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Abstract. In this paper, we describe a general approach to scaling data mining applications

that we have come to call meta-learning. Meta-Learning refers to a general strategy that seeks to

learn how to combine a number of separate learning processes in an intelligent fashion. We desire

a meta-learning architecture that exhibits two key behaviors. First, the meta-learning strategy

must produce an accurate �nal classi�cation system. This means that a meta-learningarchitecture

must produce a �nal outcome that is at least as accurate as a conventional learning algorithm

applied to all available data. Second, it must be fast, relative to an individual sequential learning

algorithm when applied to massive databases of examples, and operate in a reasonable amount

of time. This paper focussed primarily on issues related to the accuracy and e�cacy of meta-

learning as a general strategy. A number of empirical results are presented demonstrating that

meta-learning is technically feasible in wide-area, network computing environments.

Keywords: machine learning, meta-learning, scalability, data mining, classi�ers.

1. Introduction

Many believe that we are poised once again for a radical shift in the way we learn

and work, and in the amount of new knowledge we will acquire. The coming age

of high performance network computing, and widely available \data highways" will

transform the \information age" into the \knowledge age" by providing new op-

portunities in defense, commerce, education and science for sharing and utilizing

information. However, with this new technological capability comes along a num-

ber of hard technical problems, many centered on the issue of scale. It is perhaps

obvious that having massive amounts of data and information available anywhere

and anytime enables many new opportunities to acquire new knowledge. The �eld

of data mining studies how precisely this will be achieved in an e�cient and trans-

parent fashion.

One means of acquiring new knowledge fromdatabases is to apply various machine

learning algorithms that compute descriptive representations of the data as well as

patterns that may be exhibited in the data. The �eld of machine learning has

made substantial progress over the years and a number of algorithms have been
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popularized and applied to a host of applications in diverse �elds. Thus, we may

simply apply the current generation of learning algorithms to very large databases

and wait for a response! However, the question is how long might we wait? Indeed,

do the current generation of machine learning algorithms scale from tasks common

today that include thousands of data items to new learning tasks encompassing as

much as two orders of magnitude or more of data that is physically distributed?

Furthermore, many existing learning algorithms require all the data to be resident

in main memory, which is clearly untenable in many realistic databases. In certain

cases, data is inherently distributed and cannot be localized on any one machine

for a variety of practical reasons. In such situations it is infeasible to inspect all

of the data at one processing site to compute one primary \global" classi�er. We

call the problem of learning useful new knowledge from large inherently distributed

databases the scaling problem for machine learning.

Our approach to solve the scaling problem is to execute a number of learning

processes (each implemented as a distinct serial program) on a number of data

subsets (a data reduction technique) in parallel (eg. over a network of separate

processing sites) and then to integrate the collective results through a process we

call meta-learning [6]. Without any integration, as we discuss later, individual

results generated from the data subsets are far from desired. Here, meta-learning

serves as the means of \gluing" multiple knowledge sources together.

We note with interest that this general meta-learning approach is independent

of the underlying learning algorithms that may be employed. Furthermore, it is

independent of the computing platform used. Thus, our meta-learning approach is

intended to be scalable as well as portable and extensible. However, we may not be

able to guarantee the accuracy of the �nal result to be as good as an individual

learning algorithm applied to the entire data set since a considerable amount of

information may not be accessible to each of the separate learning processes. It is

this primary issue we study in this paper.

2. Related Work

In a relational database context, a typical data mining task is to explain and predict

the value of some attribute of the data given a collection of tuples with known at-

tribute values. An existing relation with attribute values drawn from some domain

is thus treated as training data for a learning algorithm that computes a logical

expression, a concept description or a classi�er, that is later used to predict a value

of the desired attribute for some \test datum" whose desired attribute value is

unknown.

Before the details of our approach are discussed, we �rst summarize closely related

work by others in improving the accuracy of learning algorithms applied to large

amounts of data.

Machine learning researchers clearly desire more accurate learning algorithms.

One recent approach has focussed on integrating by some means multiple strategies

or multiple algorithms. Some research has concentrated on methods to improve an
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existing algorithm by using the algorithm itself to generate purposely biased distri-

butions of training data. The most notable work in this area is due to Schapire [17].

Schapire proves, under the theoretical PAC (Probabilistic Approximately Correct)

learning model [20], that his boosting technique can improve a \weak" learner to

achieve arbitrary high accuracy.

Other researchers have proposed implementing learning systems by integrating in

some fashion a number of di�erent algorithms to boost overall accuracy. The basic

notion behind this integration is to complement the di�erent underlying learning

strategies embodied by di�erent learning algorithms by e�ectively reducing the

space of incorrect classi�cations of a learned concept.

There are mainly two strategies that we may consider in integrating di�erent

learning strategies. One strategy is to increase the amount of knowledge in the

learning system. For example, some work has been reported on integrating induc-

tive and explanation-based learning [12]. Explanation-based techniques are inte-

grated to provide the appropriate domain knowledge that complements inductive

learning, which is knowledge poor. This approach requires a complicated new al-

gorithm that implements both strategies to learning in a single system.

Another strategy is to loosely integrate a number of di�erent inductive learning

algorithms by integrating their collective output concepts in some fashion. Some of

these techniques are described below and later evaluated from our empirical results.

Many of the simpler techniques that aim to combine multiple evidence into a sin-

gular prediction are based on voting. The �rst scheme we examine is simple voting.

That is, based on the predictions of di�erent base classi�ers, a �nal prediction is

chosen as the classi�cation with a plurality of votes. A variation of simple voting

is weighted voting. Each classi�er is associated with a weight, which is determined

by how accurate the classi�er performs on a validation set. (A validation set is a

set of examples randomly selected from all available data. Since each classi�er is

trained on only one subset, examples in the other subsets that contribute to the

validation set provide a measure of predictiveness.) Each prediction is weighted by

the classi�er's assigned weight. The weights of each classi�cation are summed and

the �nal prediction is the classi�cation with the most weight.

Littlestone and Warmuth [14] propose several weighted majority algorithms for

integrating di�erent classi�ers. (In their work the classi�ers are di�erent prediction

algorithms, which are not necessarily learned. The training data are only used for

calculating the weights.) These integrating algorithms are similar to the weighted

voting method described above; the main di�erence is how the weights are obtained.

The basic algorithm, called WM , associates each learned classi�er with an initial

weight. Each example in the training set is then processed by the classi�ers. The

�nal prediction for each example is generated as in weighted voting. If the �nal

prediction is wrong, the weights of the classi�ers whose predictions are incorrect are

multiplied by a �xed discount �, where 0 � � < 1, that decreases their contribution

to �nal predictions. (A variation of the basic WM algorithm, called WML, does

not allow the weights to be discounted beyond a prede�ned limit.)
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Xu et al. [22] developed a method for integrating predictions from multiple clas-

si�ers based on the Bayesian formalism. The belief function they derived (Equation

32) is simpli�ed as: bel(class

i

; x) �

Q

classifiers

k

P (class

i

j classifier

k

(x)), where

x is an instance and classifier

k

(x) is the classi�cation of instance x predicted

by classifier

k

. The �nal prediction is class

j

where bel(class

j

; x) is the largest

among all classes. In our experiments reported below, we estimate the conditional

probabilities from the frequencies generated from the validation set.

A more interesting approach to loosely combine learning programs is to learn

how to combine independently learned concepts. Stolfo et al. [18] propose learning

rules by training weighted voting schemes, for merging di�erent phoneme output

representations from multiple trained speech recognizers. Wolpert [21] presents a

theory of stacked generalization to combine several classi�ers. (Indeed, this work is

closest to what we mean by meta-learning as we will describe later.) Several (level

0) classi�ers are �rst learned from the same training set. The predictions made by

these classi�ers on the training set and the correct classi�cations form the training

set of the next level (level 1) classi�er. When an instance is being classi�ed, the level

0 classi�ers �rst make their predictions on the instance. The predictions are then

presented to the level 1 classi�er, which makes the �nal prediction. Zhang et al.'s

[23] work utilizes a similar approach to learn a combiner based on the predictions

made by three di�erent classi�ers. These latter ideas suggest a general approach

that may exhibit favorable scaling characteristics as we discuss later.

Other researchers investigate di�erent characteristics for successful integration

of multiple classi�ers. Ali and Pazzani [1] empirically show that classi�ers with

fewer uncorrelated errors reduce the error rate for the integrated model. Krogh

and Vedelsby [13] prove that the overall error rate can be reduced by classi�ers

generating highly independent predictions.

Next we are going to detail our meta-learning approach.

3. Meta-Learning

Meta-learning is loosely de�ned as learning of meta-knowledge about learned knowl-

edge. In our work we concentrate on learning from the output of concept learning

systems. In this case meta-learning means learning from the predictions of these

classi�ers on common training data. Thus, we are interested in the output of the

classi�ers, not the internal structure and strategies of the learning algorithms them-

selves. Moreover, in several of the schemes we de�ne, the training data presented to

the learning algorithms initially are also available to the meta-learner under certain

circumstances.

3.1. Computing Initial Base Classi�ers

We consider two distinct phases in meta-learning in which data reduction is ap-

plied in two di�erent fashions. In the �rst phase, \base level classi�ers" are com-
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puted from the initial input database. Thus, the initial input database D, where

N =j D j, is divided into s random and unbiased subsets of training data, each

of (roughly) size N=s. These subsets are input to s learning algorithms, executed

concurrently. In the second phase when meta-learning over a number of computed

base classi�ers, we may similarly partition \meta-data" across subsets of classi�ers

who are integrated in smaller groups. However, here we may compose distributions

of meta-level training data that are purposefully biased by the classi�cations of the

underlying base classi�ers (i.e., we �lter the data according to the predictions of

the precomputed classi�ers).

There are, however, several important considerations. We must be concerned

with the bias introduced by the particular distribution formed by the data reduction

method. For example, if the data are partitioned over the \class attribute" (i.e., the

target concept of inductive learning) then the resultant classi�ers would be speci�c

to only a single class, and no others. This may be a poor strategy for at least two

important reasons.

First, under this scheme important information that distinguishes between two

classes will not be available to any learning algorithm. Thus, \near-misses", and

\counter-factuals" will not be available to a learning algorithm. This may lead

to \overly general" inductively inferred descriptions of the data, putting a heavier

burden on meta-learning to correct the mistakes of the base classi�ers. Indeed,

many \discrimination based" learning algorithms require negative training exam-

ples to compute useful results. Secondly, the independent subsets of training data

may still be too large to process e�ciently. For example, for very large N , and a

relatively small number of classes, c, the quantity N=c may itself be a large num-

ber. This implies that other attributes of the data must participate in the data

reduction scheme to distribute the computation. But then we must be concerned

with choosing \good distributions" that minimize any potential severe bias or skew

that may lead to faulty or misleading classi�ers. The importance of choosing the

right attributes and the resultant impact on learning cannot be understated.

Random selection of the partitioned data sets with a uniform distribution of

classes is perhaps the most sensible solution. Here we may attempt to maintain

the same frequency distribution over the \class attribute" so that each partition

represents a good but smaller model of the entire training set. Otherwise, a totally

random selection strategy may result in the absence of some classes we wish to

discriminate among in some of the training subsets. Several experiments have been

conducted and are reported below to explore these issues.

3.2. Integrating Base Classi�ers

Since di�erent learning algorithms employ di�erent knowledge representations and

search heuristics, di�erent search spaces may be explored by each and hence po-

tentially diverse results can be obtained. Mitchell [15] refers to this phenomenon

as inductive bias; the outcome of running an algorithm is biased towards a certain

outcome. Furthermore, di�erent partitions of a data set have di�erent statistical
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characteristics and the performance of any single learning algorithm might di�er

substantially over these partitions. These observations imply that great care must

be taken in designing an appropriate distributed meta-learning architecture. A

number of these issues are explored in this paper.

How precisely do we integrate a number of separately learned classi�ers? Bayesian

statistics theory provides one possible approach to combining several learned clas-

si�ers based upon the statistics of the behavior of the classi�ers on the training set.

Given some set of classi�ers, C

i

; i = 1::n and a feature vector x, we seek to compute

a class label y for x. Bayes theorem suggests an \optimal" strategy as follows:

P (y j x) =

X

i

P (C

i

)� P (y j C

i

; x)

P (C

i

) is the probability that C

i

predicts correctly, (i.e., the probability it is the

true model), while P (y j C

i

; x) is the probability that x is of class y given by C

i

.

Of course, this makes sense only when the probabilities are indeed known, and our

classi�ers are probabilistic and not categorical. The best we can do to estimate

P (C

i

) is to calculate the appropriate statistics from observing the behavior of each

classi�er on the training set as an approximation to the actual probabilities (which

may be quite inaccurate.) (Furthermore, Bayes theorem would be optimal if we

knew all possible classi�ers, not just those that we happen to compute.) This

information, however, provides only statistics about each classi�er's behavior with

respect to the training set, and no information about how the classi�ers are related

to each other. For example, learning that two classi�ers rarely agree with each other

when predicting a class label y (meaning that when one classi�er predicts y, the

other does not) might have much more predictive value (eg. when combined with

a third classi�er) than merely knowing that the two classi�ers predict y with equal

probability! We view the purely Bayesian approach as a baseline, and use methods

derived from this approach, BAYES [9] and Bayesian-belief [22], for comparative

purposes in our experiments reported later. There are many other approaches we

might imagine that are based upon learning relationships between classi�ers. The

manner in which we learn the relationship between classi�ers is to learn a new

classi�er (a \meta-level classi�er") whose input is the set of predictions of two or

more classi�ers on common data. It is this latter view that we call meta-learning.

In the following sections we detail meta-learning by arbitration, and by combining

where in both cases a variety of inductive learning algorithms are employed to

generate the appropriate meta-classi�ers. Each strategy is treated in great detail

including the variety of training data distributions generated in each scheme.

There are a number of important questions only poorly understood but for which

substantial experimental evidence suggests directions for future exploration. In

particular:

� Can meta-learning over data partitions maintain or boost the accuracy of a

single global classi�er?

� How do voting and Bayesian techniques compare to meta-learning in accuracy?
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� How do arbiters compare to combiners in accuracy?

� A meta-learned classi�er may be treated as a base classi�er. Thus, might hi-

erarchically meta-learned classi�ers perform better than a single layered meta-

learned architecture?

� How much training data and of what distribution should an arbiter or combiner

be provided in order to produce accurate results?

A substantial number of exploratory evaluations have been completed and re-

ported in a number of papers suggesting answers to these questions. Several of

these results are repeated here for completeness in our exposition.

We have discovered through experimentation three very interesting behaviors

exhibited by various meta-learning strategies that warrant further elaboration. We

demonstrate that under certain circumstances, a meta-learning architecture can

learn e�ectively with a fraction of the total available information at any one site,

that accuracy can be boosted over the global classi�er trained from all available

data, and that maximal parallelism can be e�ectively exploited by meta-learning

over disjoint data partitions without a substantial loss of accuracy [8]. These results

suggest strongly that a \�eld test" of these techniques over a real world network

computing environment (eg. over database server sites on the web) is not only

technically feasible, but also an important next step in the development of these

ideas.

In the next section we present meta-learning by arbitration and combining. Fol-

lowing this, we present hierarchical meta-learning. We devote considerable depth

to these topics to demonstrate the range of issues involved in attempting to scale

machine learning systems.

4. Meta-learning by Arbitration and Combining

We distinguish between base classi�ers and arbiters/combiners as follows. A base

classi�er is the outcome of applying a learning algorithm directly to \raw" training

data. The base classi�er is a program that given a test datum provides a prediction

of its unknown class. An arbiter or combiner, as detailed below, is a program

generated by a learning algorithm that is trained on the predictions produced by

a set of base classi�ers and the raw training data. The arbiter/combiner is also a

classi�er, and hence other arbiters or combiners can be computed from the set of

predictions of other arbiters/combiners.

4.1. Arbiter Strategies

An arbiter [7] is learned by some learning algorithm to arbitrate among predictions

generated by di�erent base classi�ers. This arbiter, together with an arbitration

rule, decides a �nal classi�cation outcome based upon the base predictions. Figure 1
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Arbiter

Arbitration
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Arbiter’s
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Classifier 2
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Prediction 1

Prediction 2

Final

Prediction

Figure 1. An arbiter and a combiner with two classi�ers.

depicts how the �nal prediction is made with predictions input from two base

classi�ers and a single arbiter.

Let x be an instance whose classi�cation we seek, C

1

(x), C

2

(x), ... C

k

(x) are

the predicted classi�cations of x from k base classi�ers, C

1

, C

2

, ... C

k

, and A(x)

is the classi�cation of x predicted by the arbiter. One arbitration rule studied and

reported here is as follows:

� Return the class with a plurality of occurrences in C

1

(x), C

2

(x), ... C

k

(x), and

A(x), with preference given to the arbiter's choice in case of a tie.

We now detail how an arbiter is learned. A training set T for the arbiter is

generated by picking examples from a validation set E. The validation set E is

randomly selected from all available data prior to the onset of arbiter training. The

choice of examples selected from E is dictated by a selection rule, that purposefully

biases the arbiter training data. One version of a selection rule studied here is as

follows:

� An instance from E is selected if none of the classes in the k base predic-

tions gathers a majority classi�cation (> k=2 votes); i.e., T = fx 2 E j

no majority(C

1

(x); C

2

(x); :::C

k

(x))g:

The purpose of this rule is to choose data that are in some sense \confusing";

i.e., the majority of classi�ers do not agree on how the data should be classi�ed.

Figure 2 provides an abstract example with three base classi�ers trained over data

about three classes, a, b and c. In our later discussion, we refer to this set of

arbiter training data as disagreements. Once the training set is formed, an arbiter is

generated by the same learning algorithmused to train the base classi�ers. Together

with an arbitration rule, the learned arbiter resolves con
icts among the classi�ers

when necessary.
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Class Attribute vector Example Base classi�ers' predictions

class(x) attrvec(x) x C

1

(x) C

2

(x) C

3

(x)

a attrvec

1

x

1

a a a

b attrvec

2

x

2

a b c

c attrvec

3

x

3

c b a

Training set from

the arbiter scheme

Instance Class Attribute vector

1 b attrvec

2

2 c attrvec

3

Training set from

the class-combiner scheme

Instance Class Attribute vector

1 a (a, a, a)

2 b (a, b, c)

3 c (c, b, a)

Figure 2. Sample training sets generated by the combiner and arbiter strategies

4.2. Combiner Strategies

In the combiner [5] strategy, the predictions of the learned base classi�ers on the

training set form the basis of the meta-learner's training set. A composition rule,

which varies in di�erent schemes, determines the content of training examples

for the meta-learner. From these examples, the meta-learner generates a meta-

classi�er, that we call a combiner. In classifying an instance, the base classi�ers

�rst generate their predictions. Based on the same composition rule, a new instance

is generated from the predictions, which is then classi�ed by the combiner (see Fig-

ure 1). The aim of this strategy is to \coalesce" the predictions from the base

classi�ers by learning the relationship between these predictions and the correct

prediction. A combiner computes a prediction that may be entirely di�erent from

any proposed by a base classi�er, whereas an arbiter chooses one of the predictions

from the base classi�ers and the arbiter itself.

We experimented with two schemes for the composition rule. First, the predic-

tions, C

1

(x), C

2

(x), ... C

k

(x), for each example x in the validation set of exam-

ples, E, are generated by the k base classi�ers. These predicted classi�cations

are used to form a new set of \meta-level training instances," T , which is used as

input to a learning algorithm that computes a combiner. The manner in which

T is computed varies as de�ned below. In the following de�nitions, class(x) and

attribute vector(x) denote the correct classi�cation and attribute vector of example

x as speci�ed in the validation set, E.

1. Return meta-level training instances with the correct classi�cation and the pre-

dictions; i.e.,
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T = f(class(x); C

1

(x); C

2

(x); :::C

k

(x)) j x 2 Eg: This scheme was also used by

Wolpert [21]. (For further reference, this scheme is denoted as class-combiner.)

2. Return meta-level training instances as in class-combiner with the addition of

the attribute vectors; i.e., T = f(class(x); C

1

(x); C

2

(x); ::::C

k

(x);

attribute vector(x)) j x 2 Eg: (This scheme is denoted as class-attribute-

combiner.)

Note the di�erence in training data. Arbiters are computed form a distinguished

and biased subset of data selected from the input database used to train the base

classi�ers. Combiners, however, are trained on the predicted classi�cations of that

data generated by the base classi�ers, as well as the data itself.

4.3. Issues

Several issues arise from our meta-learning strategies and are detailed as follows.

Number and size of training subsets: The number of initially partitioned

training data subsets largely depends on the number of processors available, the

inherent distribution of data across multiple platforms (some possibly mobile and

periodically disconnected), the total size of the available training set, and the com-

plexity of the learning algorithms. The available resources at each processing sites

naturally de�nes an upper bound on the size of each subset. If the number of sub-

sets exceeds the number of processors available, each processor can simulate the

work of multiple ones by serially executing the task of each processor. Another

consideration is the desired accuracy we wish to achieve. As we will see in our ex-

perimental results, there may be a tradeo� between the number of subsets and the

�nal accuracy of a meta-learning system. Moreover, the size of each subset cannot

be too small because su�cient data must be available for each learning process to

produce an e�ective base classi�er in the initial stage of training.

Distribution of examples, disjoint or replicated: Since a totally random

distribution of examples may result in the absence of one or more classes in the

partitioned data subsets, the classi�ers formed from those subsets will be ignorant

about those classes. That is, more \disagreements" may occur between classi�ers,

which leads to larger arbiter training sets. Maintaining the class distribution in

each subset as in the total available training set may alleviate this problem. The

classi�ers generated from these subsets may be closer in behavior to the global

classi�er produced from the entire training set than those trained on random class

distributions. In addition, disjoint data subsets promote the maximum amount of

parallelism and hence are more desirable. Yet partial replication [8] may mitigate

the problem of extreme bias potentially introduced by disjoint data.

Strategies: There are indeed many strategies for arbitration and combining as

detailed here, each impacting the size of training data required to implement them

e�ectively. Several experiments were run to determine the relative e�ectiveness of

some of these strategies. They vary in the type of information or biased distributions
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Figure 3. Sample arbiter tree.

of training data the arbiter is allowed to see. Thus far, the meta-learning strategies

we discussed are applied solely to a single collection of base classi�ers. (These are

called \one-level" meta-learners.) We also studied building hierarchical structures

in a recursive fashion, i.e., meta-learning arbiters and combiners from a collection

of \lower level" arbiters and combiners. These hierarchical classi�ers attempt to

improve the prediction accuracy that may be achieved by one-level meta-learned

classi�ers.

5. Hierarchical Meta-learning

The one-level meta-learning learning techniques may not produce highly accurate

classi�ers. Here, we explore hierarchical techniques by applying meta-learning

strategies recursively.

5.1. Arbiter Trees

An arbiter tree is a hierarchical structure composed of arbiters that are computed

in a bottom-up, binary-tree fashion. (The choice of a binary tree is to simplify our

discussion. Higher order trees are also studied.) An arbiter is initially learned from

the output of a pair of base classi�ers and recursively, an arbiter is learned from

the output of two arbiters. For k subsets and k classi�ers, there are log

2

(k) levels

generated.

When an instance is classi�ed by the arbiter tree, predictions 
ow from the leaves

to the root. First, each of the leaf classi�ers produces an initial classi�cation of

the test instance. From a pair of predictions and the parent arbiter's prediction,

another prediction is produced by an arbitration rule. This process is applied at

each level until a �nal prediction is produced at the root of the tree. We now

proceed to describe how to build an arbiter tree in detail.

Suppose there are initially four training data subsets (T

1

� T

4

), processed by

some learning algorithm, L. First, four classi�ers (C

1

� C

4

) are generated from
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four instances of L applied to T

1

� T

4

. The union of the subsets T

1

and T

2

, U

12

, is

then classi�ed by C

1

and C

2

, which generates two sets of predictions, P

1

and P

2

. A

selection rule as detailed earlier generates a training set (T

12

) for the arbiter from

the predictions P

1

and P

2

, and the subset U

12

. The arbiter (A

12

) is then trained

from the set T

12

by algorithm L. Similarly, arbiter A

34

is generated from T

3

and

T

4

and hence all the �rst-level arbiters are produced. Then U

14

is formed by the

union of subsets T

1

through T

4

and is classi�ed by the arbiter trees rooted with

A

12

and A

34

. Similarly, T

14

and A

14

(root arbiter) are generated and the arbiter

tree is complete. The resultant tree is depicted in Figure 3.

This process can be generalized to arbiter trees of higher order. The higher the

order is, the shallower the tree becomes. In a parallel environment this translates to

faster execution. However, there will logically be an increase in the number of dis-

agreements (and hence data items selected for training) and higher communication

overhead at each level in the tree due to the arbitration of many more predictions

at a single arbitration site.

We note with interest that in a distributed computing environment, the union sets

need not be formed at one processing site. Rather, we can classify each subset by

transmitting each learned classi�er to each site which is used to scan the local data

set that is labeled with the classi�er's predictions. Each classi�er is a computational

object far smaller in size than the training sets from which they are derived. For

example, in a network computing environment each classi�er may be encapsulated

as an \agent" that is communicated among sites.

We experimented with several di�erent arbiter strategies besides the one described

in Section 4.1. (The entire set of results we obtained for all the various strategies

are reported in [7].) Next, we discuss the computational e�ciency of the various

strategies we explored.

5.1.1. Discussion

Since an arbiter training set is constructed from the results of the arbiter's two

subtrees, each node in the arbiter tree is a synchronization point. That is, arbitrary

subtrees can be run asynchronously with no communication until a pair of subtrees

join at the same parent. The time to learn an arbiter tree is proportional to the

longest path in the tree, which is bounded by the path with the most training data.

To reduce the complexity of learning arbiter trees, the size of the training sets for

arbiters is purposefully restricted to be no larger than the training sets used to

compute base classi�ers. Thus, the parallel processing time at each level of the

tree is relatively equal throughout the tree. However, in several of our experiments,

this restriction on the allowable size of the training sets for arbiters was removed

to explore two key issues: whether higher accuracy could be achieved by providing

more information for each arbiter, and what might be the number of disagreements

so generated, and hence the size of training data that would naturally be formed

by our selection rules.
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Notice that the maximum training set size doubles as one moves up one level in

the tree and is equal to the size of the entire training set when the root is reached.

Obviously, we do not desire forming a training set at the root as large as the original

training set. Indeed, meta-learning in this case is of no use, and at great expense.

Therefore, we desire a means to control the size of the arbiter training sets as we

move up the tree without a signi�cant reduction in accuracy of the �nal result.

Since the training sets selected at an arbiter node depends on the classi�cation

results from the two descendant subtrees during run time, the con�guration of

an arbiter tree cannot be optimized during compile time. The size of these sets

(i.e., the number of disagreements) is not known until the base classi�ers are �rst

computed. However, we may optimize the con�guration of a tree during run time

by clever pairing of classi�ers. The con�guration of the resulting tree depends upon

the manner in which the classi�ers and arbiters are paired and ordered at each level.

Our goal here is to devise a pairing strategy that favors smaller training sets near

the root.

One strategy we may consider is to pair the classi�ers and arbiters at each level

that would produce the fewest disagreements and hence the smallest arbiter training

sets (denoted as min-size). Another possible strategy is to pair those classi�ers

that produce the highest number of disagreements (max-size). At �rst glance the

�rst strategy would seem to be more attractive. However, if the disagreements

between classi�ers are not resolved at the bottom of the tree, the data that are

not commonly classi�ed will surface near the root of the tree, which is also where

there are fewer choices of pairings of classi�ers to control the growth of the training

sets. Hence, it may be advantageous to resolve the disagreements near the leaves

producing fewer disagreements near the root. That is, it may be more desirable to

pair classi�ers and arbiters that produce the largest sets lower in the tree, which is

perhaps counterintuitive. These sophisticated pairing schemes might decrease the

arbiter training set size, but they might also increase the communication overhead

in a distributed computing environment. They also create synchronization points

at each level, instead of at each node when no special pairings are performed.

A compromise strategy might be to perform pairing only at the leaf level. This

indirectly a�ects the subsequent training sets at each level, but synchronization

occurs only at each node and not at each level.

5.2. Combiner Trees

The way combiner trees are learned and used is very similar to arbiter trees. A

combiner tree is trained bottom-up. A combiner, instead of an arbiter, is computed

at each non-leaf node of a combiner tree. To simplify our discussion here, we

describe how a binary combiner tree is used and trained. (Our experiments reported

later included higher order trees as well.)

To classify an instance, each of the leaf classi�ers produces an initial prediction.

From a pair of predictions, the composition rule is used to generate a meta-level
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instance, which is then classi�ed by the parent combiner. This process is applied

at each level until a �nal prediction is produced at the root of the tree.

Another signi�cant departure from arbiter trees is that for combiner trees, a

random set of examples (a validation set) is selected at each level of learning in

generating a combiner tree instead of choosing a set from the union of the underlying

data subsets. Before learning commences, a random set of examples is picked from

the underlying subsets for each level of the combiner tree. To ensure e�cient

processing, the size of these random training sets is limited to the size of the initial

subsets used to train base classi�ers. Base classi�ers are learned at the leaf level

from disjoint training data. Each pair of base classi�ers produce predictions for the

random training set at the �rst level. Following the composition rule, a meta-level

training set is generated from the predictions and training examples. A combiner

is then learned from the meta-level training set by applying a learning algorithm.

This process is repeated at each level until the root combiner is created. Again, in

a network computing environment classi�ers may be represented as remote agent

processes to distribute the meta-learning process.

The arbiter and combiner tree strategies have di�erent impact on e�ciency. The

arbiter tree approach we have implemented requires the classi�cation of, possibly,

the entire data set at the root level. Signi�cant speed up might not be easily

obtained. The combiner tree approach, however, always classi�es a set of data that

is bounded by the size of a relatively small validation set. Therefore, combiner trees

can be generated more e�ciently than arbiter trees. However, it remains to be seen

what impact on accuracy either scheme may exhibit.

A large number of experiments were conducted to evaluate these and several other

meta-learning strategies varying the particular learning algorithms and distribution

schemes over three learning tasks. Our results are reported next.

6. Experimental Results and Evaluation

One of the more common techniques used in evaluating the accuracy of a learning

program is cross-validation [2]. In this technique, the entire data set is divided

into a training set and a disjoint test set. Classi�ers are computed only from the

training set and are evaluated only against the test set. This process is repeated n

times, in each case using entirely di�erent training and test sets. The accuracies of

the n di�erent classi�ers measured over the n di�erent test sets are then averaged

as the �nal prediction accuracy for the learning algorithm employed.

The learning algorithms and the learning tasks we evaluate here by cross val-

idation are detailed in the following pages. In most of the experimental results

reported below, the average from 10-fold cross validation runs is plotted. This

represents hundreds of experimental runs over the various meta-learning strategies

in-toto. Also, statistical signi�cance in di�erence of averages is measured by using

the one-sided t-test with a 90% con�dence value.
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6.1. Learning Algorithms

Four inductive learning algorithms are used in our experiments. We obtained ID3

[16] and CART [2] as part of the IND package [3] from NASA Ames Research Cen-

ter; both algorithms compute decision trees. WPEBLS is the weighted version of

PEBLS [10], which is a nearest-neighbor learning algorithm. BAYES is a Bayesian

classi�er that is based on computing conditional probabilities as described in [9].

The latter two algorithms were reimplemented in C.

6.2. Learning Tasks

Two molecular biology sequence analysis data sets, obtained from the UCI Machine

Learning Database, were used in our studies.

The DNA splice junctions (SJ) data set [19], courtesy of Towell, Shavlik and No-

ordewier, contains 3,190 sequences of nucleotides and the type of splice junction, if

any, at the center of each sequence (three classes). Each sequence has 60 nucleotides

with eight di�erent values each (four base ones plus four combinations).

The protein coding regions (PCR) data set [11], courtesy of Craven and Shavlik,

contains 20,000 DNA nucleotide sequences and their binary classi�cations (coding

or non-coding). Each sequence has 15 nucleotides with four di�erent values each.

The two data sets chosen in our experiments represent two di�erent kinds of data

sets: one is di�cult to learn (PCR at 70+% ) and the other is easy to learn (SJ at

90+%).

Although these are not very large data sets, they do provide us with an idea of

how our strategies behave in practice. Since the data sets are su�ciently small, we

are able to generate base line statistics on the accuracy of each learning algorithm

we have chosen to use in this study. Otherwise, using a massive database would

imply that we have unbounded resources and time in order to compute baseline

statistics. As we have noted (as well as [4]) this might take many years of computing.

Furthermore, scaling studies are possible on these smaller sets simply by varying

the number and size of the subsets formed in the initial data reduction schemes and

extrapolating. However, larger data sets are being sought for use in this study which

will be the focus of our work after we have exhausted the experiments possible on the

smaller test cases. Stated another way, if we cannot display useful and interesting

results of meta-learning on these small test cases, then there would not be much

point in writing this paper in the �rst place.

6.3. Voting and Meta-learning

We �rst consider whether meta-learning performs as well as the common voting and

Bayesian techniques reported in the literature. In our experiments, we varied the

number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint

but with proportional distribution of examples of each class. The size of a validation



16

80

85

90

95

1 2 4 8 16 32 64

A
cc

u
ra

cy
 (

%
)

Number of subsets

Splice Junctions (ID3)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

80

85

90

95

1 2 4 8 16 32 64

A
cc

u
ra

cy
 (

%
)

Number of subsets

Splice Junctions (ID3)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

80

85

90

95

1 2 4 8 16 32 64

A
cc

u
ra

cy
 (

%
)

Number of subsets

Splice Junctions (CART)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

80

85

90

95

1 2 4 8 16 32 64

A
cc

u
ra

cy
 (

%
)

Number of subsets

Splice Junctions (CART)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

Figure 4. Accuracy for the one-level integrating techniques in the splice junctions domain.

set used for generating the integrating structures (weights/probabilities/arbiters/combiners)

is twice the size of the underlying training set for a base classi�er. The prediction

accuracy on a separate test set is our primary comparison measure. The di�erent

strategies were run on the two data sets with the two learning algorithms. The

results from the splice junctions data set are plotted in Figures4 and the protein

coding regions data set in Figure 5. In each �gure the �rst row of graphs depicts

results from the di�erent integrating techniques using ID3 and the second row using

CART. The accuracy for the global classi�er is plotted as \one subset," meaning

the learning algorithms was applied to the entire training set to produce the base-

line accuracy results for comparison. The average accuracy of the base classi�ers

for each number of subsets is also plotted, labeled as \avg-base." By way of com-

parison, the average accuracy of the most accurate base classi�ers is plotted as

\max-base." The plotted accuracy is the average of 10-fold cross-validation runs.
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Figure 5. Accuracy for the one-level integrating techniques in the protein coding regions domain.

Experiments run over the splice junctions data set indicate that all the methods

sustain a drop in accuracy when the number of subsets increases (i.e., the size of

each distinct subset of training data decreases). For either algorithm, the class-

combiner and class-attribute-combiner schemes exhibit higher accuracy than all the

other techniques. The di�erence is statistically signi�cant for ID3 with most subset

sizes and for CART with a few subset sizes. At 64 subsets, with � 45 examples

each, while the other methods sustain signi�cantly more than 10% in accuracy

degradation, the combiner methods incur around 10% or less decrease in accuracy.

The weighted-majority-random method performs the worst and signi�cantly worse

than the others.

For the protein coding regions data set, only the arbiter scheme can maintain,

and sometimes exceeds, the original accuracy level. Most other techniques su�er a

signi�cant drop in accuracy for 2 subsets and climb back to the original accuracy
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level when the number of subsets increases. Again, the weighted-majority-random

method performs much worse than the others.

In general all the methods, except the weighted-majority-random scheme, consid-

erably outperform the average base classi�er (\avg-base"). The gap is statistically

signi�cant. Furthermore, they outperform the average most accurate base classi�er

(\max-base") except with CART in the splice junction domain. That is, random

sampling of the training data is de�nitely not su�cient to generate accurate clas-

si�ers in the two data sets we studied. Hence, combining techniques are necessary.

The results of our experiments indicate that the meta-learning strategies dominate

over the weighted voting techniques across domains and learners used in this study.

However, the meta-learning techniques do not always outperform the weighted vot-

ing schemes. In the SJ domain, the combiner techniques are more favorable while

in the PCR domain the arbiter technique is. It is not clear under what circum-

stances a particular meta-learning strategy will perform better. Additional studies

are underway in an attempt to gain an understanding of these circumstances.

As we observe in the SJ domain, none of the schemes can maintain the baseline

accuracy when the number of subsets increases. All the techniques presented so

far can be characterized as one-level methods. They only perform one level of

processing to generate the integrating structures. We next consider the behavior of

hierarchical meta-learning structures.

6.4. Arbiter Trees

Here we �rst examine the results from bounded arbiter training sets and arbiter

trees of di�erent orders (from binary trees up to 8-ary trees). This is followed by

our results achieved in the case that arbiter training sets are unbounded under

di�erent pairing strategies.

6.4.1. Order of the arbiter trees and training set size limit

We performed experiments on the splice junctions and protein coding regions data

to evaluate the arbiter tree approach. Again, we varied the number of subsets from

2 to 64 and measured the prediction accuracy on a disjoint test set. The plotted

results in Figure 6 are averages from 10-fold cross-validation runs.

We varied the order of the arbiter trees from two to eight. For the SJ data set

the plots display a drop in accuracy when the number of subsets increases. Also,

the higher order trees are generally less accurate than the lower ones. However,

in the PCR data set experiments the accuracy is maintained, or exceeded in some

circumstances, regardless of the order of the trees.

Recall that at each tree level, the size of the arbiter training set is �xed to the

size of a data subset used in training the base classi�ers. If we relax the restriction

on the size of the data set for training an arbiter, we might expect an improvement

in accuracy at the expense in processing time. To test this hypothesis, a set of
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Figure 6. Accuracy for the arbiter tree techniques.

experiments was performed to double the maximumtraining set size for the arbiters.

As we observe in Figure 6, by doubling the arbiter training set size, the original

accuracy is roughly maintained by the binary trees in the SJ domain, regardless

of the learner. For 4-ary and 8-ary trees, the accuracy results show no signi�cant

improvement. However, this multi-level arbiter tree approach does demonstrate

an accuracy improvement over the one-level techniques, which generally cannot

maintain the accuracy obtained from the whole data set in our experiments.

6.4.2. Largest arbiter training set size and classi�er pairing

As we observe from Figure 7, when the restriction on the size of the training set for

an arbiter is lifted, the same level of accuracy can be achieved. For the SJ data set,

empirical results show that the single largest arbiter training set exhibited in the
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Figure 7. Arbiter training set size with di�erent class distributions and pairing strategies

tree is about 30% of the entire training set. This is a signi�cant result. Less time and

memory than a serial version is needed to reach the same accuracy under arbitration

demonstrating signi�cant scaling properties. The percentage of total training data

exhibited in the tree is dependent on several factors: the prediction accuracy of

the algorithm on the given data set, the distribution of the data in the subsets,

and the pairing of learned classi�ers and arbiters at each level. As we mentioned

in Section 4.3, the pairing of classi�ers and arbiters a�ects the arbiter training set

sizes. Several experiments were performed on the two pairing strategies (max-size

and min-size) applied only at the leaf level and the results are displayed in Figure 7.

All these experiments were conducted on the SJ data set. The initial random class

distribution, a uniform class distribution and a second random class distribution

were used in training the base classi�ers. The second random distribution was

composed in such a way to ensure that no half of the learned arbiter tree was

ignorant of one of the classes, as was the case in the initial random distribution.

Di�erent pairing strategies were used on the uniform distribution and the second
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random distribution. As shown in Figure 7, the uniform distribution achieved

smaller training sets than the other two random distributions. The largest training

set size in this case was approximately only 10% of the total available data when

the number of subsets was larger than eight, except for BAYES with 64 subsets

(BAYES seemed to be not able to gather enough statistics on small subsets). (Note

that when the number of subsets is eight or fewer, the training sets for the leaf

classi�ers are larger than 10% of the original data set and become the largest in

the arbiter tree.)

The two pairing strategies did not a�ect the sizes for the uniform distribution

and are not shown in the �gure. One possible explanation is that the uniform

distribution produced the smallest training sets possible and the pairing strategies

did not matter. However, the max-size pairing strategy did generally reduce the

sizes of the training subsets for the second random distribution. The min-size

pairing strategy, on the other hand, did not a�ect, or sometimes even increased,

the sizes of the generated subsets. In summary, uniform class distribution tends to

produce the smallest training sets and the max-size pairing strategy can reduce the

size of the subsets in random class distributions.

6.5. Combiner Trees

Here we consider the accuracy of combiner trees. In our experiments, we varied the

number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint

but with proportional distribution of examples of each class. We also varied the

order of the combiner trees from two to eight. The results of our experiments on the

combiner trees (under two di�erent training strategies) are displayed in Figure 8

and 9. The baseline accuracy for comparative evaluation is plotted as \one subset,"

meaning the learning algorithms were applied to the entire training set in-toto to

produce the global classi�er. The plots are derived from the average of 10-fold

cross-validation runs.

Results from the class-combiner tree strategy displayed in Figure 8 show a drop

in accuracy in both data sets in most cases, compared to the global classi�er, when

the number of subsets increases. The drop varies from 3% to 15%. (The percentage

decrease in the amount of data in each training subset is far larger!) The binary

combiner trees seems to be less accurate than higher order trees in this case. This

might be due to the lack of information for �nding correlations among only two

sets of predictions. As in the experiments for arbiter trees, we doubled the size

of meta-level training sets. Statistically signi�cant improvements were observed in

the SJ data set with CART as the learner.

In another experiment using the class-attribute-combiner tree strategy, Figure 9

suggests that the binary trees appear to maintain the accuracy of the global classi�er

except in the splice junctions data set with CART as the learner. Higher-order trees

were generally less accurate.

We note with interest that doubling the size of the training sets for combiners

improved accuracy signi�cantly. For the protein coding regions data set, the accu-
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Figure 8. Accuracy for the class-combiner tree techniques.

racy of the binary trees was consistently higher than that from the global classi�er;

i.e., this meta-learning strategy has demonstrated a means of boosting accuracy of

a single classi�er trained on the entire data set. The improvement is statistically

signi�cant. This is a particularly interesting �nding since the information loss due

to data partitioning was more than recovered by the combiner tree. Thus, this

scheme demonstrates a means of integrating the collective knowledge distributed

among the individual base classi�ers.

In summary, our experimental results suggest that increasing the size of the meta-

level training sets improves the accuracy of the learned trees, a likely result from

the simple observation that more data is available for training leading to better

information about the correlation among base classi�ers. The experimental data

convincingly demonstrate that doubling the training set size of the meta-level par-

titions relative to the underlying subsets used in training base classi�ers is su�cient
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Figure 9. Accuracy for the class-attribute-combiner tree techniques.

to maintain the same level of accuracy as the global classi�er, and indeed may boost

accuracy as well.

7. Concluding Remarks

By way of summary, we have demonstrated several interesting behaviors of the

various meta-learning architectures studied to date. Our results are based on many

empirical experiments using all the di�erent combinations of a small number of

data sets and learning algorithms.

� The meta-learning strategies do show a consistent improvement in classi�cation

accuracy over any of the base classi�ers trained on a subsets of available training

data. Our studies show that classi�ers trained individually from random subsets
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of a large data set are not as accurate as integrating a collection of separately

learned classi�ers.

� The meta-learning strategies can outperform the other more common one-level

voting-based or Bayesian techniques. In the learning tasks and domains we

studied, the one-level meta-learning schemes do not consistently maintain high

accuracy as the number of subsets increases (and the amount of available data

thus decreases). However, the results show that the hierarchical meta-learning

approach is able to sustain the same level of accuracy as a global classi�er

trained on the entire data set distributed among a number of sites.

� Under the arbiter tree strategy allowing unbounded meta-level training sets, we

determined that, over the variety of algorithms employed, at most 30%, and in

certain cases at most 10%, of the entire training data was required at any one

processing site to maintain the equivalent predictive accuracy of a single global

classi�er computed from all available data. In other words, with the arbiter

tree strategy, a site can process a larger learning task (at least 3 times in the

domain we studied) without increasing memory resources.

� Unbounded meta-level training sets are not necessary to achieve good results.

Limiting the meta-level training set size to twice the size of the data subsets

used to compute base classi�ers usually yielded a system able to maintain the

same level of accuracy achieved by the global classi�er. This is important from

a complexity perspective.

� Combiner and arbiter trees of lower order perform better than ones with higher

order. This seems mainly attributed to the increase in the number of opportu-

nities in correcting the base classi�ers since there are more levels in the lower

order trees to �lter and compose good training data.

� Finally, the combiner tree strategy was demonstrated to consistently boost the

predictive accuracy of a global classi�er under certain circumstances. This

suggests that a properly con�gured meta-learning strategy combining multiple

knowledge sources provides a more accurate view of all available data than any

one learning algorithm alone can achieve.

We believe the concepts embodied by the term meta-learning proposed here pro-

vide an important �rst step in understanding and developing systems that learn

from massive widely dispersed databases, and that scale. Meta-learning architec-

tures may provide the means of using large numbers of low cost networked comput-

ers who collectively learn from massive databases useful and important new knowl-

edge, that would otherwise be prohibitively expensive, in cost and time, to achieve.

We believe meta-learning systems will be an important contributing technology if

the future infrastructures envisioned for the Intelligent Integration of Information

Systems is to be realized.
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