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Abstract

Much of the research in inductive learning concentrates on problems with relatively small

amounts of training data. With the steady progress of the Human Genome Project, it is likely

that orders of magnitude more data in sequence databases will be available in the near future

for various learning problems of biological importance. Thus, techniques that provide the means

of scaling machine learning algorithms requires considerable attention.

Meta-learning is proposed as a general technique to integrate a number of distinct learning

processes that aims to provide a means of scaling to large problems. This paper details several

meta-learning strategies for integrating independently learned classi�ers on subsets of training

data by the same learner in a parallel and distributed computing environment. Our strategies

are particularly suited for massive amounts of data that main-memory-based learning algo-

rithms cannot handle e�ciently. The strategies are also independent of the particular learning

algorithm used and the underlying parallel and distributed platform. Preliminary experiments

using di�erent learning algorithms in a simulated parallel environment demonstrate encouraging

results: parallel learning by meta-learning can achieve comparable prediction accuracy in less

space and time than serial learning.

�
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1 Introduction

Various computer systems have been built to facilitate the process of analyzing amino acid and

nucleotide sequences (von Heijne, 1987). However, most of the systems developed to date require the

translation of analysis techniques developed by human experts to computer programs. It is well

known that this process, called knowledge engineering, can be lengthy and problematic (Boose,

1986).

Machine learning allows classi�cation systems to be generated automatically by identifying

patterns and causal relationships in the data obtained from a user or sensed by interactions with

some task environment. In particular, inductive learning aims at discovering relationships in data

with little or no knowledge about the data or the domain from which they are drawn. That is, it

is feasible that sequence-analysis systems can be built automatically and directly from exemplar

sequence information without obtaining and translating human expertise. Furthermore, machine

learning techniques allow the possibility of discovering patterns and concepts unknown to human

experts. It has been reported that in some cases, classi�cation systems generated by learning

techniques outperform human-designed systems (Chan, 1991; Qian & Sejnowski, 1988; Towell et al.,

1990; Zhang et al., 1992).

The Human Genome Project (DeLisi, 1988), initiated by the National Institutes of Health

(NIH) and Department of Energy (DOE), aims to map the entire human genome and will inevitably

generate orders of magnitude more sequence data than exist today. However, much of the research in

inductive learning concentrates on problems with relatively small amounts of data. The algorithms

developed so far are generally not scalable to large databases as envisaged by the Genome Project.

The complexity of typical machine learning algorithms renders their use infeasible in problems

with massive amounts of data (Chan & Stolfo, 1993d). For instance, Catlett (1991) projects that

the well-known ID3 algorithm (Quinlan, 1986) on modern machines will require several months

of computing to learn a decision tree from a million records in the ight data set obtained from

NASA. In addition, typical learning algorithms like ID3 rely on a monolithic memory to �t all of its

training data. However, it is clear that main memory can easily be exceeded with massive amounts

of data. Therefore, to e�ciently process huge sequence databases, learning algorithms need to be

scalable. We de�ne scalability as the ability to e�ciently process increasing amounts of information,

given that a machine has a limited amount of resources. On a single machine, its limited resources

can get completely saturated by a learning algorithm when it is presented with large amounts of

data, which results in intolerable performance or inability of the algorithm to execute.

Quinlan (1979) approached the problem of e�ciently applying learning systems to data that

are substantially larger than available main memory with a windowing technique. A learning

algorithm is applied to a small subset of training data, called a window, and the learned concept

is tested on the remaining training data. This is repeated on a new window of the same size

with some of the incorrectly classi�ed data replacing some of the data in the old window until all

the data are correctly classi�ed. Wirth and Catlett (1988) show that the windowing technique

does not signi�cantly improve speed on reliable data. On the contrary, for noisy data, windowing

considerably slows down the computation. Catlett (1991) demonstrates that larger amounts of

data improves accuracy, but as mentioned above, the time for ID3 to process a million records

is intolerable. He proposes some improvements to the ID3 algorithm particularly for handling

attributes with real numbers, but the processing time is still prohibitive due to the algorithm's

complexity. Furthermore, his approach cannot be applied to symbolic or discrete attributes.

Another approach to solving the scalability problem is simply to increase the number of proces-

sors and available memory, parallelize the learning algorithms and apply the parallelized algorithm

to the entire data set (presumably utilizing multiple I/O channels to handle the I/O bottleneck).
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Zhang et al.'s (1989) work on parallelizing the backpropagation algorithm on a Connection Machine

is one example. This approach requires optimizing the code for a particular algorithm on a speci�c

parallel architecture. Our approach, which we propose in this paper, is to run the serial code on a

number of data subsets in parallel and combine the results in an intelligent fashion thus reducing

and limiting the amount of data inspected by any one learning process. This approach has the

advantage of using the same serial code without the time-consuming process of parallelizing it.

Since the framework for combining the results of learned concepts is independent of the learning

algorithm, it can be used with di�erent algorithms. In addition, this approach is independent of the

computing platform used. However, this approach cannot guarantee the accuracy of the learned

concepts to be the same as the serial version since by treating only a subset of the training data at a

single processing site, a considerable amount of information is not accessible to each of the learning

processes. Despite the lack of equivalence guarantee, empirical accuracy results obtained from our

strategies closely approximate the ones from the serial algorithms. Furthermore, because of the

proliferation of networks of workstations and distributed databases, our approach of not relying on

a speci�c parallel or distributed environment is particularly attractive for portability. Lastly, even

without the presence of multiple processors, our approach still works on a single processor and can

work on problems larger than the processor can normally handle.

In this paper we present the concept of meta-learning and its use in combining results from a

set of parallel or distributed learning processes, which was introduced in (Chan & Stolfo, 1993d).

We applied our techniques to the splice junction prediction task and conducted more thorough

experiments. Here we present our new �ndings including measured speed improvements. Section 2

introduces the splice junction prediction task. Section 3 describes the learning algorithms used

in this study. Section 4 discusses meta-learning and how it facilitates parallel and distributed

learning. Section 5 details our strategies for parallel learning by meta-learning. Section 6 discusses

our preliminary experiments and results. Section 7 discusses our �ndings and work in progress.

Section 8 concludes with a summary of this study.

2 Splice Junction Prediction

Genes constitute the basic blueprint of every life form. They dictate the production of proteins,

which are the building blocks of life. The information from a collection of genes in an organism is

referred as its genome. The Human Genome Project is an e�ort to decipher information encoded

in the human genome. Genes are encoded in DNA (deoxyribonucleic acid) molecules. Each DNA

molecule has two parallel polymer strands of nucleotides in double-helix formation. The four basic

nucleotides are: adenine, cytosine, guanine, and thymine, which are usually represented as A, C, G,

and T, respectively. Although a DNA molecule consists of two nucleotide strands, one strand is the

complement of the other, which is more or less redundant in terms of encoding genetic information.

If one constructs the sequence of all the DNA molecules in an organism's genome, one can represent

the organism as a long sequence of just four letters. The length of the human DNA sequence is

estimated to be 3� 10

9

.

Protein synthesis begins with the construction of an mRNA molecule (messenger RNA (ri-

bonucleic acid)) based on the nucleotide sequence of a DNA molecule. This process is called

transcription. The composition of RNA is similar to that of DNA, except RNA is single-stranded,

the ribose component replaces the deoxyribose one, and uracil (U) replaces thymine. The second

process is translation, where each coding triplet of nucleotides on an mRNA molecule is mapped

to an amino acid and a chain of amino acids forms a protein.

In eukaryotes' (organisms with cells that have nuclear membrane (for example, human)) DNA,
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Figure 1: Splice junctions and mRNA.

Table 1: Attribute values in the splice junction data set.

Symbol Description

A adenine

C cytosine

G guanine

T thymine

D A or G or T

N A or G or C or T

S C or G

R A or G

there are interrupted genes. That is, some regions of a gene do not encode protein information.

During transcription, these non-protein-encoding regions (called introns) are passed to the precursor

RNA. Introns are sliced o� before translation begins. The regions that encode protein information

(called exons), are spliced together and the resultant intron-free mRNA is used in translation.

Figure 1 schematically depicts the process of generating an mRNA molecule. A detailed discussion

on this subject is beyond the scope of this paper, hence interested readers are referred to relevant

literature (for example, (Lewin, 1987; Hunter, 1993)).

Given a nucleotide sequence, our prediction task is to identify splice junctions (intron-exon

and exon-intron junctions). For our experiments, the splice junction data set, obtained from the

UCI Machine Learning Database, courtesy of Noordewier, Towell, and Shavlik (1991), contains

sequences of nucleotides and the type of splice junction, if any, at the center of each sequence (i.e.,

the three classes are intron-exon, exon-intron, and neither). Each sequence has 60 nucleotides with

eight di�erent values each (four base ones plus four combinations, see Table 1). The data set has

a total of 3,190 sequences|half of the data set has splice junctions and the other half does not.

Table 2 shows some of the examples in the data set. Although this data set is relatively small, our

intention is to verify the e�ectiveness of our techniques on a smaller sequence data set, before we

attempt much larger ones.

3 Inductive Learning

Inductive learning (or learning from examples (Michalski, 1983)) is the task of identifying regular-

ities in some given set of examples with little or no knowledge about the domain from which the
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Table 2: Sample splice junction sequences.

Class Sequence

intron-exon CTTTAAAAAATTAACATTTTTCTTTTATAGGGATCTGAAACAACATTCATGTGTGAATAT

exon-intron GAGATCGACCTGGACTCCATGAGAAATCTGGTGAGTGCCTTCACATCACCTGCCCAGCTC

neither TACTGTATCAAGTCATGGCAGGTACAGTAGGATAAGCCACTCTGTCCCTTCCTGGGCAAA

examples are drawn. Inductive learning systems process examples, that include class labels, and

generate concepts which accurately describe (using various representations) the classes present in

the examples. In this study we concentrate on inductive learning in non-incremental mode, which

requires all the training data to be present when training commences.

Four inductive learning algorithms were used in this study. ID3 (Quinlan, 1986) and CART

(Breiman et al., 1984) were obtained from NASA Ames Research Center in the IND package

(Buntine & Caruana, 1991). They are both decision tree learning algorithms. WPEBLS is the

weighted version of PEBLS (Cost & Salzberg, 1993), which is a memory-based learning algorithm.

In memory-based learning, a similarity or \closeness" measure is learned and the examples (or a

subset of them) are stored. BAYES, described in (Clark & Niblett, 1989), is a Bayesian learner that

compiles conditional probabilities and uses Bayes' Rule for classi�cation. The latter two algorithms

were reimplemented in C for this study.

In the following discussion we sketch the worst-case time complexity for each of the four algo-

rithms to help clarify the potential bene�ts of scaling by meta-learning techniques. Without loss

of generality, we assume all the attributes of the training data have discrete values. Let a be the

number of attributes, v be the largest number of distinct values for an attribute, and n be the

number of training examples. For the splice junction prediction task, a is 60, v is 8, and n is 2,552

(80% of the data set for purposes of our study).

The time complexity of ID3 (Quinlan, 1986) is a function of the number of nodes in the decision

tree it forms. The height of the tree is bounded by the number of attributes and the branching

factor is bounded by the number of values in an attribute, hence the number of tree nodes is

bounded by O(v

a

). Since at each node O(a) attributes are evaluated with O(n) examples, the time

spent at each node is O(an). Therefore, the time complexity of ID3 is O(anv

a

) in the worst case.

In CART (Breiman et al., 1984; Buntine & Caruana, 1991) the values of each attribute at

each node are grouped into two disjoint subsets. Hence, each non-leaf node has only two branches

and the learned tree has O(2

a

) nodes. At each node, CART uses a greedy scheme to group the

values of each attribute, which takes roughly O(v) time. That is, O(av + an) time is needed to

group a attributes and evaluate a attributes for n examples. Although, CART employs a ten-fold

cross-validation scheme to select the splitting attribute, the scheme only adds a constant factor to

the time complexity at each node and hence the complexity remains at O(av+an). The total time

complexity for CART is therefore O((av + an)2

a

) in the worst case.

WPEBLS (Cost & Salzberg, 1993) calculates a set of value distance matrices (VDMs) and a

vector of weights for the exemplars. Each attribute has a VDM of size v by v, which takes O(nv

2

) to

calculate. For a attributes, O(anv

2

) time is needed for a VDMs. The weight vector is incrementally

updated and takes O(n

2

) time. The time complexity for WPEBLS is therefore O(anv

2

+n

2

) in the

worst case.

BAYES (Clark & Niblett, 1989) calculates the conditional probabilities for each attribute value

given a class. The time complexity of BAYES is simply O(avn).

Since we are considering problems with potentially large amounts of data, the dominating term
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Figure 2: CPU training time of the learning algorithms.

is n. (Obviously, the magnitude of a and v can be problematic as well.) From the above analysis,

one might think that only WPEBLS is quadratic in the number of training examples and the rest

are linear. However, closer inspection reveals that v, the number of values of an attribute, could

be a function of n. One can easily see that some values of an attribute which are present in a large

data set might be absent from a small data set. That is, ID3's complexity may be as bad as a

large polynominal in n. In addition, the exponential components v

a

in ID3's complexity and 2

a

in

CART's are major time factors and cannot be easily ignored. That is, among the four algorithms,

only BAYES is a true linear algorithm. Although BAYES has good scaling characteristics, it is

included in this study to show that our strategies are bene�cial to a range of di�erent learning

algorithms.

In a set of experiments we measured the training time of the four algorithms with the number

of training examples varying from 10 to 100,000 (examples were randomly selected and duplicated

from the original data set, which has 3,190 examples). Thus, the training sets contain many

duplicate examples. The results in CPU time on Sun IPXs are plotted in Figure 2. We observe

that CART appears to be linear. As expected, WPEBLS did not exhibit linear behavior. ID3 and

BAYES seem to perform worse than linear. It is important to note with more complex training

sets, the actual measured performance will vary widely from these.

In the next section we discuss our approach to learning from very large data sets in an e�cient

and accurate manner. The essence of the approach is to reduce the amount of data (n, in our

formulation above) processed by an individual learning process and thus substantially increasing

its speed performance. In the case of a quadratic time algorithm, for example, reducing its data

by half, results in a four fold decrease in running time. However, the issue is whether or not the

resultant accuracy will be halved (or worse).

4 Meta-learning

Meta-learning can be loosely de�ned as learning from information generated by a learner(s). It can

also be viewed as the learning of meta-knowledge about the learned information. In our work we

concentrate on learning from the output of inductive learning (or learning-from-examples) systems.

Meta-learning, in this case, means learning from the classi�ers produced by the learners and the

predictions of these classi�ers on training data. A classi�er (or concept) is the output of an inductive
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Figure 3: Divide and conquer in parallel learning.

learning system and a prediction (or classi�cation) is the predicted class generated by a classi�er

when an unlabeled instance is supplied. That is, we are interested in the output of the learners,

not the learners themselves. Moreover, the training data presented to the learners initially are also

available to the meta-learner if warranted.

Meta-learning is a general technique to coalesce the results of multiple learners. In this paper

we concentrate on using meta-learning to combine parallel learning processes for higher speed and

to maintain the prediction accuracy that would be achieved by the sequential version. This involves

applying the same algorithm on di�erent subsets of the data in parallel and the use of meta-learning

to combine the partial results. We are not aware of any work in the literature on this approach

beyond what was �rst reported in (Stolfo et al., 1989) in the domain of speech recognition. Work on

using meta-learning for combining di�erent learning systems is reported elsewhere (Chan & Stolfo,

1993a; Chan & Stolfo, 1993c) and is further elaborated later in the paper. In the next section

we will discuss our approach of using meta-learning for parallel learning using a single learning

algorithm.

5 Parallel Learning

The objective here is to speed up the learning process by divide-and-conquer. The training set is

partitioned into some number of subsets (T

i

) and the same learning algorithm L is applied on each

of these subsets (Figure 3). From each training subset, a classi�er (C

i

) is computed. The generated

classi�ers and the subsets are then used in meta-learning. Several issues arise here.

First, how many subsets should be generated? This largely depends on the number of processors

available and the size of the training set. The number of processors puts an upper bound on the

number of subsets. Another consideration is the desired accuracy we wish to achieve. As we will see

in our experiments, there may be a tradeo� between the number of subsets and the �nal accuracy.

Moreover, the size of each subset cannot be too small because su�cient data must be available for
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each learning process to produce an e�ective classi�er. We varied the number of subsets of the

splice junction data set, ranging from 2 to 64, in our experiments reported below.

Second, how are the training examples partitioned into subsets? The subsets can be disjoint or

overlap. The partitioning of the data may be random, or follow some deterministic scheme. We ex-

perimented with disjoint equal-size subsets with proportional partitioning of classes. In proportional

class partitioning the relative proportion of classes in the training set is preserved in each subset.

For example, if one half of a data set contains examples labeled with one class and the other half

contains examples of another class, each partitioned subset maintains the 50% distribution among

the two classes. Disjoint subsets implies no data is shared between learning processes and thus no

interprocess communication overhead is paid during training in a parallel execution environment.

Third, what is the strategy to coalesce the partial results generated by the learning processes?

This is the more important question. The simplest approach is to allow the separate learned

classi�ers to vote and use the prediction with the most votes as the �nal outcome of classi�cation.

Our approach is based upon a more sophisticated scheme. Meta-learning is used to learn arbiters

in a bottom-up, binary-tree fashion. (The choice of a binary tree is discussed later.)

An arbiter, together with an arbitration rule, decide a �nal classi�cation outcome based upon

a number of candidate predictions. An arbiter is learned from the output of a pair of learned

classi�ers and recursively, an arbiter is learned from the output of two arbiters. A binary tree

of arbiters (called an arbiter tree) is generated with the initially learned classi�ers at the leaves.

For s subsets and s classi�ers, there are log

2

(s) levels in the generated arbiter tree. The arbiters

themselves are essentially classi�ers. However, an arbiter attempts to learn how to integrate two

other classi�ers. This is accomplished by providing the classi�cations of two classi�ers as training

data used by a learning algorithm. The manner in which arbiters are computed and used is the

subject of the following sections.

5.1 Classifying using an arbiter tree

When an instance is classi�ed by the arbiter tree, predictions ow from the leaves to the root. First,

each of the leaf classi�ers produces an initial prediction; i.e., a classi�cation of the test instance.

From a pair of predictions and the parent arbiter's prediction, a combined prediction is produced

by some arbitration rule. Figure 4 depicts how an arbiter classi�es an instance with two other

classi�ers. These arbitration rules are dependent upon the manner in which the arbiter is learned

as detailed below. This process is applied at each level until a �nal prediction is produced at the

root of the tree. Since at each level, the leaf classi�ers and arbiters are independent, predictions

are generated in parallel. Before we discuss the arbitration process in detail, we �rst describe how

arbiters are learned.

5.2 Meta-learning an arbiter tree

We experimented with several schemes to meta-learn a binary tree of arbiters. The training exam-

ples for an arbiter are selected from the original training examples used in its two subtrees.

In all these schemes the leaf classi�ers are �rst learned from disjoint data subsets (generated

by some partitioning scheme) and the classi�ers are grouped in pairs. (The strategy for pairing

classi�ers is discussed later.) For each pair of classi�ers, the union of the data subsets on which

the classi�ers are trained is generated. This union set is then classi�ed by the two classi�ers. A

selection rule compares the predictions from the two classi�ers and selects instances from the union

set to form the training set for the arbiter of the pair of classi�ers. Thus, the rule acts as a data

�lter to produce a training set (called an arbiter training set) with a particular distribution of the
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examples. To ensure e�cient computation, we bound the size of the arbiter training set to the

size of each data subset. The arbiter is learned from this set with the same learning algorithm. In

essence, we seek to compute a training set of data for the arbiter that the classi�ers together do

a poor job of classifying. The process of forming the union of data subsets, classifying it using a

pair of arbiter trees, comparing the predictions, forming a training set, and training the arbiter is

recursively performed until the root arbiter is formed.

For example, suppose there are initially four training data subsets (T

1

� T

4

), by some learning

algorithm, L. First, four classi�ers (C

1

� C

4

) are generated in parallel from T

1

� T

4

. The union

of subsets T

1

and T

2

, U

12

, is then classi�ed by C

1

and C

2

(in parallel), which generates two sets

of predictions (P

1

and P

2

). Based on predictions P

1

and P

2

, and the subset U

12

, a selection rule

generates a training set (T

12

) for the arbiter. The arbiter (A

12

) is then trained from the set T

12

using the same learning algorithm (L) used to learn the initial classi�ers. Similarly, arbiter A

34

is generated in the same fashion starting from T

3

and T

4

, in parallel with A

12

, and hence all the

�rst-level arbiters are produced. Then U

14

is formed by the union of subset T

1

through T

4

and is

classi�ed by the arbiter trees rooted with A

12

and A

34

. Similarly, T

14

and A

14

(root arbiter) are

generated and the arbiter tree is completed (see Figure 5).

It is important to note that, for e�ciency, the training data subsets (T

i

) are not migrated or

replicated to form the union sets (U

ij

) in a parallel and distributed environment. Instead, the

classi�ers, which presumably are much smaller than the data subsets, are communicated to the

processors that need them. In other words, the data subsets stay at the same processing sites and

8



Class Attribute vector Example Base classi�ers' predictions

class(x) attrvec(x) x C

1

(x) C

2

(x)

exon-intron sequence

1

x

1

exon-intron exon-intron

intron-exon sequence

2

x

2

exon-intron intron-exon

neither sequence

3

x

3

exon-intron exon-intron

Training set from

the di�erent arbiter scheme

Instance Class Attribute vector

1 intron-exon sequence

2

Training set from

the di�erent-incorrect arbiter scheme

Instance Class Attribute vector

1 intron-exon sequence

2

2 neither sequence

3

Figure 6: Sample training sets generated by the two arbiter strategies.

each union set is distributed across multiple sites. In addition, as we mentioned above, the size of

an arbiter training set (T

ij

) is bounded by the size of the data subsets (T

i

). That is, the classi�ers

do not need to classify the entire union set, they just need to classify enough to generate the arbiter

training set.

5.3 Detailed strategies

We experimented with two strategies for the selection rule, which generates training examples

for the arbiters. Based on the predictions from two arbiter subtrees AT

1

and AT

2

(or two leaf

classi�ers) rooted at two sibling arbiters, and a set of training examples, E, the strategy generates

a set of arbiter training examples, T . AT

i

(x) denotes the prediction of training example x by

arbiter subtree AT

i

. class(x) denotes the given classi�cation of example x. The two versions of

this selection rule implemented and reported here are as follows:

1. Return instances with predictions that disagree, i.e., T = D = fx 2 E j AT

1

(x) 6= AT

2

(x)g:

Thus, the arbiter will be used to decide between conicting classi�cations. Note, however, it

cannot distinguish classi�cations that agree but which are incorrect. (For further reference,

this scheme is denoted as di�erent.)

2. Return instances with predictions that disagree, D, as in the �rst case, but also predictions

that agree but are incorrect; i.e, T = D [ I , where I = fx 2 E j (AT

1

(x) = AT

2

(x)) ^

(class(x) 6= AT

1

(x))g: Note that we lump together both cases of data that are incorrectly

classi�ed or are in disagreement. (Henceforth, this selection rule is denoted as di�erent-

incorrect).

Sample training sets generated by the two schemes are depicted in Figure 6. (A more sophisticated

third scheme, which utilizes three subarbiters, was investigated in (Chan & Stolfo, 1993d). Prelim-

inary results obtained from the third scheme were comparable to those from the �rst two schemes,

and as a result, it is omited from this study.)

The learned arbiters are trained on the particular distinguished distributions of training data

and are used in generating predictions. (Note that the arbiters are trained by the same learner

used to train the leaf classi�ers.) Recall, however, at each arbiter we have two predictions, p

1

and

p

2

, from two lower level arbiter subtrees (or leaf classi�ers) and the arbiter's, A, own prediction

to arbitrate between. A

i

(x) is denoted as the prediction of training example x by arbiter A

i

. The
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arbitration rule used in this study is de�ned below. We denote instance to be the test instance

that is being classi�ed.

� Return the majority vote of p

1

, p

2

, and A(instance), with preference given to the arbiter's

choice; i.e., if p

1

6= p

2

return A(instance) else return p

1

.

Note that the arbitration rule does not know whether p

1

and/or p

2

are incorrect. If p1 and p2

are the same, but are incorrect, the arbitration rule will return p

1

, which is incorrect. However, we

rely on the fact that some arbiters in the tree are correct on this particular instance and discrepancy

will eventually arise and be resolved at some node in the tree. Next, we analyze the computational

e�ciency of our strategies.

5.4 Speed up analysis

Recall that the training set size for an arbiter is restricted to be no larger than the training set

size for a leaf classi�er. Hence, in a parallel environment, the amount of computation at each level

is approximately the same. Assume the number of data subsets of the initial distribution is s.

Let t = n=s be the size of each data subset, where n is the total number of training examples.

Furthermore, assume the learning algorithm takes O(n

2

) time (for example, WPEBLS) in the

sequential case. In the parallel case, if we have s processors, there are log(s) iterations in building

the arbiter tree and each takes O(t

2

) time. The total time is therefore O(t

2

log(s)). For the same

parallel algorithm that is run sequentially, there are 2s, or O(s), executions of the algorithm and

each takes O(t

2

); the total time is therefore O(st

2

). As a result, a potential O(s= log(s)) fold

speed up can be achieved. Moreover, if we directly compare the parallel algorithm to the pure

serial algorithm, which is O(n

2

), or O((ts)

2

), the potential speed up is O(s

2

= log(s)) fold, which

is superlinear. To simplify the discussion, we did not take into consideration the classi�cation

time needed to select the arbiter training sets. The �rst speed up analysis is the standard way of

measuring parallel speed up, we include the second analysis as an indication of the speed di�erence

between the parallel approach and the pure sequential approach.

These analyses assume the classi�cation time to generate the arbiter training sets is relatively

small compared to the training time. However, this is not the case in some algorithms. Since

the number of processors needed for training an arbiter tree is reduced in half at each level and

only one processor is used at the root level, the idle processors can be used to classify the union

sets (Section 5.2). That is, training and classifying can be overlapped in execution. Furthermore,

although the union sets get larger toward the root, more non-training processors are available for

classifying. As mentioned before, the entire union set need not be classi�ed; classi�cation can stop

once the arbiter training set is �lled. (Strategies are being developed to minimize the classi�cation

time during the arbiter learning process.)

These analyses also assume that each data subset �ts in main memory. In addition, the estimates

do not take into account the burden of communication overhead and speed gained by multiple I/O

channels in the parallel case. Furthermore, we assume that the processors have equal performance

and thus load balancing and other issues in a heterogeneous environment raise interesting issues

for future work.

In addition, these analyses are based on a �xed problem size. Speed up in this case is the

processing speed di�erential with increasing number of processors. An alternate speed up measure

is the memory-bound scaled speed up (Sun & Ni, 1993), which measures the increase in possible

problem size with increasing number of processors, each with limited available memory. For our

strategies, this measure is linear since adding one more processor translates to an increase in

10



80

85

90

95

100

1 2 4 8 16 32 64

A
cc

ur
ac

y 
(%

)

Number of subsets

ID3

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64

A
cc

ur
ac

y 
(%

)

Number of subsets

CART

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64

A
cc

ur
ac

y 
(%

)

Number of subsets

WPEBLS

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64

A
cc

ur
ac

y 
(%

)

Number of subsets

BAYES

different
different-incorrect

voting

Figure 7: Results on di�erent selection/arbitration strategies.

problem size of one more subset of the training data that �ts on one processor. The next section

describes our preliminary experiments and results on our meta-learning strategies.

6 Experiments and Results

We ran a series of experiments to test our strategies based on the splice junction prediction task

described in Section 2. Four di�erent learning algorithms (ID3, CART, WPEBLS, and BAYES as

discussed in Section 3) were used to show that our strategies are applicable to diverse algorithms.

The prediction accuracy on the test set is our primary comparison measure. All the empirical results

presented in this paper are averages from �ve-fold cross-validation runs (except in the experiments

for random partitioning, which is further discussed in Section 7). That is, the entire training set

is divided into �ve partitions, each partition takes turn in being the test set and the remaining

partitions constitute the training set.

As mentioned above, we varied the number of subsets from 2 to 64 and the equal-size subsets

were disjoint with proportional partitioning of classes. The two meta-learning strategies for arbiters

were run on the splice junction data set with the four learning algorithms. In addition, we applied

a simple voting scheme on the leaf classi�ers for comparison. The results are plotted in Figure 7,
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Figure 8: Speedup of parallel meta-learning over serial meta-learning.

which also shows the accuracy for the serial case as \one subset." Figure 8 and 9 plot our estimated

speedup calculated from measured timing statistics.

If we relax the restriction on the size of the data set for training an arbiter, we might expect an

improvement in accuracy, but a decline in execution speed. To test this hypothesis, a number of

experiments were performed varying the maximum training set size for the arbiters. The di�erent

sizes are constant multiples of the size of a data subset. The results plotted in Figure 10 were

obtained from using the di�erent strategy on the data.

6.1 Results from bounded arbiter training sets

In Figure 7, for the two arbiter strategies, we observe that the accuracy slightly decreased when

the number of subsets increased. With 64 subsets, most of the learners exhibited at most an 8%

drop in accuracy, with the exception of BAYES. The sudden drop in accuracy in BAYES was likely

due to the lack of information in the training data subsets. In the splice junction data set there are

only � 40 training examples in each of the 64 subsets. If we look at the case with 32 subsets (� 80

examples each), all the learners sustained a drop in accuracy of at most 3%. This shows that the

data subset size cannot be too small. The voting scheme performed poorly. Furthermore, the two

meta-learning strategies had comparable performance and since the �rst strategy produces fewer

examples in the arbiter training sets, it is the preferred strategy.

Since the current version of our system was not implemented on a parallel and distributed

platform, we do not have relevant timing results. However, we measured the CPU time taken to

generate each arbiter and approximate the overall CPU time of meta-learning, had we executed

the code in a parallel environment. The approximation is calculated by summing over the longest

time needed to generate an arbiter at each level of the arbiter tree. As noted above, the cost of

classi�cation needed for selecting examples for the arbiter training sets is not included. Also, the

e�ects of communication and multiple I/O channels on speed are not taken into account, as well as

preprocessing such as data partitioning. In addition, since our training set of 2,500+ examples is

still relatively small, we duplicated each example ten times in each subset before learning begins.

This also has the e�ect of increasing the size of each arbiter training set by ten. Note that a

training set with 25,000+ examples is still a relatively small set, but due to the limitation of the

current serial implementation, much larger sets require more computer resources than currently

12
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Figure 9: Speedup of parallel meta-learning over pure serial learning.

available to us. (It is our intention to test our strategies on much larger data sets with our parallel

implementation presently underway.)

In Figure 8 we plot the speed up of the parallel meta-learning case (approximated) with respect

to the time for meta-learning using only one processor. In Figure 9 we plot the speed up of

the approximation of the parallel meta-learning case with respect to the time used by the pure

sequential algorithm (without meta-learning). The plotted results are from arbiter trees trained

with the di�erent selection rule and the arbiter training set size limited to the size of the initial

training subset size. All timing statistics were obtained from an Sun IPX workstation.

As shown in Figure 8, speed up was observed in all cases as expected. All speed up curves

approximate O(s= log(s)), derived in Section 5.4. Compared to the pure sequential version of the

algorithms (Figure 9), our strategies posted small speed up, except in the WPEBLS case, which

showed, as expected, superlinear speedup. The small speedup observed in the other three algorithms

is mainly due to the relatively small data set we were using (25,000+ training examples) and their

low order time complexities (Section 3). In addition, the overhead of invoking the training and

classi�cation processes becomes signi�cant when the data set is small, which is the case in our

experiments. We are con�dent that with much larger training sets, the overhead will be relatively

small and our future parallel implementation will achieve larger speed up. Note that at a certain

point, the serial version might not be able to handle a training set that is larger than main memory

and our results will likely become increasingly signi�cant.

6.2 Results from unbounded arbiter training sets

As we expected, by increasing the maximum arbiter training set size, higher accuracy can be

achieved (see Figure 10). When the maximum size was just two times the size of the original subsets,

the largest drop in accuracy was less than 3% (except BAYES with 64 subsets). Furthermore, when

the maximum size was unlimited (i.e., allowing each arbiter to be trained on the entire union set),

the accuracy was roughly the same as in the serial case. In fact, we observed an increase of 2% in

accuracy for ID3 with 64 subsets.

Next, we investigate the size and location of the largest arbiter training set in the entire arbiter

tree. (Recall, an arbiter training set is produced by a selection rule.) This gives us a notion of

the memory requirement at any processing site and the location of the main potential bottleneck
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Figure 10: Results on di�erent maximum arbiter training set sizes.

during meta-learning. Our empirical results presented in Figure 11 indicates that the largest arbiter

training set size was never signi�cantly greater than 10% of the total training set (except for BAYES

with 64 subsets) and always happened at the root level, independent of the number of subsets at

the leaves (greater than four). This implies that the bottleneck was in processing around 10% of the

entire training data set at the root level. This also implies that our parallel meta-learning strategy

required only around 10% of the memory used by the serial case at any single processing site. This

has a signi�cant impact on scalability. Suppose a single processor is limited in memory and able

to solve a learning task of size n. Our experiments suggest that meta-learning allows that single

processor to solve a problem of size 10n. (Strategies for reducing the largest arbiter training set

size even further are discussed in the next section.) Recall that the accuracy level of this parallel

strategy is roughly the same as the serial case. Thus, the parallel meta-learning strategy (with no

restrictions on the arbiter training set size) can perform the same job as the serial case with less

time and memory without parallelizing the learning algorithms. With restricted training set sizes,

our strategies can theoretically scale to arbitrarily large problems by setting the size restriction to

the memory capacity of a single processor and using more processors.

In summary, when the arbiter training set size is bounded to the size of each initial training data

subset, a small degradation in prediction accuracy (at most 3%) was observed with 32 subsets. A
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further increase in the number of subsets (64 subsets) produced a much larger decline in accuracy.

This indicates that each of the subsets cannot be too small in the training of the initial classi�ers.

Accuracy was preserved when the bound on the size of the arbiter training set was lifted. However,

we observe that the size of the arbiter training sets was limited to about 10% of the entire training

set. As expected, O(s= log(s)) fold speed up was observed when meta-learning run in parallel

was compared to meta-learning run sequentially. When parallel meta-learning was compared to

serial learning without meta-learning, superlinear speed up was observed in WPEBLS case and

smaller speed up was observed in the other three algorithms. Again, the training set used in our

experiments is still relatively small; further experiments will be conducted on much larger data

sets.

7 Discussion

For the splice junction prediction task, our arbiter scheme midly degraded the high accuracy (90+%)

achieved by the serial algorithm when the arbiter training sets were bounded. When the restriction

on the size of the training set for an arbiter was lifted, the same level of accuracy could be achieved

with less time and memory. Since we assert that this approach is scalable due to the independence

of each learning process and reduced memory requirement, this indicates the robustness of our

strategies and hence their e�ectiveness on massive amounts of data.

Largest arbiter training set size As mentioned in the previous section, we discovered that our

scheme required at most 10% of the entire training set at any processing site to maintain the same

prediction accuracy as in the serial case for the splice junction data. However, the percentage is

dependent on several factors: the prediction accuracy of the algorithm on the given data set, the

partitioning of the data in the leaf subsets, and the pairing of learned classi�ers and arbiters at

each level.

If the prediction accuracy is high, the arbiter training sets will be small because the predictions

will usually be correct and few disagreements will occur. In our earlier experiments reported in

(Chan & Stolfo, 1993d), the partitioning of data in the subsets was random and later we discovered

that half of the �nal arbiter tree was trained on examples with only two of the three classes. That is,

half of the tree was not aware of the third class appearing in the entire training data. We postulate
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Figure 12: Accuracy with di�erent class partitioning schemes.

that if the class partitioning in the subsets is proportional, the leaf classi�ers and arbiters in the

arbiter tree will be more accurate and hence the training sets for the arbiter will be smaller. Indeed,

results from experiments reported in this paper signi�cantly lower the largest size observed from

30% to 10%. We ran additional experiments on training sets with a more randomized partitioning

scheme. A randomly chosen training set is used in each run and the results averaged from �ve

runs are presented in Figure 12. As one might expect, a \truly randomized" partitioning scheme

approximates our proportional partitioning scheme and therefore the accuracy obtained using the

two schemes should be roughly the same. Indeed the accuracy curves in Figure 12 are very close.

Lastly, the \neighboring" leaf classi�ers and arbiters were paired in our experiments. One

might use more sophisticated schemes for pairing to reduce the size of the arbiter training sets.

One scheme is to pair classi�ers and arbiters that agree most often with each other and produce

smaller training sets (called min-size). Another scheme is to pair those that disagree the most

and produce larger training sets (called max-size). At �rst glance the �rst scheme would seem to

be more attractive. However, since disagreements are present, if they do not get resolved at the

bottom of the tree, they will all surface near the root of the tree, which is also when the choice of

pairings is limited or nonexistent (there are only two arbiters one level below the root). Hence, it

might be more bene�cial to resolve conicts near the leaves leaving fewer disagreements near the
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Figure 13: Arbiter training set size with di�erent class partitioning and pairing strategies.

root.

These sophisticated pairing schemes might decrease the arbiter training set size, but they might

also increase the communication overhead. When pairing is performed at every level, the overhead

is incurred at every level. The schemes also create synchronization points at each level, instead of

at each node when no special pairings are performed. A compromise strategy might be to perform

pairing only at the leaf level. This indirectly a�ects the subsequent training sets at each level, but

synchronization occurs only at each node and not at each level.

Some experiments were performed on the two pairing strategies applied only at the leaf level

and the results are shown in Figure 13. All these experiments used the di�erent strategy for

meta-learning arbiters. Di�erent pairing strategies were used with proportional partitioning and

\non-random" partitioning of classes. In non-random partitioning, examples are not proportionally

partitioned according to their classes and each partitioned subset is usually dominated by examples

of a single class. In addition, with the no (or \neighbor") pairing schemes, a class might be absent

from half of the arbiter tree. The pairing schemes with proportional partitioning did not a�ect the

arbiter training sets sizes signi�cantly and are not shown here. However, as shown in Figure 13,

with non-random partitioning, both max-size and min-size pairing strategies signi�cantly reduce

the training set sizes in our experiments. Between the two strategies, max-size pairing empirically
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exhibited greater reduction in set sizes than min-size pairing. As mentioned before, the two pairing

strategies did not a�ect the sizes of the arbiter training sets for the proportional partitioning. One

possible explanation is that the proportional partitioning scheme produced the smallest training

sets possible and the pairing strategies did not matter. In summary, proportional class partitioning

tends to produce the smallest training sets and the max-size pairing strategy can reduce the set

sizes in partitioning schemes that do not maintain the proportional partitioning of classes.

In our discussion so far, we have assumed that the arbiter training set is unbounded in order to

determine how the pairing strategies may behave in the case where the training set size is bounded.

The max-size strategy aims at resolving conicts near the leaves where the maximum possible

arbiter training set size is small (the union of the two subtrees) leaving fewer conicts near the

root. If the training set size is bounded at each node, a random sample (with the bounded size)

of a relatively small set near the root would be representative of the set chosen when the size is

restricted.

Order of the arbiter tree A binary arbiter tree con�guration was chosen for experimental

purposes. There is no apparent reason why the arbiter tree cannot be n-ary. However, the di�erent

strategies proposed above are designed for n to be equal to two. When n is greater than two,

a majority classi�cation from the n predictions might be su�cient as an arbitration rule. The

examples that do not receive a majority classi�cation constitute the training set for an arbiter. It

might be worthwhile to have a large value of n since the �nal tree will be shallow, and thus training

may be faster. However, more disagreements and higher communication overhead will appear at

each level in the tree due to the arbitration of many more predictions at a single arbitration site.

Alternate approach One may propose an \optimal" formula based on Bayes Theorem to com-

bine the results of multiple classi�ers, namely, P (x) =

P

c

P (c) � P (xjc), where x is a prediction

and c is a classi�er. P (c) is the prior which represents how likely classi�er c is the true model and

P (xjc) represents the probability classi�er c guesses x. Therefore, P (x) represents the combined

probability of prediction x to be the correct answer. Unfortunately, to be optimal, Bayes Theorem

requires the prior P (c)'s to be known, which are usually not, and it also requires the summation

to be over all possible classi�ers, which is almost impossible to achieve. However, an approximate

P (x) can still be calculated by approximating the priors using various established techniques on the

training data and using only the classi�ers available. This technique is essentially a \weighted vot-

ing scheme" and can be used as an alternative to generating arbiters. This and the aforementioned

strategies and issues are the subject matter of ongoing experimentation.

Schapire's hypothesis boosting Our ideas are related to using meta-learning to improve accu-

racy. The most notable work in this area is due to Schapire (1990), which he refers to as hypothesis

boosting. Based on an initial learned hypothesis for some concept derived from a random dis-

tribution of training data, Schapire's scheme iteratively generates two additional distributions of

examples. The �rst newly derived distribution includes randomly chosen training examples that are

equally likely to be correctly or incorrectly classi�ed by the �rst learned classi�er. A new classi�er is

formed from this distribution. Finally, a third distribution is formed from the training examples on

which both of the �rst two classi�ers disagree. A third classi�er (in e�ect, an arbiter) is computed

from this distribution. The predictions of the three learned classi�ers are combined using a simple

arbitration rule similar to the one of the rules we presented above. Schapire proves that the overall

accuracy is higher than the one achieved by simply applying the learning algorithm to the initial

distribution under the PAC learning model. In fact, he shows that arbitrarily high accuracy can be
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achieved by recursively applying the same procedure. However, his approach is limited to the PAC

model of learning, and furthermore, the manner in which the distributions are generated does not

lend itself to parallelism. Since the second distribution depends on the �rst and the third depends

on the second, the distributions are not available at the same time and their respective learning

processes cannot be run concurrently. We use three distributions of training data as well, but the

�rst two are independent and are available simultaneously. The third distribution, for the arbiter,

however, depends on the �rst two. Freund (1990) has a similar approach, but with potentially many

more distributions. Again, in Freund's work, the distributions can only be generated iteratively.

Work in progress In addition to applying meta-learning to combining results from a set of

parallel or distributed learning processes, meta-learning can also be used to coalesce the results from

multiple di�erent inductive learning algorithms applied to the same set of data to improve accuracy

(Chan & Stolfo, 1993b). The premise is that di�erent algorithms have di�erent representations

and search heuristics, di�erent search spaces are being explored and hence potentially diversed

results can be obtained from di�erent algorithms. Mitchell (1980) refers to this phenomenon as

inductive bias. We postulate that by combining the di�erent results intelligently through meta-

learning, higher accuracy can be obtained. We call this approach multistrategy hypothesis boosting.

Preliminary results reported in (Chan & Stolfo, 1993a) are encouraging. Zhang et al.'s (1992) and

Wolpert's (1992) work is in this direction. Silver et al.'s (1990) and Holder's (1991) work also

employs multiple learners, but no learning is involved at the meta level. Since the ultimate goal

of this work is to improve both the accuracy and e�ciency of machine learning, we have been

working on combining ideas in parallel learning, described in this paper, with those in multistrategy

hypothesis boosting. We call this approach multistrategy parallel learning. Preliminary results

reported in (Chan & Stolfo, 1993c) are encouraging. To our knowledge, not much work in this

direction has been attempted by others.

8 Concluding Remarks

Several meta-learning schemes for parallel learning are presented in this paper. In particular,

schemes for building arbiter trees are detailed. Preliminary empirical results from bounded arbiter

training sets indicate that the strategies are viable in speeding up learning algorithms with a

small degradation in prediction accuracy. In addition, the algorithms can scale to arbitrarily large

problems by setting the size limit of distinct training data subsets to the memory capacity of an

individual processor and increasing the number of processors. When the arbiter training sets are

unbounded, the strategies can preserve prediction accuracy with less training time and required

memory than the serial version. Schemes for reducing the size of arbiter training sets were also

discussed. In particular, proportional partitioning of classes in the training subsets and a particular

classi�er pairing schemes have been empirically observed to reduce the size of arbiter training sets.

The reduced memory requirement and usage of multiple processors make our strategies scalable

to much larger problems, which will inevitably arise from the Human Genome Project. Moreover,

without the bene�t of multiple processors, our strategies can still be used to handle problems larger

than possible on a single processor. Thus, by using meta-learning techniques, main-memory based

learning algorithms can scale to larger problems with or without the usage of multiple processors.

The schemes presented here are a step toward multistrategy parallel learning; the preliminary

results obtained are encouraging. More experiments are being performed to study how meta-

learning scales with much larger data sets. We intend to further explore the diversity and possible

\symbiotic" e�ects of multiple learning algorithms to improve the accuracy of our meta-learning
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schemes in a parallel and distributed environment.
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