
JAM: Java Agents for Meta-Learning

over Distributed Databases

�

Salvatore Stolfo, Andreas L. Prodromidis

y

Shelley Tselepis, Wenke Lee, Dave W. Fan

Department of Computer Science

Columbia University

New York, NY 10027

fsal, andreas, sat, wenke, wfang@cs.columbia.edu

Philip K. Chan

Computer Science

Florida Institute of Technology

Melbourne, FL 32901

pkc@cs.�t.edu

March 11, 1997

Abstract

In this paper, we describe the JAM system, a distributed, scalable and portable

agent-based data mining system that employs a general approach to scaling data min-

ing applications that we call meta-learning. JAM provides a set of learning pro-

grams, implemented either as JAVA applets or applications, that compute models

over data stored locally at a site. JAM also provides a set of meta-learning agents

for combining multiple models that were learned (perhaps) at di�erent sites. It em-

ploys a special distribution mechanism which allows the migration of the derived mod-

els or classi�er agents to other remote sites. We describe the overall architecture

of the JAM system and the speci�c implementation currently under development at

Columbia University. One of JAM's target applications is fraud and intrusion de-

tection in �nancial information systems. A brief description of this learning task

and JAM's applicability are also described. Interested users may download JAM from

http://www.cs.columbia.edu/�sal/JAM/PROJECT.

Keywords: distributed data mining, intelligent agents, machine learning, fraud

and intrusion detection, �nancial information systems.

�

This research is supported by the Intrusion Detection Program (BAA9603) from DARPA (F30602-96-

1-0311), NSF (IRI-96-32225 and CDA-96-25374) and NYSSTF (423115-445).

y

Supported in part by IBM.

1 Introduction

One means of acquiring new knowledge from databases is to apply various machine learning

algorithms that compute descriptive representations of the data as well as patterns that

may be exhibited in the data. The �eld of machine learning has made substantial progress

over the years and a number of algorithms have been popularized and applied to a host

of applications in diverse �elds. There are numerous algorithms ranging from those based

upon stochastic models, to algorithms based upon purely symbolic descriptions like rules

and decision trees. Thus, we may simply apply the current generation of learning algorithms

to very large databases and wait for a response! However, the question is how long might

we wait? Indeed, do the current generation of machine learning algorithms scale from tasks

common today that include thousands of data items to new learning tasks encompassing as

much as two orders of magnitude or more of data that is physically distributed? Further-

more, many existing learning algorithms require all the data to be resident in main memory,

which is clearly untenable in many realistic databases. In certain cases, data is inherently

distributed and cannot be localized on any one machine (even by a trusted third party) for

a variety of practical reasons including physically dispersed mobile platforms like an armada

of ships, security and fault tolerant distribution of data and services, competitive (business)

reasons, as well as statutory constraints imposed by law. In such situations, it may not

be possible, nor feasible, to inspect all of the data at one processing site to compute one

primary \global" classi�er. We call the problem of learning useful new knowledge from large

inherently distributed databases the scaling problem for machine learning. We propose to

solve the scaling problem by way of a technique we have come to call \meta-learning". Meta-

learning seeks to compute a number of independent classi�ers by applying learning programs

to a collection of independent and inherently distributed databases in parallel. The \base

classi�ers" computed are then integrated by another learning process. Here meta-learning

seeks to compute a \meta-classi�er" that integrates in some principled fashion the separately

learned classi�ers to boost overall predictive accuracy.

In the following pages we describe JAM (Java Agents for Meta-Learning), a system that

employs meta-learnings to address large scale distributed applications. In section 2, we

detail the JAM architecture, a powerful portable and extensible network agent-based system

that computes meta-classi�ers over distributed data. JAM is being engaged in experiments

dealing with real-world learning tasks such as solving key problems in fraud and intrusion

detection in �nancial information systems. Sections 3 and 4 describe this e�ort while section 5

concludes the paper.

2 The JAM architecture

JAM is architectured as an agent based system, a distributed computing construct that is

designed as an extension of OS environments. It is a distributed meta-learning system that

supports the launching of learning and meta-learning agents to distributed database sites.

JAM is implemented as a collection of distributed learning and classi�cation programs linked

together through a network of Datasites. Each JAM Datasite consists of:

� A local database,

� One or more learning agents, or in other words machine learning programs that may

migrate to other sites as JAVA applets, or be locally stored as native applications

1

callable by JAVA applets,

� One or more meta-learning agents,

� A local user con�guration �le,

� Graphical User Interface and Animation facilities.

The JAM Datasites have been designed to collaborate

1

with each other to exchange

classi�er agents that are computed by the learning agents.

First, local learning agents operate on the local database and compute the Datasite's

local classi�ers. Each Datasite may then import (remote) classi�ers from its peer Datasites

and combine these with its own local classi�er using the local meta-learning agent. Finally,

once the base and meta-classi�ers are computed, the JAM system manages the execution of

these modules to classify and label datasets of interest. These actions may take place at all

Datasites simultaneously and independently.

The owner of a Datasite administers the local activities via the local user con�guration

�le. Through this �le, he/she can specify the required and optional local parameters to

perform the learning and meta-learning tasks. Such parameters include the names of the

databases to be used, the policy to partition these databases into training and testing subsets,

the local learning agents to be dispatched, etc. Besides the static

2

speci�cation of the local

parameters, the owner of the Datasite can also employ JAM's graphical user interface and

animation facilities to supervise agent exchanges and administer dynamically the meta-

learning process. With this graphical interface, the owner may access more information such

as accuracy, trends, statistics and logs and compare and analyze results in order to improve

performance.

The con�guration of the distributed system is maintained by the Con�guration File

Manager (CFM), a central and independent module responsible for keeping the state of the

system up-to-date. The CFM is a server that provides information about the participating

Datasites and logs events for future reference and evaluation.

The logical architecture of the JAM meta-learning system is presented in Figure 1. In

this example, three JAM Datasites Marmalade, Mango and Strawberry exchange their base

classi�ers to share their local view of the learning task. The owner of the Datasite controls

the learning task by setting the parameters of the user con�guration �le, i.e. the algorithms

to be used, the images to be used by the animation facility, the folding parameters, etc. In

this example, the CFM runs on Cherry and each Datasite ends up with three base classi�ers

(one local plus the two remote classi�ers).

We have used JAVA technology to build the infrastructure of the system, to develop the

speci�c agent operators that compose and spawn new agents from existing classi�er agents,

to implement the GUI, the animation facilities and most of the machine learning algorithms.

The platform-independence of JAVA technology makes it easy to port JAM and delegate its

agents to any participating site. The only parts that were imported in their native (C++)

form and are not yet platform independent were some of the machine learning programs;

and this was done for faster prototype development and proof of concept.

1

A Datasite may also operate independently without any changes.

2

Before the beginning of the learning and meta-learning tasks.

2

Datasite
Database

Datasite
Database

Configuration

File

Configuration

File

+ Mango.cs

+ Strawberry.cs

Marmalade.cs

+ Strawberry.cs

+ Marmalade.cs

Mango.cs

Strawberry.cs

+ Marmalade.cs

+ Mango.cs

Control & Data

messages

Transfer of Learning

& Classifier Agents

Database
Datasite

Configuration

Database

Configuration ManagerFile

Strawberry.cs

Data Site - 2

Mango.cs

DATA SITES:

thyroidDATASET =

META_LEARNER = Bayes

CROSS_VALIDATION_FOLD = 2

META_LEARNING_FOLD = 2

META_LEARNING_LEVEL = 1

IMAGE_URL = http://www.cs....

Configuration

File

LEARNER = ID3

The JAM architecture with 3 datasites

Data Site - 1

Marmalade.cs

Data Site - 3

Cherry.cs.columbia.edu

CFM = Cherry.cs.columbia.edu

Figure 1: The architecture of the meta-learning system.

Con�guration File Manager The CFM assumes a role equivalent to that of a name

server of a network system. The CFM provides registration services to all Datasites that

wish to become members and participate in the distributed meta-learning activity. When the

CFM receives a JOIN request from a new Datasite, it veri�es both the validity of the request

and the identity of the Datasite. Upon success, it acknowledges the request and registers the

Datasite as active. Similarly, the CFM can receive and verify the DEPARTURE request; it

notes the requestor Datasite as inactive and removes it from its list of members. The CFM,

maintains the list of active member Datasites to establish contact and cooperation between

peer Datasites. Apart from that, the CFM keeps information regarding the groups that are

formed (which Datasites collaborate with which Datasites), logs the events and displays the

status of the system. Through the CFM, the JAM system administrator may screen the

Datasites that participate.

Datasites Unlike CFM which provides a passive con�guration maintenance function, the

Datasites are the active components of the meta-learning system. They manage the local

databases, obtain remote classi�ers build the local base and meta classi�ers and interact

with the JAM user. Datasites are implemented as multithreaded Java programs with special

GUI.

Upon initialization, a Datasite starts up the GUI, through which it can accept input

and display status and results, registers with the CFM, instantiates the local learning

engine/agent

3

and creates a server socket for listening for connections

4

from the peer Data-

sites. Then, it waits for the next event to occur, either a command issued by the owner via

the GUI, or a message from a peer Datasite via the open socket.

In both cases, the Datasite veri�es that the input is valid and can be serviced. Once this

is established, the Datasite allocates a separate thread and performs the required task. This

task can be any of JAM's functions: computing a local classi�er, starting the meta-learning

3

The Datasite consults the local Datasite con�guration �le (maintained by the owner of the Datasite) to

obtain information regarding the central CFM and the types of the available machine learning agents.

4

For each connection, the Datasite spawns a separate thread.

3

Figure 2: Two di�erent snapshots of the JAM system in action. Left: Marmalade is building

the meta classi�er (meta learning stage). Right: An ID3 tree-structured classi�er is being

displayed in the Classi�er Visualization Panel.

process, sending local classi�ers to peer Datasites or requesting remote classi�ers from them,

reporting the current status, or presenting computed results.

Figure 2 presents a snapshot of the JAM system during the meta-learning phase. In this

example three Datasites, Marmalade, Strawberry and Mango (see the group panel of the

�gure) collaborate in order to share and improve their knowledge in diagnosing hypothy-

roidism. The snapshot taken is from \Marmalade's point of view". Initially, Marmalade

consults the Datasite con�guration �le where the owner of the Datasite sets the parameters.

In this case, the dataset is a medical database with records [11], noted by thyroid in the

Data Set panel. Other parameters include the host of the CFM, the Cross-Validation Fold,

the Meta-Learning Fold, the Meta-Learning Level, the names of the local learning agent and

the local meta-learning agent, etc. Refer to [2] for more information on the meaning and use

of these parameters. (Notice that Marmalade has established that Strawberry and Mango

are its peer Datasites, having acquired this information from the CFM.)

Then, Marmalade partitions the thyroid database (noted as thyroid.1.bld and thy-

roid.2.bld in the Data Set panel) for the 2-Cross-Validation Fold and computes the local

classi�er, noted by Marmalade.1 (here by calling the ID3 [12] learning agent). Next, Mar-

malade imports the remote classi�ers, noted by Strawberry.1 and Mango.1 and begins the

meta-learning process. Marmalade employs this meta-classi�er to predict the classes of in-

put data items (in this case unlabelled medical records). Figure 2 displays a snapshot of the

system during the animated meta-learning process where JAM's GUI moves icons within the

panel displaying the construction of a new meta-classi�er.

Classi�er Visualization JAM provides graph drawing tools to help users understand the

learned knowledge [9]. There are many kinds of classi�ers, e.g., a decision tree by ID3, that

can be represented as graphs. In JAM we have employed major components of JavaDot [10],

an extensible visualization system, to display the classi�er and allows the user to analyze

4

the graph. Since each machine learning algorithm has its own format to represent the data

classi�er, JAM uses an algorithm-speci�c translator to read the classi�er and generate a

JavaDot graph representation.

Figure 2 shows the JAM classi�er visualization panel with a decision tree, where the leaf

nodes represent classes (decisions), the non-leaf nodes represent the attributes under test,

and the edges represent the attribute values. The user can select the Attributes command

from the Object pull-down menu to see any additional information about a node or an edge.

In the �gure, the Attributes window shows the classifying information of the highlighted

leaf node

5

. It is di�cult to view clearly a very large graph (that has a large number of

nodes and edges) due to the limited window size. The classi�er visualization panel provides

commands for the user to traverse and analyze parts of the graph: the user can select a node

and use the Top command from the Graph menu to make the subgraph starting from the

selected node be the entire graph in display; use the Parent command to view the enclosing

graph; and use the Root command to see the entire original graph.

Some machine learning algorithms generate concise and very readable textual outputs,

e.g., the rule sets from Ripper [6]. It is thus counter-intuitive to translate the text to graph

form for display purposes. In such cases, JAM simply pretty formats the text output and

displays it in the classi�er visualization panel.

Animation For demonstration and didactic purposes, the meta-learning component of

the JAM graphical user interface contains a collection of animation panels which visually

illustrate the stages of meta-learning in parallel with execution. When animation is enabled,

a transition into a new stage of computation or analysis triggers the start of the animation

sequence corresponding to the underlying activity. The animation loops continuously until

the given activity ceases.

The JAM program gives the user the option of manually initiating each distinct meta-

learning stage (by clicking a Next button), or sending the process into automatic execution

(by clicking a Continue button). The manual run option provides a temporary program

halt. For \hands free" operation of JAM, the user can start the program with animation

disabled and execution set to automatic transition to the next stage in the process.

Agents JAM's extensible plug-and-play architecture allows snap-in learning agents. The

learning and meta-learning agents are designed as objects. JAM provides the de�nition

of the parent agent class and every instance agent (i.e. a program that implements any

of your favorite learning algorithms ID3, Ripper, Cart [1], Bayes [8], Wpebls [7], CN2 [5],

etc.) are then de�ned as a subclass of this parent class. Among other de�nitions which are

inherited by all agent subclasses, the parent agent class provides a very simple and minimal

interface that all subclasses have to comply to. As long as a learning or meta-learning agent

conforms to this interface, it can be introduced and used immediately in the JAM system

even during execution. To be more speci�c, a JAM agent needs to have the following methods

implemented:

1. A constructor method with no arguments. JAM can then instantiate the agent, pro-

vided it knows its name (which can be supplied by the owner of the Datasite through

either the local user con�guration �le or the GUI).

5

Thus visually, we see that for a test data item, if its \p-2" value is 3 and its \p-14" value is 2, then it

belongs to class \0" with .889 probability.

5

Classifier getClassifier() {

Learner

boolean BuildClassifier()
Classifier getCopyOfClassifier()

return classifier;
}

boolean initialize(String dbName, ...)
Learner(),

ID3Learner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

ID3Learner()

Decision Tree

WpeblsLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

WpeblsLearner()

Nearest Neighbor

BayesLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

BayesLearner()

Probabilistic

RipperLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

RipperLearner()

Rule-Based

Figure 3: The class hierarchy of learning agents.

2. An initialize() method. In most of the cases, if not all, the agent subclasses inherit

this method from the parent agent class. Through this method, JAM can supply the

necessary arguments to the agent. Arguments include the names of the training and

test datasets, the name of the dictionary �le, and the �lename of the output classi�er.

3. A buildClassi�er() method. JAM calls this method to trigger the agent to learn (or

meta-learn) from the training dataset.

4. A getClassi�er() and getCopyOfClassi�er() methods. These methods are used by JAM

to obtain the newly built classi�ers which are then encapsulated and can be \snapped-

in" at any participating Datasite! Hence, remote agent dispatch is easily accomplished.

The class hierarchy (only methods are shown) for four di�erent learning agents is pre-

sented in Figure 3. ID3, Bayes, Wpebls and Ripper inherit the methods initialize() and

getClassi�er() from their parent learning agent class. The Meta-Learning, Classi�er and

Meta-Classi�er classes are de�ned in similar hierarchies.

JAM is designed and implemented independently of the machine learning programs of

interest. As long as a machine learning program is de�ned and encapsulated as an object

conforming to the minimal interface requirements (most existing algorithms have similar

interfaces already) it can be imported and used directly. This plug-and-play characteristic

makes JAM truly powerful and extensible data mining facility.

3 Fraud and Intrusion Detection

A secured and trusted interbanking network for electronic commerce requires high speed

veri�cation and authentication mechanisms that allow legitimate users easy access to con-

duct their business, while thwarting fraudulent transaction attempts by others. Fraudulent

electronic transactions are a signi�cant problem, one that will grow in importance as the

number of access points in the nation's �nancial information system grows.

Financial institutions today typically develop custom fraud detection systems targeted

to their own asset bases. Recently though, banks have come to realize that a uni�ed, global

approach is required, involving the periodic sharing with each other of information about

attacks.

We have proposed another wall to protect the nation's �nancial systems from threats.

This new wall of protection consists of pattern-directed inference systems using models of

6

anomalous or errant transaction behaviors to forewarn of impending threats. This approach

requires analysis of large and inherently distributed databases of information about trans-

action behaviors to produce models of \probably fraudulent" transactions. We use JAM to

compute these models.

The key di�culties in this approach are: �nancial companies don't share their data for

a number of (competitive and legal) reasons; the databases that companies maintain on

transaction behavior are huge and growing rapidly; real-time analysis is highly desirable to

update models when new events are detected and easy distribution of models in a networked

environment is essential to maintain up to date detection capability.

JAM is used to compute local fraud detection agents that learn how to detect fraud and

provide intrusion detection services within a single corporate information system, and an

integrated meta-learning system that combines the collective knowledge acquired by indi-

vidual local agents. Once derived local classi�er agents or models are produced at some

Datasite(s), two or more such agents may be composed into a new classi�er agent by JAM's

meta-learning agents.

JAM allows �nancial institutions to share their models of fraudulent transactions by

exchanging classi�er agents in a secured agent infrastructure. But they will not need to

disclose their proprietary data. In this way their competitive and legal restrictions can

be met, but they can still share information. The meta-learned system can be globally

constructed, or alternatively it can be local. In the latter guise, each corporate entity bene�ts

from the collective knowledge by using its privately available data to locally learn a meta-

classi�er agent from the shared models. The interested reader can �nd more details on these

two approaches in http://www.cs.columbia.edu/�sal/JAM/PROJECT. The meta-classi�ers

then act as sentries forewarning of possibly fraudulent transactions and threats by inspecting,

classifying and labeling each incoming transaction.

4 Credit Card Fraud Transaction Data

Here we provide a general view of the data schema for the labelled transaction data sets

compiled by a bank and used by our system. For purposes of our research and development

activity, several data sets are being acquired from several banks, each providing .5 million

records spanning one year, sampling on average 42,000 per month, from Nov. 1995 to Oct.

1996.

The schema of the database was developed over years of experience and continuous anal-

ysis by bank personnel to capture important information for fraud detection. The general

schema of this data is provided in such a way that important con�dential and proprietary

information is not disclosed here. (After all we seek not to teach \wanabe thieves" important

lessons on how to hone their skills.) The records have a �xed length of 137 bytes each and

about 30 numeric attributes including the binary classi�cation (fraud/legitimate transac-

tion). Some of the �elds are arithmetic and the rest categorical, i.e. numbers were used to

represent a few discrete categories.

In this section, we describe the setting of our experiments. In particular, we split the

original data set provided by one bank into random partitions and we distributed them

across the di�erent sites of the JAM network. Then we computed the accuracy from each

model obtained at each such partition.

7

a >= 774.

Fraud :-Fraud :-

a >= 148,

b >= 695.

Fraud :-

c <= 12,

a >= 4.

c <= 200,

e = ’8’,

f = ’3’,

Fraud :-

NonFraud :- true

d <= 4814.

1 0

site2

1 0

0 0

site2

1 0

site1

1 0

Figure 4: Left: This sample rule-based model, covers 1365 non-fraudulent and 290 fraudulent

credit card transactions. Right: A portion of the ID3 decision tree meta-classi�er, learned

from the predictions of the four base classi�ers. In this portion, only the classi�ers from

site-1 and site-2 are displayed

To be more speci�c, we sampled 84,000 records from the total of 500,000 records of the

data set we used in our experiments, and kept them for the Validation and Test sets to

evaluate the accuracy of the resultant distributed models. The learning task is to identify

patterns in the 30 attribute �elds that can characterize the fraudulent class label.

Let's assume, without loss of generality, that we apply the ID3 learning process to two

sites of data (say sites 1 and 2), while two instances of Ripper are applied elsewhere (say at

sites 3 and 4), all being initiated as Java agents. The result of these four local computations

are four separate classi�ers, C

ID3�i

(); i = 1; 2, and C

Ripper�j

(); j = 3; 4 that are each invocable

as agents at arbitrary sites of credit card transaction data.

A sample (and sanitized) Ripper rule-based classi�er learned from the credit card data

set is depicted in Figure 4, a relatively small set of rules that is easily communicated among

distributed sites as needed.

6

To extract fraud data from a distinct �fth site of data, or any

other site, using say, C

Ripper�3

() the code implementing this classi�er would be transmitted

to the �fth site and invoked remotely to extract data. This can be accomplished for example

using a query of the form:

Select X.* From Credit-card-data Where C

Ripper�3

(X:fraud� label) = 1.

Naturally, the select expression rendered here in SQL in this example can instead be

implemented directly as a data �lter applied against incoming transactions at a server site

in a fraud detection system.

The end result of this query is a stream of data accessed from some remote source

based entirely upon the classi�cations learned at site 3. Notice that requesting transactions

classi�ed as \not fraud" would result in no information being returned at all (rather than

streaming all data back to the end-user for their own sifting or �ltering operation). Likewise,

in a fraud detection system, alarms would be initiated only for those incoming transactions

that have been selectively labelled as potentially fraudulent.

Next, a new classi�er, say M can be computed by combining the collective knowledge

of the 4 classi�ers using for example the ID3 meta-learning algorithm. M is trained over

meta-level training data, i.e. the class predictions from four base classi�ers, as well as the raw

6

The speci�c con�dential attribute names are not revealed here.

8

training data that generated those predictions

7

. The meta-training data is a small fraction

of the total amount of distributed training data

8

. In order for M to generate its �nal class

predictions, it requires the classi�cations generated by C

ID3�1

(), C

ID3�2

(), C

Ripper�3

() and

C

Ripper�4

(). The result is a tree structured meta-classi�er depicted in Figure 4.

In this �gure, the descendant nodes of the decision tree are indented while the leaves

specify the �nal classi�cations (fraud label 0 or 1). A (logic-based) rule equivalent of the

�rst branch at the top of the ID3 Decision tree is:

\If (X:Predictionfsite�1g = 1) and (X:Predictionfsite�2g = 1) then the transaction

is fraudulent i.e. X.Fraud-label = 1."

Similarly, with M, we may access credit card fraud data at any site in the same fashion

as C

Ripper�3

used over site 5.

Our experiments for fraud and intrusion detection are already under way. In one series of

measurements, we trained the base classi�ers and meta-classi�ers over a sample data set with

50% fraudulent and 50% non-fraudulent transactions. Then we tested their accuracy against

a di�erent and unseen sample set of data with 20%/80% distribution. In summary, Ripper

and Cart were the best base classi�ers, and Bayes, the best and most stable meta-classi�er.

Ripper and Cart were each able to catch 80% of the fraudulent transactions (True Positive

or TP) but also misclassify 16% of the legitimate transactions (False Positive or FP) while

Bayes exhibited 80% TP and 13% FP in one setting and 80% TP and 19% FP in another. In

the �rst setting, Bayes combined the three base classi�ers with the least correlated error and

in the second it combined the four most accurate base classi�ers. The experiments, settings,

rationale and results have been reported in detail in a companion paper [13] also available

from http://www.cs.columbia.edu/�sal/JAM/PROJECT.

5 Conclusions

We believe the concepts embodied by the term meta-learning provide an important step

in developing systems that learn from massive databases and that scale. A deployed and

secured meta-learning system will provide the means of using large numbers of low-cost net-

worked computers who collectively learn from massive databases useful and new knowledge,

that would otherwise be prohibitively expensive to achieve. We believe meta-learning sys-

tems deployed as intelligent agents will be an important contributing technology to deploy

intrusion detection facilities in global-scale, integrated information systems.

In this paper we described the JAM architecture, a distributed, scalable, extensible

and portable agent-based system that supports the launching of learning and meta-learning

agents to distributed database sites and build upon existing agent infrastructure available

over the internet today. JAM can integrate distributed knowledge and boost overall predic-

tive accuracy of a number of independently learned classi�ers through meta-learning agents.

We have engaged JAM in a real, practical and important problem. In collaboration with

the FSTC we have populated these database sites with records of credit card transactions,

provided by di�erent banks, in an attempt to detect and prevent fraud by combining learned

patterns and behaviors from independent sources.

7

This meta-learning strategy is denoted class-attribute-combiner as de�ned in [3, 4].

8

The section detailing the meta-learning strategies in [4] describes the various bounds placed on the

meta-training data sets while still producing accurate meta-classi�ers.

9

6 Acknowledgements

We wish to thank David Wolpert, formerly of TXN and presently at IBM Almaden, Hank

Vacarro of TXN, Shaula Yemini of Smarts, Inc. and Yechiam Yemini for many useful and

insightful discussions. Their early collaboration with us in this e�ort helped sharpen many of

the concepts described in this paper. They also contributed to the exposition of the concepts

in this paper by reviewing earlier drafts. We also wish to thank Dan Schutzer of Citicorp,

Adam Banckenroth of Chase Bank, Tom French of First Union Bank and John Doggett of

Bank of Boston, all executive members of the FSTC, for their support of this work.

References

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and Regression

Trees. Wadsworth, Belmont, CA, 1984.

[2] P. Chan. An Extensible Meta-Learning Approach for Scalable and Accurate Inductive

Learning. PhD thesis, Department of Computer Science, Columbia University, New

York, NY, 1996.

[3] P. Chan and S. Stolfo. A comparative evaluation of voting and meta-learning on parti-

tioned data. In Proc. Twelfth Intl. Conf. Machine Learning, pages 90{98, 1995.

[4] P. Chan and S. Stolfo. Learning arbiter and combiner trees from partitioned data for

scaling machine learning. In Proc. Intl. Conf. Knowledge Discovery and Data Mining,

pages 39{44, 1995.

[5] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261{285,

1989.

[6] William W. Cohen. Fast e�ective rule induction. In Proc. Twelfth International Con-

ference. Morgan Kaufmann, 1995.

[7] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with

symbolic features. Machine Learning, 10:57{78, 1993.

[8] R. Duda and P. Hart. Pattern classi�cation and scene analysis. Wiley, New York, NY,

1973.

[9] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for

extracting useful knowledge from data. Communications of the ACM, 39(11):27{34,

November 1996.

[10] Wenke Lee and Naser S. Barghouti. Javadot: An extensible visualization environment.

Technical Report CUCS-02-97, Department of Computer Science, Columbia University,

New York, NY, 1997.

10

[11] C. Merz and P. Murphy. UCI repository of machine learning databases

[http://www.ics.uci.edu/�mlearn/mlrepository.html]. Dept. of Info. and Computer Sci.,

Univ. of California, Irvine, CA, 1996.

[12] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[13] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Credit card fraud detection

using meta-learning: Issues and initial results. Submitted to 3rd Intl. Conf. Know. Disc.

Data Mining, 1997.

11

