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ABSTRACT
For intrusion detection, the LERAD algorithm learns a suc-
cinct set of comprehensible rules for detecting anomalies,
which could be novel attacks. LERAD validates the learned
rules on a separate held-out validation set and removes rules
that cause false alarms. However, removing rules with pos-
sible high coverage can lead to missed detections. We pro-
pose to retain these rules and associate weights to them. We
present three weighting schemes and our empirical results in-
dicate that, for LERAD, rule weighting can detect more at-
tacks than pruning with minimal computational overhead.

Categories and Subject Descriptors
I.2.6 [Learning]; K.6.5 [Security and Protection]

General Terms
Algorithms

Keywords
Machine learning, anomaly detection, rule pruning, and rule
weighting

1. INTRODUCTION
Intrusion detection has two general approaches – signature
detection (also known as misuse detection), where patterns
signaling well-known attacks are searched; and anomaly de-
tection, where deviations from normal behavior are flagged.
Signature detection works reliably for known attacks, but
has a limitation of missing new attacks. Though anomaly
detection can detect novel attacks, it has the drawback of
not being able to discern intent; it can only signal that some
event is unusual, but not necessarily hostile, thus generating
false alarms. This paper focuses on anomaly detection.

Rules for normal behavior can be introduced manually by
a human expert, a tedious task which incurs significant ef-
fort and cost; or automatically learned from positive data
using machine learning. One such technique, called LERAD
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(LEarning Rules for Anomaly Detection)[20], efficiently learns
a succinct set of comprehensible rules and detects attacks
unknown to the algorithm. To reduce false alarms, these
rules are validated on normal held-out data and all violated
rules are discarded. However, these rules were selected ini-
tially to cover a relatively large number of training exam-
ples and their elimination could possibly lead to missed de-
tections. Instead of outright rejection of such rules (called
Pruning in this paper), we propose weights estimating rule
support. A conformed rule increases our belief in it and
hence its weight is increased. On the other hand, weight is
decreased upon rule violation symbolizing decrease in trust.
We present three weighting schemes – Winnow-specialist-
based Weighting, Equal Reward Apportioning and Weight of
Evidence. These schemes inherently differ in nature in terms
of weight update functions, incremental vs. batch updation,
and the number of anomaly rules retained. We also incorpo-
rate the weight into the anomaly scoring mechanism - each
rule assigns an anomaly score proportional to its weight, and
all the scores are aggregated to compute the total anomaly
score.

We present empirical evaluation and comparison of the weight-
ing and pruning variants on various network and host data
sets. Results show that weighted rules detect upto 60% more
attack-based anomalies than rule pruning at less than 1%
false alarm rates. Our claim about rule retention was re-
inforced by the fact that most of the new attacks detected
were due to violations of previously discarded rules. Since
previously eliminated rules are retained, weighted rule sets
are expected to increase the computational and storage over-
head. But the size of the rule set is still fairly small - gen-
erally less than 100 rules per week of each network data.
The computational overhead of weighting is only a fraction
of a millisecond per instance of data. The improvement in
accuracy is thus obtained at the cost of small computational
overhead and reasonable space requirements.

In Section 2 we discuss some network and host-based anomaly
detection systems and rule learning algorithms. Section 3
briefly describes the LERAD algorithm and motivates and
details rule weighting applied to LERAD. Three weighting
strategies are described in Section 4. Section 5 evaluates
and compares the accuracy and the CPU time requirements
of Pruning with the three weighting strategies on multiple
data sets. New attacks detected by weighting are also ana-
lyzed. Section 6 summarizes the results and presents some
future research directions.



2. RELATED WORK
Prior research on anomaly-based intrusion detection has fo-
cussed on monitoring sniffed network data as well as audit
logs. Network anomaly detection systems can warn of at-
tacks launched from the outside at an earlier stage, before
the attacks actually reach the host. SNORT [26] and BRO
[22] are simple rule-based systems. Rules can be hand-coded
to restrict access to specific hosts and services. But manual
updation of rules is deemed impractical. Intrusion detection
systems (IDSs) such as NIDES [2], ADAM [3], and SPADE
model features of the network and transport layer, such as
port numbers, IP addresses, and TCP flags. Web based at-
tacks are detected by monitoring web request parameters
in [25]. Some anomaly detection algorithms are for specific
attacks (e.g., portscans [29]) or services (e.g., DNS[16]). A
host-based anomaly detector can detect some attacks (for
example, inside attacks) that do not generate network traf-
fic. Host based anomaly detection generally uses system call
sequences [10, 32, 33] and have been represented using finite
state automata [28] and neural networks [14]. Other fea-
tures used include system call arguments [21, 30, 4] and call
stack information [8, 13].

Associating weights with rules attempts to characterize the
quality of the rules. One aspect of quality is predictiveness,
which quantifies how likely the consequent occurs when the
antecedent is observed; that is, how accurate the antecedent
predicts the consequent. Predictiveness is commonly mea-
sured by estimating P (consequent|antecedent). Another as-
pect of quality is belief, which measures the level of trust for
the rule; that is, how believable the entire rule is. For ex-
ample, in association rules [1], each rule has a confidence
value and a support value — the confidence value estimates
predictiveness, while the support value approximates belief.
Many learning algorithms, including RIPPER [7] and CN2
[6], use predictiveness to formulate rules during the learning
(training) process and/or provide confidence values for their
predictions during the prediction (test) process. Ensemble
methods, including Weighted Majority [19] and Boosting
[27, 11], usually use belief to combine predictions from mul-
tiple learned models. Pruning is an approach to reduce over-
fitting the training data. After learning a decision tree and
converting each path in the tree into rules, Quinlan [24]
removes conditions from the antecedent of a rule if the es-
timated accuracy improves. Furnkranz [12] has a review of
various rule pruning techniques.

For rule learning algorithms, many studies demonstrate the
efficacy of using weights (predictiveness and/or belief) over
not using weights as well as pruning over not pruning. How-
ever, we are not aware of studies in comparing using weights
and pruning, particularly in anomaly detection. In this pa-
per, we study how rule weighting compares to pruning in a
rule learning algorithm for anomaly detection.

3. PRUNING AND WEIGHTING IN LERAD
LEarning Rules for Anomaly Detection (LERAD) [20] is an
efficient randomized algorithm that forms conditional rules
of the form:

a1 = v11

∧
a2 = v23

∧
... => ac ∈ {vc1, vc2, ...} [p] (1)

where ai is the ith attribute and vij is the jth value for
ai. LERAD adopts a probabilistic framework and estimates

Input: sample set (Ds), training set (Dt), and validation set
(Dv)
Output: LERAD rule set R

1. generate candidate rules from Ds and evaluate them

2. select a “minimal” set of candidate rules that covers Ds

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

Figure 1: Main steps of LERAD algorithm

P (C|A), where A is the antecedent and C is the consequent
of the rule A ⇒ C. During training, a set of rules R that
“minimally” describes the training data are generated and
their p = P (¬C|A) is estimated, where C, though expected,
is not observed when A is observed. An estimate for novel
events from data compression [34] is used:

p = P (NovelEvent) =
r

n
. (2)

where n is the total number of observed events and r is
the number of unique observed events. A sample network
anomaly rule for LERAD is:

SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6
⇒ DestPort ∈ {21, 25, 80} [p = r/n = 3/100]

(3)

Thus, 100 instances satisfy the above rule which claims 3
distinct destination ports (21-FTP, 25-SMTP, 80-HTTP) for
the given source and destination IP addresses.

For describing the LERAD algorithm, we use the following
notation. Let D be the entire data set, and DT be the
training set with normal behavior and DE be the evaluation
(test) data set with normal behavior as well as attacks such
that DT ∪ DE = D and DT ∩ DE = ∅. Training data
is further partitioned into subsets Dt (training data set)
and Dv (validation held-out data set) respectively such that
Dt ∪Dv = DT , Dt ∩Dv = ∅, and |Dt| > |Dv|. Also, let R
be the rule set learned after training.

The LERAD algorithm consists of four main steps as illus-
trated in Figure 1. Step 1 intends to generate and evaluate
candidate rules from a small data sample Ds (such that
|Ds| ¿ |Dt|), which allows efficient training. Step 2 selects
a small set of predictive rules that sufficiently describe Ds.
This allows learned models to be small. The selected rules
are then trained on the much larger set Dt in Step 3. The
validation set Dv is used in Step 4, and is described next in
context of pruning and weighting strategies.

3.1 Validating Rules
To reduce overfitting the training data, machine learning al-
gorithms use a separate held-out data to validate the trained
model. LERAD uses validation set Dv for the rules learned
from Dt. For each rule rk ∈ R and instance d ∈ Dv, one of
three cases apply:

1. The rule is conformed when all conditions in the an-
tecedant as well as the consequent are satisfied by the
instance. For example, instance [SrcIp = 128.1.2.3,
DestIp = 128.4.5.6, DestPort = 80] conforms to the
rule in Eq. 3.



2. The rule is violated if the antecedant holds true but
the consequent does not. The rule in Eq. 3 is violated
by the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6,
DestPort = 23].

3. The rule is not applicable for the instance if any con-
dition in the antecedant is not satisfied, an example
instance being [SrcIp = 128.1.5.7, DestIp = 128.4.5.6,
DestPort = 21].

Pruning and weighting differ in how the conformed (case 1)
and violated (case 2) rules are treated. They do not differ in
rules that are not applicable (case 3) and no action is taken.

3.1.1 Pruning Rules
A conformed rule (case 1) is not updated but the associated
p value is modified. Given instance [SrcIp = 128.1.2.3, Des-
tIp = 128.4.5.6, DestPort = 80], the rule in Eq. 3 has new
p value of 3/101 upon conformance. For rule violation (case
2), the rule is eliminated from the rule set (Step 4 in Fig. 1)
since Dv is normal and each anomaly is a false alarm. In-
applicable rules (case 3) are left unchanged alongwith their
p values.

3.1.2 Weighting Rules
LERAD performs a coverage test to minimize the number
of rules (Step 2 in Fig. 1). Thus each selected rule covers a
relatively large number of examples in the training set Dt.
But removing a rule that causes false alarms also removes
coverage on a relative large number of training examples,
which can lead to missed detections. Thus, there is a trade
off between decreasing false alarms and increasing missed
detections. There are two possible solutions. We can either
backtrack to find rules that cover the training examples that
should be covered, or lessen the belief in the rule instead of
eliminating it. For large amounts of data, the latter option
is more efficient.

We propose associating a weight with each rule in the rule
set to symbolize rule support. Violated rules are penalized
by reducing their weights, whereas conformed rules are re-
warded with increase in their respective weights. A sample
rule using our method is of the form:

SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6
⇒ DestPort ∈ {21, 25, 80}[p = 3/100, w = 1.0]

(4)

The semantics of this rule is similar to the rule in Eq. 3, but
a new w value is introduced for the rule weight to represent
belief in the rule. p and w are distinct and independent
entities — p is the probability of not seeing a value in the
consequent when the conditions in the antecedant hold true
(i.e. probability of the rule being violated) and corresponds
to predictiveness from Section 2; weight w, on the other
hand, approximates the support of the entire rule (i.e. belief
from Section 2).

Instead of making a binary decision of retaining or elimi-
nating a rule, we may keep a rule but update its associated
weight. The rule consequent and p value may also be up-
dated. For conformed rules (case 1), p is updated similar
to rule pruning but has additional w value. Rule violation
(case 2) results in updating the rule as well as probability

p. For the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6,
DestPort = 23], the rule in Eq. 4 is modified as:

SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6
⇒ DestPort ∈ {21, 23, 25, 80}[p = 4/101, w]

(5)

How weights are updated for conformed (case 1) and vio-
lated (case 2) rules is discussed in Section 4.

3.2 Scoring Anomalies
During the monitoring stage, LERAD uses the learned rules
to assign an anomaly score to each data instance.

3.2.1 Scoring based on Rule Pruning
During detection, given a data instance d, an anomaly score
is generated if d violates any of the rules. Let R′ ⊂ R be the
set of rules that d violates. The anomaly score is calculated
as:

AnomalyScore(d) =
∑

rk∈R′

1

pk
, (6)

where rk is a rule in R′ and pk is the p value of rule rk

representing its predictiveness. The reciprocal of pk reflects
a surprise factor that is large when anomaly has a low like-
lihood (small pk). Intuitively, we are less surprised if we
have observed a novel value in a more recent past. Let tk be
the duration since the last novel value was observed in the
consequent of rule rk. A non-stationary model is proposed
and each violated rule rk assigns a score:

Scorek =
tk

pk
. (7)

Total anomaly score is accumulated over all violated rules:

AnomalyScore(d) =
∑

rk∈R′

tk

pk
. (8)

The tk factor also accommodates the “bursty” nature of
network traffic [23], so that multiple successive anomalies
generate a single high scoring alarm.

3.2.2 Scoring based on Rule Weighting
Each rule assigns an anomaly score to a test instance d ∈
DT , a higher score implying more critical aberration. Dif-
ferent algorithms adopt different scoring schemes, the sim-
plest being incrementing the anomaly score by unity. The
anomaly score for the test instance is aggregated over all the
rules in the rule set. A rule may abstain from assigning a
score if it is not applicable (i.e. the antecedent does not hold
true). We incorporate the weight representing rule trust to
compute the anomaly score:

AnomalyScore(d) =
∑

rk∈R′
(wk × Scorek), (9)

where Scorek is due to violation of rule rk and wk is the
weight of the violated rule. Thus, each rule assigns an
anomaly score proportional to its weight, and all the scores
are aggregated to compute the total anomaly score. Modi-
fied anomaly score for LERAD follows from Eqs. 7, 9:

AnomalyScore(d) =
∑

rk∈R′

wktk

pk
. (10)

Thus, rule weighting incorporates both the predictiveness
and belief aspects of rule quality.



4. WEIGHTING STRATEGIES
We propose associating a weight to each rule r ∈ R, where
weights symbolize rule support. Violated rules are penal-
ized by reducing their weights, whereas conformed rules are
rewarded with increase in their respective weights. Next, we
present three weighting schemes used in our experiments.

4.1 Winnow-Specialist-based Weight Update
Winnow is an incremental weight updating algorithm for
voting experts [18], which correspond to rules in our case.
Our first weighting strategy is similar to the Winnow spe-
cialist variant of [5]. Initially all rule weights are assigned a
value 1, signifying equality of belief across the rule set. For
any data instance d ∈ Dv, a rule r ∈ R must either hold
good or be inapplicable (in which case it abstains from vot-
ing). Any rule violation in Dv corresponds to a false alarm
(since Dv comprises of non-attack data) and reduces trust
in the culprit rule. If a rule formed during training is not
useful, it is likely to be violated many times. Such rules are
penalized by multiplicative decay of their weight. On the
other hand, if a rule is conformed by a data instance d ∈ Dv

when other rule(s) were violated, it stresses upon validity of
the rule and increases trust. Since the rule formed during
training is expected to hold true in validation as well, we
increase its weight by a small fraction. The intent is to levy
a heavy penalty by decreasing the weight by a factor α when
the rule is violated, but increase the weights by factor β for
a conformed rule.

The strategy to update weights is formally defined by the
following weight update function:

wk =





wk × α, if rk ∈ R is violated

wk(1 + β), if rk ∈ R is conformed but
rj ∈ R is violated (j 6= k)

(11)

where α, β ∈ R, 0 ≤ α < 1 and 0 ≤ β ≤ 1. Assuming
α = 0.5 and inital weight 1, the weight is equal to 0.5 the
first time the rule is violated. It is reduced to 0.25 upon
second violation and so on. On the other hand, weight is
updated as 1.5, 2.25, 3.375 (β = 0.5) for the first three
conformances respectively, when there was atleast one rule
violation for the same data instance. Theoretical bounds
for the parameters have been presented in [18, 5]. It can
be noted that Pruning is a special case of this weighting
strategy, with α = β = 0.

4.2 Equal Reward Apportioning
This is a variant of the Winnow-Specialist-based approach
explained above. One can observe from Eq. 11 that the
weights for correct rules are incremented by a constant fac-
tor β. This results in varied weight increments across con-
forming rules. For example, given α = β = 0.5, current
weights 1.0 and 0.5 of two conforming rules r1 and r2 are up-
dated as 1.5 and 0.75 respectively. The Winnow-Specialist-
based scheme thus favors rules with already higher weights
by increasing their weights even more, resulting in potential
imbalance. Moreover, the amount of weight increase is inde-
pendent of whether a high or low support rule was violated.

The Equal Reward Apportioning scheme adopts an impartial
approach towards all conforming rules, irrespective of their

current weights. This weighting scheme aggregates the total
weight reduction due to violation of rules, and rewards the
conforming rules by equally distributing the consolidated
weight mass amongst them. For each instance in d ∈ Dv,
the total penalty TP is computed as:

TP =
∑

rk∈Rv

(1− α)wk, (12)

where Rv ⊆ R is the set of rules violated by d and α ∈ R (0
≤ α < 1). Let Rc ⊆ R be the set of conformed rules. The
weights are updated as follows:

wk =





wk × α, if rk ∈ R is violated

wk + TP
|Rc| , if rk ∈ R is conformed

(13)

The amount of weight increase for conforming rules is thus
dependent on the amount of weight decreased for violated
rules. Following the example above, if the violated rule r3

has weight 0.6, weights for conformed rules r1 and r2 are in-
cremented by the same amount (0.15), resulting in weights
1.15 and 0.65 respectively. On the other hand, if a higher
trust rule is violated, say rule r4 with weight 1.0, it pro-
vides greater boost to the conforming rules r1 and r2 by
incrementing their weights by 0.25 each.

4.3 Weight of Evidence
Weight of evidence is defined as the measure of evidence pro-
vided by an observation in favor of a target attribute value
as opposed to other values for the same target attribute.
This measure is based on information theory and has been
applied in classification tasks based on event associations
[31]. Mathematically, it is the difference in the mutual in-
formation when the target attribute Y takes a certain value
y and when it doesn’t, given some observed value x for the
attribute X:

W (Y = y/Y 6= y | X = x) = I(Y = y; X = x)
−I(Y 6= y; X = x),

(14)

where I(a; b) is the mutual information of a and b and is
computed as:

I(a; b) = P (a, b)log
P (a, b)

P (a)P (b)
. (15)

We cannot apply Eq. 14 directly to our problem since we
are not trying to predict a single target value. Rather, we
want to measure the gain provided by an observation for the
target value to be from a finite set of values. The weight of
evidence for the kth rule is reformulated as:

wk(Y ∈ {y1, y2, . . . , yn}/Y 6∈ {y1, y2, . . . , yn} | X
¯
)

= I(Y ∈ {y1, y2, . . . , yn}; X
¯
)− I(Y 6∈ {y1, y2, . . . , yn}; X

¯
)

(16)
where {y1, y2, . . . , yn} is the set of values for the target at-
tribute Y of the rule rk; and X

¯
corresponds to the conditions

in the antecedent.

We used this scheme to associate weights with the rules in
the rule set. The weight is computed for each rule r ∈ R
based on the evidence in Dv. Contrary to the previous
two incremental weighting techniques, this involves batch
weighting where evidence is consolidated from Dv as a whole.
Moreover, weight of evidence can be positive, negative or



zero. A positive value reflects high trust in the rule whereas
a negative or zero value implies otherwise. Only rules with
positive weights are kept and the remaining may be elimi-
nated. One can also scale the values by a linear shift of the
axis such that all weights are positive. Now the high sup-
port (positive weight of evidence) rules have high positive
weights, whereas the low (negative/zero weight of evidence)
trust rules have low positive weights. Due to its simplic-
ity and intuitiveness, we used the former approach for our
experiments.

5. EMPIRICAL EVALUATION
In this section, we evaluate and compare the pruning and
weighting schemes for anomaly detection.

5.1 Experimental Data
We evaluated the techniques on five different data sets:
(a) The DARPA/Lincoln Laboratory intrusion detection eval-
uation network data set (IDEVAL) [17] contains 201 labeled
instances of 58 attacks. Since one day of inside traffic is
missing, and there are one queso and four snmpget attacks
against the router which are not visible from inside the lo-
cal network, the total number of detectable attacks is 185.
Refer [15] for attack taxonomy.
(b) Over 600 hours of network traffic collected on a univer-
sity departmental server (UNIV) over 10 weeks, comprising
of six labeled attacks - port/security scan from inside the
firewall, an external HTTP proxy scan, an external DNS
version probe, Nimda HTTP worm, Code Red II HTTP
worm, and the Scalper worm. The port/security scan has
two parts; first an attempt to retrieve the password file by a
cgi-bin/htsearch exploit, followed by a port scan, with open
ports probed further to test for vulnerabilities.
(c) The BSM audit log from the 1999 DARPA evaluation
(IDEVAL BSM) obtained from a Solaris host. Data corre-
sponding to 11 different applications is extracted to get a
good mix of benign and malicious behavior. The total num-
ber of distinct attacks is 33.
(d) University of New Mexico (UNM) data set, comprising
of lpr, login and ps applications contains 3 distinct attacks.
lpr comprises of 2703 normal and 1001 attack traces from
hosts running SUNOS 4.1.4. Traces from the login and ps
applications were obtained from Linux machines.
(e) Florida Tech and University of Tennessee at Knoxville
(FIT-UTK) macro execution traces comprise 36 normal and
2 malicious traces that correspond to a distributed denial
of service (DDoS) attack, modifying registry settings and
execute some other application. The behavior is similar to
that exhibited by the “Love bug” worm which opens up the
web browser to a specified website and executes a program,
modifying registry keys and corrupting user files.

5.2 Experimental Procedures
We considered three attribute sets for each of the two net-
work data sets: reassembled TCP streams (TCP) which
reads attributes of the inbound side of unsolicited (client to
server) reassembled TCP sessions; inbound client IP pack-
ets (PKT) which uses the first 32 pairs of bytes in each IP
packet as attributes; and the combination of the two (COM-
BINED). The data sets will hereafter be referred to as IDE-
VAL TCP, IDEVAL PKT, IDEVAL COMBINED, UNIV
TCP, UNIV PKT and UNIV COMBINED respectively. For

the IDEVAL data, we performed training on week 3, which
contains no attacks, and testing on weeks 4 and 5. For UNIV
data, we tested on weeks 2 through 10, using the previous
week as training. By chance, there are no known attacks in
week 1. However, there are generally attacks in the training
data which could mask detections in the test data.

For host based data sets, we used system calls and related
attributes to create application-based models, consisting of
return value, error status and other arguments. Only IDE-
VAL BSM data set had complete argument information. For
the UNM and FIT-UTK datasets, the sliding window of con-
tiguous system calls was used, with a window size of 6, as
this is claimed to give best results [32].

5.3 Evaluation Criteria
We evaluate and provide comparison for accuracy of models,
computational and storage overheads.

Accuracy. For IDEVAL data set (both network and host),
an attack is counted as detected if one or more alarms iden-
tifies the target address within 60 seconds of any portion of
the attack (same as the 1999 DARPA evaluation criterion).
Any other alarm is a false alarm. For the UNIV network
traffic, we use the criterion that the technique must exactly
identify at least one of the packets or TCP sessions involved
in the attack. For the UNM and FIT-UTK host data sets,
flagging an anomaly anywhere within the attack trace was
used to be consistent with previous evaluations.

A Receiver Operating Characteristic (ROC) curve is an ef-
fective representation for model evaluation. We use ROC
curves for studying the trend in percentage of attacks de-
tected at different false alarm rates. We also list the areas
under the ROC curve, where higher area implies better per-
formance [9]. The area under the curve is normalized for the
false alarm rate. Since the drawback of anomaly detection is
the generation of false alarms, we focus on small false alarm
rates (up to 1%).

Storage and Computational Overhead. To evaluate the
viability of our technique for online usage, we measure its
space and computational requirements. The storage over-
head includes the size of the stored model, i.e. rules learned.
We also measure the CPU time during the training and test-
ing phases to determine the effectiveness of the techniques.

5.4 Accuracy of Rule Weighting: Number of
Attack Detections

The ROC curves for the Pruning and weighting (Winnow-
specialist-based, Equal Reward Apportioning and Weight of
Evidence) variants of LERAD are presented in Fig. 2. The
respective areas under ROC curve are listed in Table 1 -
weighted area values greater than that of Pruning are high-
lighted. The values in the table are not the Y axis (detec-
tion rate) on the ROC curve, but represent the percentage
of the maximum area under the curve upto the respective
false alarm rate. The random detector has the same false
alarm rate and true positive rate for any threshold (x=y line
for ROC). For the IDEVAL network data, the ROC curves
of Figs. 2(a)-(c) suggest that all techniques generally detect
same number of attacks. Even their area under ROC curves
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Figure 2: ROC curves (upto 1% false alarm rates) for pruning and weighting strategies on network and host
data sets.



Table 1: Area under ROC curve (in %) upto 0.1% and 1% false alarm rates. Results better than Pruning are
in bold-face. Random detector has area = 0.05% (at 0.1% false alarm rate), 0.5% (at 1% false alarm rate).
Data set 0.1% False Alarm Rate 1% False Alarm Rate

Pruning Winnow Equal Reward Weight of Pruning Winnow Equal Reward Weight of
Specialist Apportioning Evidence Specialist Apportioning Evidence

IDEVAL TCP 27.2 26.2 26.5 25.8 57.5 55.8 57.5 57.3
IDEVAL PKT 38.6 44.2 38.9 37.5 61.1 62.1 61.8 61.0
IDEVAL COMBINED 57.4 62.9 58.0 56.1 81.1 80.5 81.6 82.4
UNIV TCP 15.9 4.3 4.3 15.9 59.3 57.0 57.0 65.3
UNIV PKT 23.1 21.0 35.0 28.2 60.1 66.5 75.7 73.8
UNIV COMBINED 58.1 33.5 55.2 58.1 80.5 88.7 95.5 91.1
IDEVAL BSM 56.5 78.3 63.9 84.7 60.6 92.7 71.6 92.5
UNM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
FIT-UTK 50.0 95.0 95.0 95.0 62.5 96.3 96.3 96.3
Number of times
better/tie/worse — 4/1/4 5/1/3 3/3/3 — 5/1/3 6/2/1 6/1/2
than Pruning

are close to each other. But looking at the actual number
of detections at 1% false alarm rate, the weighted variants
detected 7 new attacks for IDEVAL TCP, including yaga, se-
chole, arppoison, syslogd, perl, crashiis, and secret attacks.
For IDEVAL COMBINED, one additional tcpreset intrusion
was flagged by Equal Reward Apportioning and Weight of
Evidence weighting schemes.

For the UNIV data set (Figs. 2(d)-(f)), Weight of Evidence
generally outperformed Pruning in all cases, though Equal
Reward Apportioning performed the best for UNIV PKT
and UNIV COMBINED data sets. In all UNIV data sets,
all three weighted schemes detected one more attack than
their rule pruning counterpart at 1% false alarm rate. The
Code Red II worm was detected using tcp streams whereas
the packet data detected the DNS version probe, and both
were detected when the attribute sets were combined. Hence
100% detection at 1% false alarm rate for weighted LERAD
variants in Fig. 2(f).

An interesting observation for IDEVAL and UNIV network
data sets was that PKT data detected more attacks than
TCP data for all false alarm rates ≤ 1%. This was true for
all the weighted as well as pruning LERAD variants. More-
over, the COMBINED attribute set detected the maximum
attacks suggesting that TCP and PKT data detect attacks
which are not detected by the other. Evaluating the attacks
detected by TCP and PKT, we saw a significant overlap be-
tween the two with some attacks being detected by only one
of the attribute set. Combining the two (IDEVAL COM-
BINED) maximized accuracy by detecting attacks observ-
able in packet data as well as tcp streams.

The ROC curves for the host datasets are presented in Figs.
2(g)-(i). For the IDEVAL BSM data, Weight of Evidence
detected most attacks at 0.1% false alarm rate (approx. 50%
more attacks than Pruning) whereas Winnow-Specialist had
maximum area under curve at 1% false alarm rate, detecting
60% additional attacks than Pruning. A total of 12 new
attacks were detected (at 1% false alarm rate) across the
three weighted variants, including fdformat, ffbconfig, guest,
syslogd, httptunnel, 4 distinct secret attacks, portsweep, eject
and selfping exploits. Accuracy was the same for the UNM

data set, where all techniques detected 3 attacks. On the
FIT-UTK data, weighted variants had greater area under
ROC curve than Pruning at 0.1% and 1% false alarm rates,
though all techniques successfully captured the 2 malicious
macro executions at 1% false alarm rate.

The last row of Table 1 lists the number of times the re-
spective weighting strategy did better, same and worse than
Pruning. Results indicate that rule weighting generally has
greater accuracy and suggest that the rules discarded by
LERAD might be effective in detecting attack based anoma-
lies. It also stresses on the effectiveness of weight upda-
tion and its incorporation to score anomalies. At 0.1% false
alarm rate, Equal Reward Apportioning outperformed Prun-
ing 5 times and was worse 3 times. Other weighting tech-
niques drew even. At 1% false alarm rate, Equal Reward Ap-
portioning was worse than Pruning once but better 6 times.
Weight of Evidence also did better than Pruning in 6 cases
and was twice marginally below the pruning counterpart.
Winnow-specialist performed better on 5 occasions and was
worse thrice. All four techniques were tied in one case (UNM
data). At 0.1% false alarm rate, Winnow-specialist was the
best (amongst all 4 techniques) twice whereas all the re-
maining techniques were best once (ties not included). But
all three weighting techniques emerged winners twice each
for 1% false alarm rate, and tied for two other data sets.

Table 2: New attacks detected by weighting schemes
at 1% false alarm rate.
Factor contributing Data set: attack(s) detected
to attack detection
Conformed rule(s) with IDEVAL TCP: yaga, sechole
increased support

IDEVAL TCP: arppoison, syslogd,
perl, crashiis, secret
IDEVAL COMBINED: tcpreset

Violated rule(s) with UNIV TCP: codered
reduced support UNIV PKT: bindver

UNIV COMBINED: codered
IDEVAL BSM: fdformat, ffbconfig,
guest, syslogd, httptunnel, secret,
portsweep, eject, selfping



Table 3: Computational overhead: training phase.
Data set Data set size Total training time

(no. of instances) (seconds)
Pruning Winnow Equal Reward Weight of

Specialist Apportioning Evidence
IDEVAL TCP 35452 2.06 2.52 2.18 2.56
IDEVAL PKT 280281 3.98 6.27 7.86 12.60
UNIV TCP 141162 8.69 9.57 9.16 10.56
UNIV PKT 1305873 18.15 23.48 23.33 45.25
IDEVAL BSM 1261252 90.55 107.15 107.81 101.27
UNM 3128 0.05 0.04 0.04 0.06
FIT-UTK 94759 0.91 0.95 0.98 1.27

Table 4: Storage requirements: size of rule set.
Data set Size of rule set = number of rules per week of data

Pruning Winnow Equal Reward Weight of
Specialist Apportioning Evidence

IDEVAL TCP 52 71 71 71
IDEVAL PKT 100 108 108 106
UNIV TCP 45 88 88 88
UNIV PKT 48 80 80 75
IDEVAL BSM 155 176 176 176
UNM 36 36 36 36
FIT-UTK 11 12 12 12

5.5 Attacks Detected by Rule Weighting
The increase in detections for all weighted variants (Winnow-
specialist, Equal Reward Apportioning and Weight of Evi-
dence) is caused by an increase in the anomaly score, which
could result from: (a) increased support for conformed rules,
and/or (b) scores from rules discarded by Pruning but re-
tained (with reduced support) by the weighted variants.

We analyzed the attacks detected using the 3 weighting
schemes that were missed by Pruning at 1% false alarm
rate. The results are listed in Table 2. Most of the new
attacks detected are due to rules that were eliminated by
LERAD, supporting our claim for retaining the rules but
reducing their support. The Perl attack was detected in
IDEVAL TCP due to an anomalous payload attribute that
was part of the exploit. Syslogd is a Denial of Service attack
that was flagged due to an invalid source whereas crashiis
involved an unusual request. The Code Red II HTTP re-
quests for /default.ida (GET /default.ida?NNNN...) in the
UNIV TCP data set are captured by anomaly in the ap-
plication payload. fdformat and ffbconfig vulnerabilities are
buffer overflow attacks that are detected by encountering
unusual arguments in the IDEVAL BSM data. The syslogd
exploit violated a rule due to syslog segmentation fault.

Two attacks were detected by increasing the weight of ex-
isting rules: yaga is detected by long duration times due to
the TCP connection not being closed after crashing and re-
booting the target; whereas the sechole exploit is detected
by an anomaly in the application payload.

Rule weighting also reinforced the detection of attacks al-
ready detected by Pruning. This was attributed to large
rule weights for some rules, resulting in further increase of
the anomaly score. Also, there were multiple alarms for

the same attack due to violation of rules introduced by the
weighted variants but absent in Pruning.

5.6 Computational and Storage Overhead
Besides using different weight updation formulae, there are
two key distinctions between the three weighting schemes
discussed in Section 4. First, Winnow-specialist and Equal
Reward Apportioning involve incremental weight updation
(with every data instance in Dv), compared to batch weight
computation for Weight of Evidence. Second, Winnow Spe-
cialist and Equal Reward Apportioning schemes suggest keep-
ing all the rules that were previously discarded by Pruning,
whereas Weight of Evidence keeps a subset thereof. These
characteristics result in a larger rule set and increased execu-
tion times. To check the viability of the techniques for online
usage, we studied the overhead involved in rule weighting,
both in terms of storage (size of rule set) and the CPU times
for training and testing. Experiments were performed on a
SUN Ultra 60 workstation with 450 MHz clock speed and
512 MB RAM.

The time requirements for training are listed in Table 3.
Most notable difference existed for IDEVAL PKT data set,
where Equal Reward Apportioning was twice and Weight of
Evidence took thrice the time than Pruning. Since training
can be performed offline, higher training times are accept-
able. But even in these worst cases, the overheads were
not significant considering the amount of training data - ap-
prox. 14 µsec/instance for Pruning vs. 45 µsec/instance
for Weight of Evidence in the case of IDEVAL PKT; and
14 µsec/instance (Pruning) compared to 36 µsec/instance
(Weight of Evidence) for UNIV PKT. Training overhead due
to weighting was smaller for other data sets.

Storage of the model is determined by the number of rules



Table 5: Computational overhead: testing phase.
Data set Data set size Total testing time

(no. of instances) (seconds)
Pruning Winnow Equal Reward Weight of

Specialist Apportioning Evidence
IDEVAL TCP 178099 7.72 8.76 8.26 8.65
IDEVAL PKT 534763 3.02 3.90 3.68 3.20
UNIV TCP 143403 7.64 8.50 8.21 8.41
UNIV PKT 1310493 7.70 8.64 8.21 8.18
IDEVAL BSM 1889680 113.93 121.34 121.63 120.97
UNM 7283 0.06 0.06 0.06 0.06
FIT-UTK 13745 0.10 0.10 0.10 0.09

in the rule set. Table 4 lists the number of rules generated
for the various data sets. Amongst the network data sets,
the least overhead was obtained for IDEVAL PKT where
the increase was roughly 6-8%. UNIV TCP presented the
maximum overhead, where the number of rules almost dou-
bled for all weighted schemes. Considering the large amount
of data used during training (1-9 weeks) and the number of
attributes involved, the size of the weighted rule set formed
is fairly small, generally less than 100 rules for one week
of network training data. Additionally, we could limit the
rule set size by eliminating a rule which has been violated
a certain number of times or with weight below a thresh-
old. Host data sets displayed lower storage overhead. For
the IDEVAL BSM data, the weighted rule set was over 13%
larger than Pruning. Since 11 different applications were
modeled in IDEVAL BSM data, this corresponds to an av-
erage of 16 rules per application, which is small for one week
of training data. Number of rules were same for UNM data
and weighted rule set size exceeded by one rule for FIT-UTK
data set.

The time taken during test phase is also dependent on the
rule set size. The more the rules, the higher is the number
of sanity checks to be made for each test instance. Typ-
ically, the time taken should be low for online detection.
The results obtained from our experiments are presented in
Table 5. Due to larger rule sets, the weighted schemes have
longer execution times, making them computationally more
expensive than Pruning. The maximum overhead was 5.99
µsec/instance for UNIV TCP, followed by 5.84 µsec/instance
in the case of IDEVAL TCP, and 3.90 µsec/instance for IDE-
VAL BSM. Remaining data sets had insignificant overheads.
Thus, the weighting overhead is only a fraction of a millisec-
ond per instance, reasonable for an online system.

6. CONCLUDING REMARKS
Machine learning research has been pursued to learn anomaly
rules for intrusion detection. LERAD is one such algorithm
that can characterize normal behavior in logical rules by
finding associations among nominal attributes. It forms a
small set of “easy to comprehend” rules that characterize
the data. The algorithm is very efficient and effective in
capturing anomaly based attacks. A separate held-out data
is used to validate the rules. Any violations result in the
rule being eliminated. We conjecture that discarding rules
with possibly high coverage can lead to missed detections.
In this paper we propose keeping rules in the rule set and
associating a support value with each rule. Weights are rep-

resentative of rule support in our strategy. A conformed rule
increases rule trust and hence the weight is increased. On
the other hand, weight is decreased upon rule violation.

We present three weighting schemes - Winnow-specialist-
based weighting, Equal Reward Apportioning and Weight of
Evidence. Besides using different weight updation formulae,
the weighting schemes have two key differences. Whereas
Winnow-specialist-based and Equal Reward Apportioning up-
date weight incrementally, Weight of Evidence involves batch
computation. Further, all the rules ∈ R are kept in Winnow-
specialist-based and Equal Reward Apportioning, but only a
subset are retained in Weight of Evidence. We also incorpo-
rate the weight into the anomaly scoring mechanism - each
rule assigns an anomaly score proportional to its weight, and
all the scores are aggregated to compute the total anomaly
score. Our technique adds new consequent values to LERAD
anomaly rules and recomputes the associated probabilities.

We evaluated pruning and weighting LERAD variants on
various network and host data sets. Empirical results show
that weighted rules detect more attack-based anomalies than
pruning at less than 1% false alarm rates. The weighted
strategies accounted for 7 more attack detections for IDE-
VAL TCP data set. Code Red II worm and DNS version
probe were additionally detected in the UNIV data set, re-
sulting in 100% detections for UNIV COMBINED. But the
most significant improvement was in the case of IDEVAL
BSM data, where detected 12 new attacks (60% more than
Pruning) were detected. At 0.1% false alarm rate, Equal
Reward Apportioning outperformed Pruning in 5 data sets
and generally performed the best. But all weighted vari-
ants were better in terms of attack detections at 1% false
alarm rate – Equal Reward Apportioning and Weight of Ev-
idence did better than Pruning in 6 cases whereas Winnow-
specialist performed better on 5 occasions. We also observed
that among the network data sets, COMBINED consistently
outperformed TCP and PKT individually, stressing on using
both attribute sets to detect a wider range of attacks.

We also analyzed the new attack detected by weighted LERAD
variants, which were attributed to high anomaly scores re-
sulting from (a) violations of rules discarded by Pruning but
retained by weighted variants with reduced support; and (b)
increased support for existing rules due to the weight update
functions. The former factor contributed to most new at-
tack anomalies. We also computed overheads incurred due
to weighting. Since previously discarded rules are retained,



weighted rule sets tend to be larger. But the size of the rule
set is still fairly small - 176 rules for one week of IDEVAL
BSM training data comprising 11 different applications; and
less than 100 rules per week of each network data. The com-
putational overhead of weighting is also minimal, the worst
in our our experiments being 30 µsec/instance for training
and 6 µsec/instance for testing, making it reasonable for
real-time usage.

For future work, we intend to limit the rule set size by elim-
inating a rule which has been violated many times and its
weight falls below a user-defined threshold. We are also ex-
ploring other linear weight update functions. Additionally,
we intend to incorporate our weighting schemes with other
anomaly detection algorithms. An alternate approach for
learning is to minimize the rule set after pruning the vio-
lated rules. This might reduce the training time, but we
suspect that it will also eliminate high coverage (more gen-
eral) rules, resulting in a larger rule set comprising more
specific rules, thereby increasing the test time. We intend
to evaluate and compare the accuracy of such a learner with
the current technique.
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