. Meanwhile, the decoder is replaced with different
fully connected layers associated with different loss functions.

B. Evaluation Criteria

To simulate an open-set scenario, we randomly pick six
out of nine classes as the known classes and used them in

training, and samples from the other classes are regarded as the
unknown class, which only exists in the test set. We simulate
three different open set groups for each dataset and then repeat
each group 10 runs, so each dataset has 30 runs. We calculate
the average results of 30 runs for performance evaluation.

We perform a three-dimensional comparison for our pro-
posed approach. First, to show that our proposed approach
can achieve good performance in the OSR problem, we
compare our proposed approach with the popular OSR solution
OpenMax [1]. Moreover, to verify that the self-supervised pre-
training process benefits the OSR problem for different down-
stream loss functions, we compare the model performances
with and without using the pre-training process. Finally, we
compare our proposed transformation methods “FCG-shift”
and “FCG-random” with other graph transformations “Node
dropping” (ND) and “Subgraph sampling” (SS), which are
generally beneficial across datasets [12]. While the AUC score
under 100% FPR is commonly used in model performance
measurements, the AUC score under 10% FPR is more
meaningful for malware detection applications. Moreover, we
measure the F1 scores for classifying the known classes
correctly and recognizing the unknown class correctly for the
OSR system. Finally, to show that our proposed statistical
approach to recognizing unknown classes in Section III-E
performs as good as the manual thresholding approach: sort
the outlier score of the training date in ascending order and
then manually pick an outlier score value (99 percentile) as
the outlier threshold as in [2], [7], [8], we compare two
different thresholding strategies – “manual threshold” and
“statistical threshold” – on the representations learned by the
vanilla models without pre-training process. To verify that
our proposed approaches achieve significant improvement on
the OSR, we perform t-tests against OpenMax with 95%
confidence in both the AUC scores and F1 scores.

C. Experimental Results

We test our proposed pre-training strategy on downstream
networks with classification (cross-entropy loss) and repre-
sentation (triplet loss) loss functions and apply the statistical
thresholding approach to learned representations. Table II
shows the average ROC AUC scores of the model perfor-
mances in two malware datasets under different FPR values:
100% and 10%. Comparing “ce” and “triplet” columns with
“OpenMax” columns, we observe that no matter with or
without our proposed pre-training process, the models that
use cross-entropy loss and triplet loss perform better than
OpenMax for our malware datasets. Furthermore, our proposed
pre-training approach outperforms the models without the
pre-training process in all 8 cases (2 datasets × 2 FPRs ×
2 loss functions). On the contrary, the DTAE pre-training
with node dropping transformation does not benefit the model
performance, and the subgraph sampling transformation even
hurts the model performance. For MC dataset, the FCG-
random transformation works better than the FCG-shift trans-
formation. Meanwhile, their performances differ with different
loss functions for the AG dataset.



Table II: The average AUC scores of 30 runs at 100% and 10% FPR of OpenMax and a group of 5 methods for each of the
two types of loss functions (ce and triplet): without pre-training, pre-training via DTAE with transformations node dropping
(ND), Subgraph sampling (SS), FCG-shift and FCG-random. The values in bold are the highest values in each group. The
underlined values show statistically significant improvements (t-test with 95% confidence) comparing with OpenMax.

OpenMax ce triplet

FPR No pre-training / ND / SS / FCG-shift (ours) / FCG-random (ours) No pre-training / ND / SS / FCG-shift (ours) / FCG-random (ours)

MC 100% 0.880±0.037 0.918±0.036 / 0.914±0.063 / 0.626±0.054 / 0.938±0.015 / 0.947±0.011 0.929±0.020 / 0.919±0.032 / 0.723±0.071 / 0.932±0.017 / 0.933±0.015

10% 0.040±0.003 0.053±0.008 / 0.053±0.014 / 0.018±0.005 / 0.061±0.003 / 0.063±0.003 0.058±0.004 / 0.056±0.006 / 0.036±0.008 / 0.061±0.003 / 0.061±0.003

AG 100% 0.457±0.200 0.852±0.056 / 0.820±0.128 / 0.418±0.080 / 0.865±0.060 / 0.854±0.062 0.868±0.046 / 0.818±0.124 / 0.427±0.094 / 0.873±0.036 / 0.883±0.035

10% 0.001±0.001 0.021±0.012 / 0.019±0.016 / 0.002±0.002 / 0.022±0.013 / 0.019±0.009 0.024±0.010 / 0.018±0.011 / 0.002±0.002 / 0.025±0.011 / 0.027±0.011

Table III: The average F1 scores of 30 runs of OpenMax and a group of 6 methods (without pre-training using manually
selected threshold as baseline, without pre-training using statistical threshold, pre-training via DTAE with transformations node
dropping, subgraph sampling, FCG-shift and FCG-random) for each of the two types of loss functions (ce and triplet). The
values in bold are the highest values in each group. The underlined values are statistical significant better than OpenMax.

MC AG

Known Unknown Overall Known Unknown Overall

OpenMax 0.891±0.006 0.737±0.010 0.869±0.006 0.408±0.190 0.640±0.163 0.441±0.184

ce

No pre-training (manual threshold) 0.899±0.010 0.703±0.061 0.871±0.017 0.683±0.117 0.540±0.329 0.663±0.120

No pre-training (statistical threshold) 0.890±0.021 0.663±0.176 0.858±0.042 0.705±0.088 0.512±0.363 0.678±0.120

Node dropping 0.852±0.077 0.715±0.097 0.833±0.078 0.684±0.176 0.636±0.339 0.677±0.181

Subgraph sampling 0.000±0.000 0.384±0.000 0.055±0.000 0.006±0.018 0.616±0.210 0.093±0.016

FCG-shift (ours) 0.896±0.010 0.765±0.024 0.878±0.011 0.743±0.088 0.612±0.327 0.724±0.113

FCG-random (ours) 0.898±0.012 0.774±0.025 0.880±0.013 0.647±0.129 0.608±0.318 0.641±0.127

triplet

No pre-training (manual threshold) 0.905±0.007 0.728±0.035 0.879±0.011 0.753±0.074 0.789±0.133 0.758±0.068

No pre-training (statistical threshold) 0.903±0.010 0.749±0.036 0.881±0.013 0.771±0.059 0.827±0.093 0.779±0.054

Node dropping 0.884±0.036 0.736±0.046 0.862±0.037 0.679±0.184 0.768±0.170 0.692±0.171

Subgraph sampling 0.014±0.075 0.372±0.069 0.065±0.054 0.011±0.061 0.657±0.135 0.104±0.036

FCG-shift (ours) 0.906±0.007 0.758±0.021 0.885±0.008 0.745±0.074 0.744±0.250 0.745±0.092
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Figure 3: The confusion matirces of the MC test dataset under different settings: (a) OpenMax; (b) Augmented with node
dropping and pre-trained with DTAE; (c) Fine-tuned with cross-entropy loss after (b); (d) Cross-entropy loss without pre-
training; (e) Augmented with FCG-random and pre-trained with DTAE; (f) Fine-tuned with cross-entropy loss after (e).

We also measure the OSR performances via F1 scores
under different categories. As shown in Table III. The three
categories are: “Known”, “Unknown”, and “Overall”. Specif-
ically, the “Known” category is the average F1 scores of
the known classes. Moreover, the “Overall” category is the
average F1 scores of the known and unknown classes. We
observe that the pre-training with our proposed transformation
methods improves the model performances in the majority
of the cases. However, the pre-training with node dropping
and subgraph sampling hurts the model performance in most

cases. Moreover, the results in the “manual threshold” and
“statistical threshold” rows indicate that our proposed statisti-
cal thresholding strategy in Section III-E can achieve similar
performance with the manually selected threshold. Meanwhile,
the statistical thresholding approach reduces the number of
hyperparameters and alleviates the grid searching process.

Overall, we notice that for both ROC AUC scores and F1
scores, the DTAE pre-training using our proposed transforma-
tion approach benefits the model performance in OSR prob-
lems. Meanwhile, the transformation method node dropping
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Figure 4: The t-SNE plots of the MC test representations learned by different settings: (a) OpenMax; (b) Cross-entropy loss
without pre-training; (c) Augmented with node dropping and pre-trained with DTAE; (d) fine-tuned with cross-entropy loss
after (c); (d) Augmented with FCG-random and pre-trained with DTAE; (e): fine-tuned with cross-entropy loss after (d). The
left subplots are the representations of the known class, and the right subplots are the representations of the unknown classes.

does not help malware FCGs datasets. As discussed in Section
III-C, the FCGs are, in general, very sparse graphs. Dropping
nodes and subgraph sampling will potentially lose important
information about the malware. Meanwhile, our proposed
FCG-shift and FCG-random transformation will preserve all
the information by creating isomorphic views.

D. Analysis

While the ROC AUC and F1 scores show that our proposed
pre-training approach improves the models’ performances, we
plot the confusion matrices of one set of the experiments with
the MC test set to analyze the experiment results further.
In the experiments, the known malware classes are “Lol-
lipop”, “Kelihos ver3”, “Vundo”, “Tracur”, “Kelihos ver1”,
and “Obfuscator.ACY”, the remaining three classes together
are considered as the unknown class not participating in the
training process. Figure 3a shows the confusion matrix of the
model using cross-entropy without pre-training. Figure 3b and
Figure 3c are the confusion matrices of the model performance
after pre-training with FCG-random and after being fine-tuned

with cross-entropy loss, respectively. According to the true
positive (TP) predictions along the diagonals of the confusion
matrices in Figure 3b, the model can already classify the
known classes after the pre-training stage. Comparing the
model performance without pre-training in Figure 3a and the
one with pre-training in 3c, we observe that the TP predictions
have been significantly increased for the unknown class. While
the TP predictions on the “Vundo” class have decreased, the
False Positive (FP) predictions (off-diagonal values) happen
only between the known classes and the unknown class instead
of among the known classes, which indicates that the known
classes are more separable.

To visualize the differences between learned representations,
we generate the t-SNE plots of the representations at different
stages in different experiments as in Figure 4. Specifically,
Figure 4a is the t-SNE plot of the learned representations of
OpenMax. Figure 4b shows the representations learned by the
model using cross-entropy loss without pre-training. Figures
4c and 4d are the representations learned by the model after



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.1

0.2

0.3

0.4

0.5 unknown
known

(a) Without pre-training (ce)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.1

0.2

0.3

0.4

0.5 unknown
known

(b) With pre-training (FCG-random + ce)

Figure 5: The distributions of outlier scores for the known and
unknown classes of the MC dataset using cross-entropy loss
with and without pre-training process.

pre-training with node dropping and being fine-tuned with
cross-entropy loss. Figure 4e and Figure 4f are the representa-
tions learned by pre-trained model using DTAE with FCG-
random and after being fine-tuned with cross-entropy loss.
From the left subplot in Figure 4c and Figure 4e, we observe
that even without class label information, the self-supervised
pre-training model can capture some cluster information. We
can find the tiny clusters for the “Obfuscator.ACY” class,
“Kelihos ver3” class and “Lollipop” class, which explains the
behavior in Figure 4c and Figure 3b. Moreover, in Figure 4f,
the representations of the known classes in the left subplots are
more separate from each other. Meanwhile, the representations
of the unknown class are more concentrated near the origin.

Figure 5 shows the distributions of the average outlier
scores for the known and unknown classes for the MC test
set. Comparing the distributions of outlier scores generated
from cross-entropy loss without pre-training in Figure 5a and
with pre-training in Figure 5b, we notice that while the pre-
training process increases the outlier scores for both the known
classes and the unknown class, it increases the outlier scores
in the unknown classes more significantly, which pushes the
distribution further away from the known classes. Therefore,
there is less overlap and higher accuracy.

V. CONCLUSION

In this paper, we design a two-stage learning process for
learning the representations of the malware FCGs to resolve
the set recognition problem of malware samples. Specifically,
we propose two transformation methods for the FCGs to
facilitate the detransformation autoencoder (DTAE) in the pre-
training step. Then, we fine-tune the network with different
types of loss functions. Moreover, to find the optimal threshold
for the OSR problem, we design a statistical thresholding
approach based on the distribution of learned representa-
tions. The proposed approach reduced the number of hyper-
parameters and hence the costs of the resources for the
hyperparameter tuning process. We evaluate the pre-training
approach with classification loss and representation loss func-
tions on two malware datasets. The results indicate that our
proposed approach can improve both model performances for
the OSR tasks.
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